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ELASTIC DISPLACEMENTS FOR VARIOUS EDGE-CRACKED PLATE SPECIMENS 

by B e r n a r d  Gross, Ernest Roberts, Jr., a n d  J o h n  E. Srawley 

Lewis Research Center  

SUMMARY 

The relative displacement per unit load of two conjugate points is used as a quantita- 
The nec- tive indicator of crack extension in plane strain fracture toughness KIc tests. 

essary displacement data are presented here in dimensionless form for five types of 
single-edge-crack specimens: three-point bending, pure bending, remote axial tension, 
and eccentric tension of compact rectangular and tapered varieties. The results were  
obtained by a boundary collocation method of elastic analysis and are highly precise in 
themselves. The accuracy with which they apply to actual specimens depends on the ex- 
tent to which the assumed boundary conditions a r e  equivalent to the actual load distribu- 
tions. Reasonably good agreement was obtained with three sets of existing experimental 
data, and this agreement is sufficient for KIc test purposes. For gage points located on 
the specimen edge, the results show low sensitivity to small variations in gage location. 

INTRODUCTION 

In plane strain fracture toughness KIc testing, the relative displacement per unit 
load v /P of two conjugate points is used a s  a quantitative indicator of crack extension 
during the test (refs. 1 to 3) The relation between v /P and relative crack length a/W 
depends on the type of specimen employed. The relations for various specimens are de- 
termined by linear elastic strain analysis, or by direct experimental measurements in 
which slots are used to simulate cracks. This report presents v /P data obtained by a Y 
boundary collocation method of analysis for several types of single -edge-crack plate 
specimens. The use of these specimens in KIc testing has been explained by Brown and 
Srawley (refs. 1 and 2). 

The following types of loading were investigated (figs. 1 and 2): three-point bending 
having a span to width ratio of 4, pure bending, remote axial tension, and eccentric ten- 
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Remote axial- 
tension specimen 

(b) Common geometric configuration. 

Figure 1. - Bending- and axial-tension plate specimens. 

sion (compact rectangular and tapered varieties of specimens). The results are given in 
the form of tables of a dimensionless displacement coefficient as a function of the major 
variable, relative crack length a/W, and of the secondary variables x/W and y/W 
which represent the gage point locations in relation to the crack tip. 

be confused with measurements of specimen compliance (reciprocal stiffness) for  deter- 
mination of energy release rates (ref. 1). The intent of a compliance experiment is to 
determine the work done by the loading forces, and the displacement measured must be 
chosen appropriately. For evaluation of crack extension, any convenient gage points can 
be used for the displacement measurement. The most sensitive positions a r e  those close 
to the crack, which are precisely the least suitable for compliance when the specimen is 
remotely loaded. However, for the eccentric tension specimens discussed in this report, 
the gage point positions that are convenient for crack extension detection are also suitable 
for compliance determinations. 

Displacement measurement for detection of crack extension in a KIc test should not 
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Figure 2. -Eccentric tension plate specimens. 

SYMBOLS 

crack length 

specimen thickness 

coefficients of Williams stress function 

Young's modulus 

distance from wedge tip to line of load application 

uniform depth of nontapered split a r m  

depth of tapered split a r m  at load line 

stress intensity factor of crack tip elastic stress field 

plane strain fracture toughness, measured in terms of the o ening mode 
stress intensity factor KI in units of (Stress) x (Length)lA (see refs. 
1 and 2) 

bending moment 

load 

polar coordinates referred to crack tip 
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span 

displacement in radial direction 

displacement in x-direction 

displacement in tangential direction 

displacement in y -direction between rty locations 

specimen width 

Cartesian coordinate system referred to crack tip 

polar coordinate referred to crack tip 

Poisson's ratio 

harmonic function in displacement equation 

Airy stress function 

ANALYSIS 

The method of analysis is described in some detail by Gross and coauthors (refs. 
4 to 8). Its earliest use in solid mechanics is by B a r b  (ref. 9). 
given by Green (ref. 10) and Howland and Knight (ref. 11). The method is called various- 
ly "boundary collocation'' and "point matching". Briefly, it consists of truncating a 
series solution to the appropriate partial differential equation, and making use of the 
boundary values at a finite number of points to evaluate its coefficients. It can be shown 
(ref. 12) that the biharmonic equation in terms of an Airy s t ress  function properly de- 
scribes the plane elastic problem. It is convenient to use the Williams stress function 
for our analysis (refs. 13 and 14). It is an Airy stress function, it identically satisfies 
the biharmonic equation, and it identically satisfies the boundary conditions along the 
crack surface. 

Considerable detail is 

The equation to be solved is 

4 v x = o  

where the origin of the polar coordinate system is the crack tip (fig. 3). 
given by Williams is 

The solution 
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+(-l)nd2nrn+1[-cos(n - l ) e  + cos(n + 1)d 

Figure 3. - Geometry defining displacements in x- and y-directions. 

