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Summary 

This paper is the first of a series that will examine the effect of earth 
structure on earthquake displacement, strain and tilt fields at the Earth's 
surface. Its purpose is to develop the numerical techniques to be applied 
in the papers that foliow. A general computational procedure for the 
evaluation of the integral expressions for the surface displacements due to 
an arbitrary point dislocation source in a layered medium is described. 
It is shown to be rapid and inexpensive to use, and its accuracy appears to 
be entirely adequate for practical purposes. 

Introduction 

In recent years there has been a notable increase in the deployment of instruments 
such as geodimeters, strain and tiltmeters in active seismic regions. This has resulted 
in the accumulation of a considerable body of data relating to the permanent deforma- 
tion of the Earth associated with earthquakes, fault movements and creep episodes. 
There are enough consistencies within these data that it is clear that they contain 
useful information both about the nature of the active tectonic processes and also 
(perhaps) about the structure of the Earth. However, the extraction of this informa- 
tion from the data has been severely limited by the oversimplified interpretation 
methods in general use. 

These methods are all based on elastic dislocation theory, in which the source of 
the elastic fields is a displacement dislocation. The simplest model of an earthquake 
is obtained by placing such a source in a homogeneous elastic half-space. The result- 
ing displacement and strain fields have been derived and discussed by Chinnery (1961), 
Maruyama (1964) and Press (1965), among others. This model is still used in most 
interpretations of displacement and strain data (e.g. Canitez & Toksoz 1972; Romig 
1972; Mikumo 1973). However, the Earth is neither homogeneous nor a half space, 
and it is interesting to consider the effect of earth curvature and earth structure on the 
results obtained using the simple model. 

As might be expected, the effect of earth curvature is very small in the near field. 
McGinley (1969) and Ben-Menahem, Singh & Solomon (1970) have compared the 
elastic fields in a homogeneous sphere to those in a homogeneous half space from the 
same source. Their results indicate that for shallow events the differences between the 
two cases are negligible at distances of less than 20". 

* Present address: Seismic Discrimination Group, Lincoln Laboratory, MIT, 42 Carleton Street, 
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However, the effects of earth structure are potentially much more serious. This has 
become apparent from a number of studies. McGinley (1969) formulated the general 
solution for a point source in a multilayered medium. In particular, he studied the 
effects of a weak layer on the deformation fields of vertical strike-slip and dip-slip 
faults. Ben-Menahem & Gillon (1970) used the displacement expressions for a source 
in a single layer over a half space (Ben-Menahem & Singh 1968) to investigate the 
effect of a crustal layer on the displacement fields. Rybicki (1971), using the method 
of images, studied the effects of a single weak surface layer on the elastic fields on an 
infinite length strike-slip fault. Sat0 (1971) formulated the equations for a point 
source in a multilayered medium. He then calculated the response of the fields for the 
Gutenburg model with source in the surface layer, but there appear to be numerical 
instabilities in his computations. Sat0 & Matsu'ura (1973) using Sato's (1971) 
formulation calculated the displacement fields of a fault which spread over several 
layers in a multilayered earth. Chinnery & Jovanovich (1972) derived the expressions 
for an infinite length strike-slip fault in the presence of two layers over a half space, 
and investigated the effects of a soft layer at depth. All these studies have given 
insight into the consequences of earth layering but have limited the number of layers 
or constrained the source to lie in the first layer, with the exception of Sat0 & Mat- 
su'ura (1973). 

The present paper is the first in a series, in which we will investigate the effects of 
earth layering on the elastic fields of various dislocation sources. In this paper we 
describe the basic theory and numerical methods for evaluating the elastic fields 
associated with a buried source in a multilayered half space. In the three papers that 
follow, we will use these numerical methods to study, in turn, the point source, the line 
source and the source of finite size. 

