
ELASTIC DYNAMICS OF SLIDING ELECTRICAL

CONTACTS UNDER EXTREME CONDITIONS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Anthony Joseph Johnson

January 2008



c© 2008 Anthony Joseph Johnson

ALL RIGHTS RESERVED



ELASTIC DYNAMICS OF SLIDING ELECTRICAL CONTACTS UNDER

EXTREME CONDITIONS

Anthony Joseph Johnson, Ph.D.

Cornell University 2008

The goal of this dissertation is to explore the effects of structural deformations on

high speed, high current density, sliding electrical contacts. The specific technolo-

gies studied in this body of work are the the homopolar motor and electromagnetic

launcher, with an emphasis towards the latter.

The coupled motion of the guide rails and armature of an electromagnetic

launcher are modeled by a Timoshenko beam on an elastic foundation. Using

reduced order finite element simulations, it is found that elastic waves are generated

in the guide rails. These waves are radiated from the armature when it passes

through a characteristic wave speed of the rails called the critical velocity. The

critical velocity depends on the stiffness of the foundation and is below the bar

and shear wave speeds. It is found that as the armature accelerates beyond the

critical velocity, the magnitude of the stress in the rails can reach values beyond the

yield stress of the rail material. It is also shown that the contact pressure between

the armature and guide rails is changed dramatically by the presence of the stress

waves in the guide rails. The changes in the contact pressure are significant enough

to cause interruption of the electric current and potentially damage the rails or

armature.

Experiments show that the reduced order computational model captures much

of the dynamics of the rails during launch. The presence of elastic waves and

the phenomena associated with a critical wave speed are verified experimentally



using a fiber optic strain system that is insensitive to electromagnetic interference.

Many of the wave effects seen in the simulations are seen in these experiments.

This includes the transition from quasi-static deformation states to wave radiation

states at the critical velocity. Other effects shown in the experiments are wave

reflections, strain amplification and jerk effect waves. There is also experimental

and theoretical evidence for a lateral instability of the armature as it rides along

the guide rails.

For electrical contacts in homopolar motors, it is found that structural deforma-

tions of the brush fibers can affect the ability of the brushes to conduct electricity

by changing the resistance of the contacts. This can affect the performance of

the motor and may contribute to the wear of the brushes. Large variations in the

structural properties of different commercial brushes are found and it is conjec-

tured that the electromechanical measurements in this dissertation could be used

as a quality control test for the large number of brushes necessary for the full-scale

motor.

A statistical model for these brush deformations is also developed and compared

to the experimental data. It is found that the model can be made to fit the

experimental data, but more brush samples and a controlled atmosphere would be

needed to verify this model.
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Chapter 1

Introduction
This dissertation explores the structural deformations associated with electrical

contacts in two high power electric machines; the electromagnetic launcher and the

superconducting homopolar motor. With high current densities and high sliding

contact speed, these technologies are pushing the limits of present understanding

of electrical contact interfaces. This chapter will give a general overview of the

work in this dissertation as well as a basic technical description of the electromag-

netic launcher, homopolar motor, present day challenges with implementing these

technologies and their histories. Both of these technologies are part of a Navy

program to build an all electric ship. There are also studies in both the United

States and Europe to use electromagnetic launchers for suborbital micro-sattelites.

Each of these technologies can be classified as an extreme contact but for

slightly different reasons. The reason for this is shown in Figure 1.1. The plots in

this figure show the current density and contact pressure versus the relative slid-

ing velocity of the electrical contacts in some actual electromagnetic launchers and

homopolar motors/generators. Two electromagnetic launchers are shown in this

plot, the Medium Caliber Launcher at the institute for Advanced Technology [76]

and the launcher at the Georgia Institute of Technology. Various homopolar mo-

tors/generators are also plotted. Most of this data came from a review paper on

homopolar generators written by Ian McNab [63]. The remaining data is from the

General Atomics homopolar motor [96] that is directly related to the research in

this dissertation.