The displacements in terms of the stress function and a harmonic function q(r7 6) are 
given by Williams (refs. 13 and 14) and Coker and Filon (ref. 15). In infinite series form 
they become 

sin(n - l )e  +- d2n 
n - - 3 n - 1  1 

co 

sin (n - :)e 
dr7 0) = 7, p- I(- l)n+14[:n- 1 

2 n=1,2,3.. . 
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where for plane stress u = v/(l + u), for plain strain u = u, and for either plane stress 
or plane strain 1-1 = EAZ(1 + v ) ] .  The resulting displacement equations are 

+ ( - l )nd2nrnp  - o)sin(n - l )e  - (n + l)sin(n + 1 ) d  1 

+ (-l)"+'dznk3 - n - 4u)cos(n - 1)8 + (n + l)cos(n + 1)d 1 
For the special case of 8 = T, it can be deduced from these equations that the dis- 

placements for plane s t ress  a r e  independent of Poisson's ratio v, and that the displace- 
ments for plane strain are equal to (1 - v ) times those for plane stress.  Since this 
simplification applies to nearly all the results obtained, it was  convenient to compute the 
results for plane stress. 

2 

The displacements in the x- and y-directions (fig. 3) are 

ux = U cos 8 - V sin 8 

v = 2(U sin e + v cos e) Y 

It is to be noted that v 
dicated by a gage mounted across the crack, that is, the relative displacement of a pair 
of conjugate points. 

The number of terms in the series,  and hence the number of boundary points satis- 
fied, was progressively increased until negligible changes occurred in the values of the 
displacement. The relation between calculated displacement and the number of terms i n  

as defined in the preceding expression is the displacement in- 
Y 
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Figure 4. - Typical variation of dimensionless displacement coefficient v BEW/6M 
as function of number of coefficients used in computation. Displacements are 
for three-point bend specimens computed at specimen crack edge. 

Y 

the series is shown graphically in figure 4 for one specimen configuration. 

lengths are relative to specimen width a/W, all coordinates are relative to specimen 
width x/W and y/W, and all displacements are relative to elastic modulus, specimen 
thickness, and either load o r  moment per unit depth W, v BE/P and v EBW/GM. 

All quantities used in the analysis were made dimensionless. Hence, all crack 

Y Y 

RESULTS AND DISCUSSION 

Dimensionless displacement coefficients for plane stress are tabulated for values of 
the relative crack length a/W up to 0.7 in tables I to VI. The results for three-point 
bend specimens S/W = 4 (tables I and II) a r e  more detailed than the others because these 
specimens are of particular current interest for standardized KIc measurement (ref. 2). 
Tables I and I1 show the displacements for different gage point locations, respectively; 
along the crack, and along the specimen edge normal to the crack. The displacement is 
considerably more sensitive to position along the crack than along the specimen edge 
normal to the crack. 
the edge of the specimen. However, in KIc measurement, the factor needed is the de- 
rivative of the logarithm of the displacement coefficient with respect to the logarithm of 

For this reason, it is desirable in practice to locate the gage on 
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1 the relative crack length (ref. 1) , and this factor is less sensitive to gage location than 
is the displacement coefficient itself. Therefore, the results obtained in KIc tests will 
show low sensitivity to small variations in gage location. 

table I as well as the displacements normal to the crack. These lengthwise displacements 
a r e  comparatively small and are not of any particular interest. 

A s  a matter of interest, the displacements parallel to the crack ux a r e  given in 

Gage location 

x/w Y/W 

-a/32W i0 
-a/16W 
-a/8W 
-a/4W 
-a/2W 
-a/w 

TABLE I. - DIMENSIONLESS DISPLACEMENTS ALONG CRACK FOR 

am 
-_ 

0 . 3  0 . 5  

EBvyW/6M 

0.316 0.0012 0.722 -0.0024 
.450 .0025 1.041 -, 0045 
.644 .0052 1.525 -. 0080 
.933 .0107 2.298 -. 0120 

------ 5.972 - - - - - - 
------- 1.377 .0218 3.611 

2.099 

THREE-POINT BEND SPECIMENS (S/W = 4) (PLANE STRESS) 

1.948 
2.876 
4.391 
7.050 

12.019 
21.597 

-. 0436 
-0.0230 

-.0789 
-. 1303 
-. 1802 

------- 
1 I I 

The last  line in table II lists experimental results by Fisher (ref. 3) for  comparison. The 
experimental results a r e  somewhat lower than the computed results for plane stress, but 
not as much a s  by the factor (1 - v ) for  v = 0 . 3 .  Thus, the experimental results a r e  
bracketed by the computed results for plane stress and those for plane strain (to a close 
approximation). This would be expected since the region near the crack tip in the actual 
specimen approaches a state of plain strain, whereas regions remote from the crack tip 
are in a state of plane stress. The two-dimensional analysis is not capable of producing 
closer agreement with the experimental results. Experimental results are also com- 
pared with computed results in table III for pure bending, and the differences are similar 
to those for three-point bending. The displacements a r e  greater for pure bending than 
for three-point bending because of the different bending moment distributions. 