In order to resolve a discrepancy in the literature, we first give a rtsumrS of the 
basic theory for a general Volterra-type point dislocation in a layered half space, 
following Singh (1970). We then describe a procedure for the numerical evaluation of 
the kernel functions in the integral expressions for the displacement field and method 
for approximating them so a rapid integration of the integral expressions can be 
performed. The method used to approximate the kernel functions is more general 
and accurate then the approximate expressions of the kernel functions previously used 
by McGinley (1969), Sat0 (1971) and Sat0 & Matsu'ura (1973) to evaluate the 
displacement fields. These methods place no restrictions on the location of the 
source nor on the number of layers. 

Theory 

The displacement field caused by an arbitrary shear dislocation located within an 
elastic medium may be expressed in terms of the solutions corresponding to four basic 
source types which satisfy the boundary conditions and the constitutive equations 
(see Ben-Menahem & Singh 1968a). In cylindrical co-ordinates (r,  E ,  z),  with the 
source located at (r = 0, z = h), the displacement components are 

ui = sin b(ui3 sin 2y - ui2 cos 2y) + cos p(ui' sin y - u: cos y )  

where 0 and y specify the orientation of the source, as shown in Fig. 1. If the source 
is considered to represent a fault, then p is the rake of the fault, y is the dip of the 
fault, and the strike is taken along the x-axis while the slip is taken with respect to 
the hanging wall (Fig. 1). 

The displacement ui l ,  ui2, ui3 are respectively the solutions for a vertical strike-slip 
source (/I = o", y = go"), a vertical dip-slip source (p  = 90", y = 90') and a 45" dip-slip 
source ( p  = go", y = 45"). The equation for the displacement u: is the same as that for 
uiz with E replaced by ( E -  lr/2). 
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z +  
FIG. 1. Geometry of an arbitrary fault in cylindrical co-ordinates ( r ,  E ,  z) with 
origin 0. P is the point of observation at a distance R from the source Q. The 
rake is 8, the dip is y,  and Uo is the displacement. The strike is taken along the 

x-axis. 

The static displacement fields in a multilayered elastic half space may be obtained 
from the solution for an infinite medium by using the Thomson-Haskell matrix 
method (Thomson 1950; Haskell 1953). This procedure was formulated by Singh 
(1970), and we present merely a brief resume of his results. 

Consider a semi-infinite elastic medium consisting of ( p  - 1) parallel, homogeneous 
and isotropic layers overlying a homogeneous, isotropic half space. The layers are 
numbered consecutively from the surface layer to the half space. The origin of the 
cylindrical co-ordinate system (r ,  E ,  z) is placed at the free surface with thez-axis drawn 
into the medium. The nth layer is bounded by the interfaces z,- and z,], has a thick- 
ness d, and Lame constants p,, and 7,. The source is located in the sth layer and is at a 
depth h from the top interface (Fig. 2). 

The vector displacement GI,, in the nth layer, satisfies the Navier equation of static 
elasticity for an infinite medium, 

{V' + (1 + A,,/p,,) grad div) ii, = 0. (2) 

The three independent solutions of this equation are given by Morse & Feshback 
(1953) and Ben-Menahem & Singh (1968b). These are: 

Rnmf = exp (t-kz)(+Prn+Brn) 

Snm* = exp (5 -  kz)( rt 1 - 26, kz)P,,, - exp (5 -  kz)( 1 5- 24, kz)B,, 
iG,,,,f = exp ( -t kz)Cm 

where 

6, = 4,+ P n ) / @ n +  3F") 
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u, = - f [(l/i)y, ,(O)(a/dkr)J,(kr) +z1,(0)(2/kr)J,(kr)] kdk sin 26 

[(l/i)y,,(0)(2/kr)J,(kr) +zlz(0)(a/akr)J,(kr)J kdk cos 28 

(l/i)xl~(0).T~(kr) kdk sin 2~ 

D. B. Jovanovich, M. I. Husseini and M. A. Chinnery 

> (4) 