The extreme nature of the electromagnetic rail launcher is relatively obvious

from the plots in Figure 1.1. Typical launchers have sliding velocities in the range

of 1− 3 km/s, current densities in the range of 0.1 MA/cm2 and contact pressures

2



(a) Current Density Versus Sliding Velocity

(b) Contact Pressure Versus Sliding Velocity

Figure 1.1: Contact Properties for Rail Launchers and Homopolar Devices
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in the range of 100 MPa. The combination of these three all happening at once

pushes modern understanding of the electrical, thermal and mechanical properties

of the contact interface to its limit.

The superconducting homopolar motor associated with the research in this

dissertation is extreme in a different way. The General Atomics motor operates

at much smaller contact pressures than the others. This is because this motor

uses metal fiber brushes instead of the more standard monolithic carbon brushes

typically used in these devices. The primary problem with these metal fiber brushes

is wear during use. Asymmetric wear is seen between the positive and negative

brushes and the exact source of this is not well understood.

1.1 Electromagnetic Launcher

The contact interface of an electromagnetic launcher is subject to current den-

sities in the range of 0.1 MA/cm2 and contact pressures in the range of 10 to

500 MPa [95]. This occurs while the relative velocity between the two surfaces

increases from zero to the speed of sound in the rail material (1 − 3 km/s) in a

few milliseconds. These current densities, pressures and relative sliding velocities

occurring simultaneously at a contact interface is essentially unheard of in any

other technology.

One of the primary technical challenges associated with this technology is the

extension of the lifetime of the rails. Moderate velocity shots (1-2 km/s) suffer a

phenomenon called armature transitioning; where the armature loses contact with

the rails during launch [7]. High velocity (> 2 km/s) shots suffer a phenomenon

called gouging [60]. These two mechanisms cause micro and macro-scale wear and

damage to the rails during launch and, as such, the rails typically only last for a

few shots. While electromagnetic and thermal sources of wear have been explored
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extensively in the literature (e.g. [8],[4], [78] and [84]),there is only a small amount

of published work on the structural dynamics of these devices.

The work in this dissertation begins from a theoretical perspective by exploring

the wave character of the rails in electromagnetic launchers. This is done by

exploring the classic problem of a beam on an elastic foundation. A number of

characteristic wave speeds exist in the rails. These include the critical velocity,

shear velocity and bar velocity. These speeds represent the lower and upper wave

speed limits in a beam on an elastic foundation and they are all near the typical

sliding velocity of an electromagnetic launcher. This introduces the possibility of

these waves interfering with the contact interface.

Finite element simulations are then used to explore how these waves interfere

with the contact interface. It is found that several phenomenon occur at the char-

acteristic wave speeds of the rails. The rails change from a quasi-static strain state

to a transient wave radiation state at the critical velocity. When this transition

occurs, dramatic spatial shifts and changes in the amplitude of the contact pres-

sure also occur. After the shear velocity is reached, the contact interface begins to

skip over the waves in the rails. The pressures that occur at this point are large

enough to case severe damage to the rails.

To verify the computational model, stress waves generated during launch were

measured using a fiber optic strain measurement device. These experiments were

carried out on a moderate size electromagnetic launcher at the Georgia Institute

of Technology. These measurements give a picture of the strains present during

launch and confirm the wave radiation phenomenon seen in the simulations. Other

wave phenomena are also seen, these include wave reflections, strain amplification

and jerk effect waves.

In addition to the work on structural dynamics, a small scale electromagnetic
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launcher was also constructed and a low-cost technique for measuring the velocity

of the projectile was developed and tested. This was done to help expand the

number of sensors available for researchers in this field.

1.1.1 Brief History of Research

The scientific study of electromagnetic launchers dates back to 1901 to a Norwegian

Professor at the University of Oslo named Kristian Birkeland. Two good historical

reviews of his work have been written by Alv Egeland [24],[23]. His electromagnetic

launcher was of the coil gun variety. It used a homopolar generator to propel 10

kg iron projectiles to velocities nearly 100 m/s [87]. His vision was to construct

a launcher that would fire projectiles very long distances (100-1000 km). His

research was ultimately limited by the fact that there were no pulsed power supplies

available to achieve the high launch velocities necessary for these long distance

launches.