Table IV gives results for single-edge-cracked specimens under remote axial ten- 
sion on the assumption of uniform stress distribution a t  a distance not less than 0.8 W 
from the crack (ref. 4). These results are intended to apply to pin-loaded specimens 
with pin centers not less than 3 W apart. 

2 

'For example, for remote axial tension, the factor is [d log(v EB/P)/d log(a/Wj 
Y 

which is equal to ka/W)/(vyEB/P$(vyEB/P)/d(a/Wj as in fig. 40 of ref.  1.  

a 



TABLE 11. - DIMENSIONLESS DISPLACEMENTS AT EDGE FOR THREE- 

POINT BEND SPECIMENS (PLANE STRESS) WITH C0MPA"ITVE 

EXPERTMENTAL RESULTS (S/W = 4) 

x/w 

-a/w 

I Gage location 

Y/W 

*O 
f. 10 
f. 20 
f. 50 
f. 10 

2.091 
2.109 
2.293 
3.082 
1.94 

0.2 

1.184 
1.217 
1.453 
2.385 
----- 

3.520 
3.529 
3.696 
4.388 
3.46 

a/w 

0.3 I 0.4 I 0.5 1 0.6 I 0.7 

EBvyW/6M 

5.973 
5.987 
6.154 
6.817 
5.60 

10.733 
10.751 
10.940 
11.632 
9.74 

~ 

21.597 
21.625 
21.865 
22.656 
19.9 

Source 

Collocation 
Collocation 
Collocation 
Fisher, et al. 

(ref. 3) 
I 

TABLE m. - DIMENSIONLESS DISPLACEMENTS AT EDGE FOR PURE BEND 

SPECIMENS (PLANE STRESS) WITH COMPARATIVE 

EXPERIMENTAL RESULTS 

Source 

x/w y/w I 0.2 

EBv W/6M 

(ref. 3) 

-a/w *O 

TABLE IV. - DIMENSIONLESS DISPLACEMENTS AT EDGE 

FOR REMOTE AXIAL TENSION SPECIMENS 

Gage location 

Y/W 

I 

f0 

(PLANE STRESS) 

0.2 I 0.3 I 0 . 4 a [ : . T 1  

E B V ~ / P  

1.440 2.806 5.217 9.881 19.900 44.100 I I I I  

III11111 I I 

9 
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Tables V and VI give results for various compact tension specimens which are ec- 
centrically loaded at positions close to the crackline and to the specimen edge (ref. 8). 
Table V includes a comparison with experimental results from Bush and Wilson (ref. 16), 
which are in satisfactory agreement with the computed results in spite of the consider- 
able difference of gage point location. It would be expected, however, that this type of 
specimen would be particularly insensitive to gage location along the specimen edge. 

0.3 0.4 

TABLE V. - DIMENSIONLESS DISPLACEMENTS AT LOAD LINE 

FOR ECCENTFUCALLY LOADED COMPACT RECTANGULAR 

0. 5 0. 6 0 .7  

TENSION SPECIMENS (PLANE STRESS) 

I Gage location 1 W/H I a/w 

-a/w *O 

20/11 c x/W Y/W W/H 

25/12 

E B V ~ / P  

a/w 

0.444 

40.057 
38.52 

51.145 
49.20 

116.03 1 
122.050 
126.699 
136.966 

0.556 

65.964 
63.36 

TABLE VI. - DIMENSIONLESS DISPLACEMENTS AT LOAD 

LINE FOR ECCENTRICALLY LOADED TAPERED 

TENSION SPECIMENS (PLANE STRESS) 

I Gage location 

I I  E B V ~ / P  

0.2 3 .2  162.8 312.7 474.2 641.9 810.0 985.4 
. 3  4 .2  97.3 170.8 242.4 313.6 387. 5 481.0 
. 4  5.0 67.0 107.8 148.3 187.3 234.9 306.3 
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CONCLUSIONS 

Boundary collocation is a satisfactory procedure for computing elastic displacements 
(per unit load) for single-edge-crack specimens. The results a r e  highly precise and in- 
expensive of computer time, so that variations of specimen shape and gage location can 
be explored at little cost. To do the same experimentally would be quite expensive. The 
accuracy with which the results apply to actual specimens depends, of course, on the ex- 
tent to which the assumed boundary conditions are equivalent to the actual load distribu- 
tions. 

Where the present results could be compared with existing experimental results 
shown in the tables, the agreement is reasonably good and is adequate for plane strain 
fracture toughness KIc test  purposes. The results confirm the expected low sensitivity 
to small variations in gage point location when these points are on the specimen edge. 
The sensitivity to change of position of gage point location along the crack is greater. 

- 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 13, 1967, 
731-2 1-03-0 1-22. 
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