__ 
half -space - 

L 

FIG. 2.  Multilayered half space with ( p -  1) layers. The source Is,located at Zrl, in 
the s-th layer at a depth h from the interface Z,-  The half-space is at a depth H 

from the surface. 

and 

$m = Z, ~ , ( k r )  exp (z~s) 

B, = (zr alakr + d, (l/kr)d/aE)J,,(kY) exp (ZWZE) 

em = (Z r  (1 /kr )  - - P, a/dkr)J,,(kr) exp ( h e ) .  
a 
a& 

The surface displacements may be deduced by matching at the interfaces the 
coefficients of the general solutions by the Thomson-Haskell matrix method. The 
integral expressions for displacement for the three sources mentioned above are: 

0 

W 

u , =  - s  
0 

m s u, = - 
0 
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(ii) for a vertical dip-slip source, 
m 

U, = - j ~ ~ l / i ~ ~ , , ~ O ~ ~ d / d k r ~ J , ~ k r ~ + z l , ~ O ~ ~ l / k r ~ J 1 ~ k r ~ ~  kdk sin E 

I 0 

209 

u, = - p [( l/i)yl (O)(l/kv)J,(kr) tz, (O)(d/dkr)f,(kr)] kdk cos E 

0 

m I 
u, = - J (l/i)x,,(O)J,(kr)kdksinE 

0 

(iii) for a 45" dip-slip source, 

u,= - p( Y 10 (O)J, (kr) + (1/i)Z12 (0)(2/kr)J, (kr) 

u,= - p [(2/kr)y,,(O)J,(kr) 
0 

- y , (O)(d/dkr)J,  (kr)) cos 2 ~ )  kdk 

0 

- (l/i)zlz(0)(d/dkr)J,(kr)] kdk sin 2~ 

(xlo(0)Jo(kr)+x,,(O)J,(kr) cos 2 ~ )  kdk. u, = 
0 

Another important seismic source is the centre of compression; and the integral 
expressions for the corresponding displacements are, 

m \ 

u, = - 1 y,,(O)J,(kr)kdk 
u, = 0 

u, = f x,,(0)J0(kr) kdk. 

0 

0 

(7) 

where 
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where (a,) and (anL) are the layer matrices and the subscript denotes the layer number. 
The sl subscript refers to the portion of the source layer which lies between the source 
and the interface above it. The (ZJH)) and (Z,(W)") are the coefficient matrices of 
the half space and the (0,) and (DrnL) are the source vectors which are determined 
by the discontinuities in the displacements and stresses. All of these matrices are 
listed in the Appendix. The vectors (D,,,) and (0,") are listed for the four basic source 
types (Steketee 1958; Singh 1970). 

Ben-Menahem & Singh (1968a) derived the expressions for the displacements due 
to a buried source for the case of a single layer overlying a half space. Ben-Menahem & 
Gillon (1970), using these results, numerically evaluated the static surface displace- 
ments. Some of the expressions of Ben-Menahem & Singh (1968a) differ from those 
of Singh (1970). The ( E )  matrices and the (F,) vectors for a single layer overlying the 
half space are from (9), 

By performing the matrix manipulations and substituting into equations (4) and (5), 
we should obtain Ben-Menahem & Singh's equations (11-56) and (11-58). A differ- 
ence in q6-  and qz* terms defined in their equations (11-57) and (11-59) is evident. 
The equations should be, 1 (11) 

&j- = -Z4+6Z,(1 -2kf1)(1+26k(H-h)) 

q z *  = Tz,-6,2z1(1 *2kH)(1+2k(H-/2)) 

where the above terms are defined in their equations (11-52) and (11-43). These 
differences imply their equations for u, for a vertical strike-slip source, and all three 
displacements in vertical dip-slip source are incorrect. Though these errors appear in 
both the results of Ben-Menahem & Singh (1968a), and Ben-Menahem & Gillon 
(1970), they may be a misprint. 