The next major attempt at an electromagnetic launcher was made by a french-

man named Fauchon-Villeplee in 1917. His launcher was similar to a modern day

rail launcher except that it used external static magnetic fields to propel the pro-

jectile. It was powered by a bank of batteries. A thorough review of his work

can be found in the literature [66]. Fauchon-Villeplee also designed a large-scale

launcher that would have been theoretically capable of launching a 100 kg projec-

tile to 1600 m/s. This launcher was never built and would have required a power

supply significantly larger than any that have been built to date.

During World War II the Germans explored electromagnetic launchers as a

potential weapon with applications as anti-aircraft guns or long range artillery.

This research was spearheaded by Dr. Joachim Hänsler and an in-depth review of

it can be found in the literature [66]. The electromagnetic launchers built during
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this period fired small (≈ 10g) projectiles at speeds in excess of 1 km/s. The work

in Germany was stopped at the end of the war.

Modern study of electromagnetic launchers began at the Australian National

University in Canberra [58] in the early 1970’s. This launcher was powered by

a 500 MJ homopolar generator and used plasma armatures to propel small 3

gram LEXAN cubes to nearly 6 km/s. Studies continued on plasma armature

launchers for the next 15-20 years (e.g. [13], [41], [86], [77], [97], [62],[38]). While

plasma armatures can push projectiles to very high velocities, they generate very

high temperatures at the rail surface and this can cause significant damage to the

rails. They are also very inefficient because of the high resistance across the ar-

mature [59]. It is for these reasons that present day studies have focused on solid

armature launchers.

The recent study of electromagnetic launchers has been reviewed very well in

a series of papers by Dr. Harry D. Fair of the Institute for Advanced Technol-

ogy [27], [28], [29], [30]. These papers cover the major advances for the last 10

years. The primary advances that have been made involve the development and

use of coupled-field finite element simulations. These simulations have led to better

armature designs and a better understanding of the thermal and electric aspects of

electromagnetic launcher design. In addition to scientific advancements, a good re-

view of patents in electromagnetic rail launchers has been put together by Chadee

Persad [79].

The major shift in the field in recent years has been the involvement of the U.S.

Navy. The Navy is pursuing electromagnetic launchers as a long-range weapon

on their all-electric ship concept. These vessels will have enough space and the

power capabilities to house a pulsed power supply capable of firing a large-scale

electromagnetic launcher (see [68]). This change has shifted the research focus
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from the power supply to the barrel of the launcher. The primary goals of this

research have been to understand the wear and damage phenomena that are seen

in laboratory launchers. Lifetime of the rails is now considered the major technical

hurdle to jump to get a tactically useful weapon.

The major phenomena associated with bore lifetime can be split into two dif-

ferent groups; high velocity and low velocity. The primary low velocity damage

mechanism is referred to as startup damage. This occurs at the beginning of the

launch because the current in the low velocity regions is very high and the current

is transmitted from the same point on the rail for a relatively long time. This

causes heat to build up and melting can occur. High velocity damage mechanisms

include transitioning and gouging. Many thermal and electric effects have been

studied with respect to these phenomena, but the source of these mechanisms is

still not well understood (see [7], [8] [60], [78], [93]).

This dissertation explores the structural dynamics of the rails as a possible

contributor to the high velocity damage mechanisms. Previous work in this aspect

of electromagnetic launchers has approached it from a design point of view. A

number of papers have been written that model the cross-section of the launcher

containment under static and dynamic loads [20],[95]. Three dimensional simula-

tions of the structural deformations have also been developed [104]. This research

has focused on the deformations of the containment and the relative deformations

of the individual components inside the containment. Some work has also been

done that focuses in on the vibrations of the armature during launch [105].