Numerical methods 

One of the major difficulties in dealing with the integral expressions for displace- 
ment is the evaluation of the kernel functions. The reduction of these functions to an 
algebraic closed form is extremely tedious and they are difficult to evaluate numerically 
since they involve matrix products of highly disproportionate terms. In order to 
avoid this problem the (a,,) matrix may be decomposed into the sum of four matrices, 

(4 = exp (-- kd,,)(A,,') + exp (- kdI l )W,z )  
+ exp (+ kd,,)(An3) + exp (+ k d , ) k ( ~ , 4 )  (12) 

where the A," matrices contain only constant coefficients. The (ZJH)) is similarly 
treated. In this fashion the ( E )  matrix may be rewritten as the product of constant 
matrices while all the exponentials and powers of k are carried outside the appropriate 
matrix product. The final form of the ( E )  matrix becomes, 

L N 

where D, are the exponential arguments resulting from the product of the ' factored- 
out ' exponentials. (e)nI are the coefficient matrices arising from the matrix product 
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Elastic dislocations in a layered half-space-I 21 1 

of the (A,") and (Z,(H))  matrices associated with the nth power of k and the Zth 
exponential argument. N is p + 1 and L is ZP. The (F,) vector may be similarly treated 
once the appropriate source vector (0,) is selected. 

The numerators of the kernel functions are formed from the second order sub- 
determinants of the ( E )  matrix multiplied by the appropriate (F,) term. The (FfJ  
term introduces positive-argument exponentials which cancel out in the final form 
but may not do so numerically due to round-off error. These terms are cancelled 
artificially to avoid any numerical instability. The final form of the kernel functions 
x,,(O) and y,,(O) is a ratio of finite series of exponentials multiplied by polynomials, 

where N is 22(p-')fs, M is 2p+ s- 1, P is 2'@-') and Q is 2 p -  I (p is the number of 
layers plus one and s is the source layer number). 

The (a,,"), (Z,(H)"), and (FmL) matrices are more easily treated since they do not 
involve polynomials of k. The (a:) matrix is decomposed into, 

(a,:) = exp (- kd,,)(A,,'") + exp (+ kd,,)(Af12") (15) 

and the final form of the z,,(O) kernel function is, 

I 

i = l  
J 

j = 1  

C aiexp (-kAi) 

C bj exp (- kBj) 

where I is 2""-' and J is 2p-1. 
This procedure for evaluating the kernel functions is stable. We believe the 

oscillations in Sato's (1971) numerical evaluation of this kernel functions, which are 
similar to ours, may be due to numerical instability (his Figs 3-5). The oscillations, 
however, do not appear in Sato & Matsu'ura's (1973) paper. 

The occurrence of the polynomial-exponential series in the denominator of the 
kernel functions renders exact analytical integration of the displacement integral 
expressions impossible. However, a more detailed examination of the denominator 
of the kernel functions (equation (14)) yields the interesting result that it may be 
expressed in the form 

This is true because xIm(O) and y ,,(O) have a second-order subdeterminant in their 
denominator which may be written as, 

(18) 34 El = a1 Imn azIop"'"-*-ap- 1 I":* Zp(H)Il,"" 

where the summed pairs of indices are only distinct pairs (i.e. m > n, see Dunkin 
1965). The second-order subdeterminants associated with the polynomial coefficients 
of the zero-argument exponential are identically zero with the exception of the zero- 
power coefficient (bol # 0; bi l  = 0, i = 1, Q). 
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212 D. B. Jovanovich, M. I. Husseini and M. A. Chinnery 

This form of the denominator of the kernel functions allows the use of a method 
suggested by Sneddon (1951) which was successfully applied to a single layer over a 
half space by Ben-Menahem & Gillon (1970). This method consists chiefly in approxi- 
mating the denominator by a truncated binomial series expansion and then fitting the 
reminder of the series with a sum of exponential-polynomial terms using the method 
of least squares. Thus the denominator of the kernel functions xlm(0) and ylm(0) in 
(17) takes the new form, 

where the rj and Sj  are found by a least-square approximation. zlm(0) is similarly 
treated. By multiplying the exact numerator series by the approximated inverse 
denominator series, the kernel functions become a finite sum of exponentials multiplied 
by polynomials. The displacement integral expressions will now take the form, 

u(r) = C C a,,, 1 k" exp (- kD,)J,(kr)dk. (20) 
1 "  

0 

This is the Lipshitz-Hankell integral and its exact quadrature may be found 
(Erdelyi 1954). The integral may be reduced to a simpler form following Ben-Mena- 
hem & Gillon (1970). Introducing spherical co-ordinates (Fig. l), 

D = RCOS$ 

r = Rsin$ 

and denoting 
m 

Fnm(r) = J k" exp (-kD)J,(kr)dk 
0 

then from Watson (1944), 

Fnm(R, cos +) = ((n-m)!/lt"+')P/(cos+) n 2 m 
= tan++K/(cos+)/R"+' m, n > 0 (23) 

where Pnm(cost,b) is the associated Legendre polynomial and K,," is given by the 
recursion formulas (Ben-Menahem & Gillon 1970), 

Test of numerical accuracy 

To establish the numerical accuracy of the method described here, an arbitrarily 
chosen model was studied using different numerical schemes. This model consisted 
of three layers overlying a half space with rigidity contrasts of 0.1, 1.0, 0.1, 1.0 and 
thicknesses in kilometres of 5, 30, 5 and infinity, respectively. The Poisson ratio was 
selected to be 0-25 and a vertical strike-slip point source was placed at a depth of 
20 km. The source had a 1-m displacement and a surface area of one square km 
(Fig. 3, insert). This model is of particular interest to DC seismology since it in- 
corporates both a weak surface layer and a thin partial melt zone. 
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(see insert). The k-axis is scaled by a factor of 20. 

i 
FIG. 3. Approximations of the three kernel functions x l z (0 ) ,  ylz(0) and z12(0) for 
the three-layer earth model with a weak surface layer and a thin partial melt zone 

The kernel functions xI2(0) and y,,(O) have 54 exponential terms in the numerator 
and 32 in the denominator. The z,,(O) kernel function had four exponential terms in 
the numerator and six in the denominator. After expanding the denominators in a 
truncated binomial series, the difference between the denominator and its binomial 
expansion was fit by a sum of exponentials using least squares. For xI2(0) and 
y12(0) a single exponential was sufficient to yield a maximum relative error of 5.21 per 
cent and an average relative error of 1.36 per cent. The zI2(0) function was fit with 
the sum of two exponentials and its maximum relative error was 4.03 per cent and the 
average relative error was 0.174 per cent. The relative error decreased sharply as k 
approached about 5.0 (Fig. 3). With a four-layer Gutenberg Earth model, which had 
less marked rigidity contrasts, the kernel functions were approximated in a similar 
fashion to within 1 per cent maximum relative error. 

Upon reducing the integral expressions for the displacements to the form of 
equation (20), an exact quadrature is possible. The radial and vertical displacements 
were evaluated on a digital computer (IBM 360-67) and required 5 s for each value 
of r. The integral expressions were also evaluated using a numerical quadrature 
scheme (J. Gregory) where the area of the integral is evaluated between each of the 
zero-crossings of the Bessel functions. The method was programmed to proceed with 
the summing of areas until the final integral contribution of the zero-crossing was less 
than 0.1 per cent. At r = 60 km, with 80 values of the integrand between zero- 
crossings, the method required nearly 2 min. 
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Elastic dislocations in a layered half-space-I 215 

A comparison of the results of the two schemes at various distances is presented in 
Table 1. That reasonably close results were obtained by the two independent schemes 
is quite remarkable since they are both subject to numerical error. The larger relative 
error at r = 180 and 380 km is due to the limited number of integrand values per zero- 
crossing selected for the numerical quadrature. This limitation is due to the drastically 
increasing number of zero-crossings of the Bessel functions needed to converge to an 
accurate solution at large r. Thus the computation time for the numerical quadrature 
wit1 increase dramatically as r becomes large while the approximation method 
maintains a constant computation time at all values of r. 