Application of the Bernoulli-Euler beam model to a rail launcher was first con-

sidered by Jerome T. Tzeng [100],[101]. While not a dynamic simulation, Tzeng’s

work first introduced the possibility of resonant railway dynamics in rail launch-

ers. Some of Tzeng’s colleagues have also looked at the beam dynamics using
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three dimensional simulations of a nominal bore geometry [55]. The work in this

dissertation continues the application of basic beam theory by exploring how the

vibrations in the rails are generated and how they interact with the armature dur-

ing launch. This gives an indication of the impact that these waves can have on

the contact interface between the armature and the rails.

1.1.2 Applications

Electromagnetic launchers offer many advantages over conventional propulsion

techniques and so they have a wide array of potential applications. The major

advantage is the ability to generate very high accelerations. Some of these ap-

plications include weapons, fusion research, space launch and impact/materials

research.

Some of the military applications of electromagnetic launchers that have been

considered include missile defense systems, anti-aircraft, anit-armor and extended-

range artillery [26]. The velocities that can be obtained with these devices could

extend Naval ship bombardment ranges to 300 km [68]. They also allow for dra-

matic increases in penetration ability for anti-armor applications [46].

Space launch is another interesting application for this technology. Electromag-

netic launchers could be used to fire micro/nano-satellites from the ground [54] or

from on-board an aircraft [67]. The technical challenge associated with earth-to-

space launch is heating of the satellite as it passes through the atmosphere [12].

These devices have even been considered for use on a lunar base for firing mined

materials back to the earth [87]. One other possibility could be to put a launcher in

orbit for firing micro-satellites out of the earth’s gravitational pull. The limitation

for this application would be the energy density of the power supply.

Finally, electromagnetic launchers could be used in fusion research. They have
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been presented as a potential method for temperature control and refueling of

Tokomak fusion reactors [81],[43]. It has also been proposed that they could offer

a potential method for attaining impact fusion [52]. This particular application is

a bit more far-fetched though because it would require very high velocity launches

in the range of 130 km/s. Velocities this high have never been obtained with an

electromagnetic launcher.

1.1.3 Principle of Operation and Equations of Motion

Electromagnetic launchers are devices that use electromagnetic forces to accelerate

mass to high velocities. The main types of launcher are coil launchers, rail launch-

ers and linear induction motors. Rail launchers are the focus of this dissertation,

so the basic principles behind this technology will be discussed in this section.

Information on all of these technologies can be found in the proceedings of the

biennial Electromagnetic Launch Symposium in the IEEE Transactions on Mag-

netics. Information specific to coil/induction launchers can be found in a number

of different papers and books (e.g. [72] and [22]).

The basic geometry of a rail launcher is shown in Figure 1.2. The major

components are the rails, armature, insulators and containment. The rails are

typically made of a copper alloy. The insulators are made of a fiberglass material

called G-10 (also known as garolite) and the containment is made out of laminated

steel plates. The lamination is necessary to reduce losses due to eddy currents [9].

The armature in modern launchers is made out of a solid metal, usually aluminum,

but plasma armatures have also been used to propel non-conducting projectiles.

A pulsed current power supply is attached to the breech of the launcher. This

power supply usually consists of a large capacitor bank, but any power supply

capable of generating a large enough current pulse will also work. Examples of
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Figure 1.2: Rail Launcher Geometry
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(a) Electromechanical Model of Launcher

(b) Magnetic Field Lines in Electromagnetic Launcher

Figure 1.3: Electromechanical model (top) and magnetic field (bottom) of an elec-
tromagnetic rail launcher.
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alternatives are homopolar generators, batteries, inductive storage and flux com-

pressors [65]. Capacitors are the most common of these technologies and are used

in laboratory launchers primarily because of their reliability and flexibility. Typical

peak currents for electromagnetic launchers range from 100 kA to 5 MA depending

on the size of the launcher.

As the current flows, a magnetic field is generated behind the armature (See

Figure 1.1.3) and this pushes the armature down the length of the launcher. The

electromagnetic force on the armature is generated by the $J × $B force where $J

is the current density in the armature and $B is the magnetic field generated by

the rails as shown in Figure 1.1.3. In typical rail launchers these forces produce

launch accelerations that can range anywhere from 10 kGee up to 1 MGee. These

accelerations allow for launch velocities in the range of 1-3 km/s in a very short

distance.