Summary 
In this study, we have established a procedure for the evaluation of the surface 

displacements caused by an arbitrary point source in a layered medium. The strains 
and tilts may also be obtained from this procedure since their integral expressions are 
very similar to those of the displacements. The results may be extended to evaluate 
the elastic fields of a finite and infinite fault in a layered medium. 

The computational procedure is quite general, inexpensive and accurate in dealing 
with layered media. The basic theory is attractive since the mathematical formulation 
is presented in a concise matrix form. The inherent numerical difficulties of the 
Thomson-Haskell matrix formulation have been circumvented by algebraic manipula- 
tions. We can, therefore, obtain the exact forms of the kernel functions in the dis- 
placement integral expressions. By expanding the denominators of the kernel functions 
in a truncated binomial series and fitting the remainders by least squares, we can 
obtain an exact quadrature of the integral expressions. 

In later papers in this series, these techniques will be applied to the evaluation of 
the effect of earth structure on earthquake displacement and strain fields measured at 
the Earth’s surface. 
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Appendix 

The elements of the Z,(H) matrix are, 
(11) = -(21) = -exp ( - I&) 
(12) = (22) = exp ( k H )  
(13) = -(1+26,kH)exp(-kH) 
(14) = (1-26,kH)exp(-kH) 
(23) = -(1-26,kH)exp(-kH) 
(24) = - (1 + 26, kH)  exp (kH)  
(31) = -(41) = p , e x p ( - k H )  

(32) = (42) = p,exp ( k H )  

(33) = p, 6,( 1 + 2kH) exp ( - kH) 

(34) = p, 6,( 1 - 2kH) exp (kH) 

(43) = 6, pp( 1 - 2kH) exp (- kH)  

(44) = -pp6,( l  +2kH)exp (kH) 
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(1 2) = - (43) = 2p(( 1 -6) sinh kd - 26kd cosh kd) 

(13) = 4( - sinh kd+bkd cosh kd) 

(14) = -(23) = 46kdsinhkd 

(21) = -(34) = 2p((1-6)sinhkd+26coshkd) 

the elements of the Zp(H)L  matrix are, 

(11) = exp (-kH) 

(1 2) = exp (kH) 
(21) = - p p  exp (- kH) 

(22) = PLp exp (kH)  
the elements of the an(2p(1 +a)) matrix are, 

5 (A31 

where th sub xipt has been dropped for /in, a,,, and d,. The elements of anL are, 

(1 1) = (22) = cosh kd 

(12) = - p - l  sinhkd 
(21) = - p sinh kd 

where subscript n has been dropped for p,, and d,. 
The four elementary source vectors Dm and DmL are for vertical strike-slip 

(i,j) = (1,2), 

(O2)4 = P s X i  = 2PsX ('45) 

= -2xi (DIL), = -2% (A61 

vertical dip-slip (i, j )  = (2, 3), 

45" dip-slip ( i ,  j) = j((2, 2)- (3, 3)), 

1 (A7) 

(Do11 = 2x(6,- 1)/(4+ 1) 

(W4 = 4 P S X  

(0014 = 4P,%(76--1)/(6,+1) 

(Doh = 2%(76,- I ) l ( S S +  1)  

P Z L h  = -!&Xi 
centre of compression (i, j) = (1, 1)+ (2,2)+ (3, 3), 

J (A81 
(O0)4 = 2&x(76s-  1> 

where x = U0dS/4n and U o  is the average dislocation over the surface area dS. 
Subscript s refers to the source layer. 
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