The fundamental equations of motion for a capacitor driven electromagnetic

launcher can be derived using an electromechanical Lagrangian. This is accom-

plished by treating the launcher barrel as a variable inductor whose inductance

depends on the position of the armature. This system can drawn as a simple cir-

cuit, which is pictured in Figure 1.1.3. This circuit consists of a capacitor with a

capacitance of C0, an inductor with an inductance of L0 and an overall resistance

R0. The armature is described by its mass m and position x. A model which

assumes that the inductance of the barrel is just a linear function of the position

of the armature agrees well with experiments.

L(x) = L′x where L′ = constant (1.1)

Where L′ is referred to as the inductance gradient of the launcher. The equations

for calculating an approximate value of L′ can be found in a text by Frederick

Grover [37]. An example calculation of L′ for a rail launcher with rectangular rails
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can also be found in Chapter 6 of this dissertation. With this assumption, it is

possible to write down the electromechanical Lagrangian L for a capacitor driven

rail launcher as shown in Figure 1.1.3 [73].

L =
1

2
mẋ2 − Q2

2C0
+

1

2
(L0 + L′x)Q̇2 (1.2)

Where x and Q are the generalized coordinates for the position of the armature

and the stored charge on the capacitor bank. It is important to point out that this

formulation assumes that the mass of the armature is constant. This assumption

is often violated in actual rail launchers. Energy dissipation terms such as resis-

tance and friction can be taken into account by considering a Rayleigh dissipation

function R [72].

R =
sign(ẋ)µNẋ

2
+

R0Q̇2

2
(1.3)

This simple model assumes a constant resistance and a constant friction force. The

Lagrangian and Rayleigh dissipation functions satisfy Lagrange’s equation.

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
+

∂R
∂q̇

= 0 (1.4)

Plugging L and R into Lagrange’s equation and simplifying gives the equation of

motion for an armature in a capacitor driven electromagnetic rail launcher.

mẍ =
1

2
Q̇2L′ − sign(ẋ)µN (1.5)

(L0 + L′x)Q̈ + (R0 + L′ẋ)Q̇ +
Q

C0
= 0 (1.6)

One of the most useful things about this equation is that it gives a quantitative

measure of the propulsion force in an electromagnetic launcher.

Fprop =
L′I2

2
(1.7)

This means that the propulsion force is simply proportional to the square of the

current I. A typical value of L′ for a laboratory launcher is approximately 0.5 ×

14



10−7H/m. This simple approximation works surprisingly well when compared

to experimental data. Equations 1.6 and 1.7 will be referred to throughout this

dissertation.

1.2 Superconducting DC Homopolar Motor

The second electrical contact technology explored in this dissertation is the super-

conducting DC homopolar motor. The contact interfaces in the homopolar motor

are not subject to conditions as extreme as the electromagnetic launcher but they

can still be classified as extreme because of the electrical transfer brushes that they

use. The homopolar motor studied in this dissertation uses metal fiber brushes

to transfer current. This is in contrast to the monolithic carbon or metal carbon

brushes that are used in conventional electric motors. Current densities for brushes

in a homopolar motor are in the range of 200 − 600 A/cm2 and sliding velocities

can range from 25 m/s to above 300 m/s [63]. Monolithic carbon brushes can only

be run efficiently up to about 25 m/s [85]. Above this limit, large contact pressures

must be used to maintain contact. This increases friction and wear and decreases

electrical and mechanical efficiency.

The technical challenges associated with using metal fiber brushes include at-

mospheric control and tight control of the contact pressure (see Chapter 20 of [85]).

These are necessary to minimize corrosion and wear. These complications in im-

plementation are offset by a large (potentially 10-fold [85]) increase in efficiency

over conventional brushes. This comes from the fact that fiber brushes offer more

contact spots at lower contact pressures. This increases the electrical efficiency

while reducing the amount of loss due to friction.

It is interesting to note that in addition to sharing technological challenges

with the electromagnetic launcher, homopolar generators have been used as power
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supplies for rail launchers [58],[64].

1.2.1 Principle of Operation

The specific device associated with this body of research is being constructed by

General Atomics for the United States Navy for the their future all-electric ship

concept [96]. This device is intended to be a drive motor, but many have also

been designed to operate as generators [6], [61]. A detailed description of the

actual motor associated with this research and comparison of it with other motor

technologies can be found in the literature [96]. Just some of the basic technical

details of this motor will be presented here.

Figure 1.4: Basic Geometry of the Superconducting DC Homopolar Motor

The basic geometry of this motor is pictured in Figure 1.4. The General Atom-

ics homopolar motor uses superconducting electromagnets with current flowing in

opposite directions to generate a magnetic field that is perpendicular to the axis of
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rotation. This field penetrates a copper cylinder, called the armature, which has

current flowing through it along the axis of rotation. The average magnitude of the

field at the armature is nearly 2 Tesla [96]. The current flow perpendicular to the

magnetic field gives a torque that rotates the armature. The current is collected

from sliding electrical brushes on either side of the armature. The General Atomics

motor has 1600 metal fiber brushes that carry a current density of 155 A/cm2 at

a sliding velocity in the range of 25 m/s. This motor is a 1/4 scale prototype with

a power output of 3.7 MW (5000 horsepower). As one can imagine, the number

of brushes necessary for the full scale motor will be very large and uniformity of

mechanical and electrical characteristics between the individual brushes should be

maintained.

1.2.2 Brief History and Literature Review

While the motor associated with this dissertation is intended for propulsion of a

naval ship, most modern homopolar motor research has focused on their use as high

power generators for pulsed power applications. These applications have varied

from fusion research [103] to power supplies for electromagnetic launchers [58]. In

all of these applications, the mechanical and electrical performance of the electric

brushes has been a concern.

The use of metal fiber brushes dates back to Thomas A. Edison [2]. These

brushes fell out of favor in the early 1900’s because of cost and wear issues. Inter-

est has been revitalized because of the dramatic increases in efficiency that these

brushes offer, but wear is still a problem. Increased wear is seen when current

is flowing and asymmetric wear has been seen between the positive and negative

brushes. Much of the modern research has focused on atmospheric conditions [85].

The deflections of the fibers have been considered in the design of metal fiber
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brushes form the point of view of surface tracking [85]. The research in this dis-

sertation explores how these fiber deflections affect the compliance of the brush as

well as its contact resistance under load in static conditions. It has been found

that the individual fibers buckle easily. This leads to nonlinear compliance of the

brush as a whole. This nonlinear nature also extends to the electrical resistance

of the contact and should be considered in the analysis/design of a system using

these brushes.
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Part II

Elastic Waves in Electromagnetic

Launchers
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Chapter 2

Elastic Beam Dynamics
The electrical contact problems explored in this dissertation involve the contact

between an elastic object and another elastic structure. In the electromagnetic

rail launcher, one of the main structural elements is a simple beam on an elastic

foundation. Understanding the dynamics of these systems requires a foray into the

theory of elastic beam deflections. This chapter will cover the basics of Bernoulli-

Euler and Timoshenko beam theory and their application to dynamic problems.

This will establish the theoretical background necessary to understand the impli-

cations of the computational and experimental work described in later chapters of

this dissertation.

2.1 Brief History and Literature Review

The specific problems encountered in this dissertation are closely related to the

problem of a moving load on a beam on an elastic foundation. The classical

problem of a structure supporting a moving load has been studied extensively

since the 1850’s. Much of the early research grew out of the railroad industry

and was related to the analysis of bridges. The review in this section does not

cover the history of the study of this problem in great detail, instead the primary

sources that relate directly to the studies in this dissertation are presented. For a

more thorough summary of the history of this research, the reader is referred to

the books by Ladislav Frýba [34] and Stephen Timoshenko [99].

Some of the research in the 1930’s and 1940’s was dedicated to the study of

beam deflections as a function of load velocity [57]. For the case of a constant

velocity load moving on a Bernoulli-Euler beam on an elastic foundation, theoreti-
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cal calculations show that the deflection of the beam diverges at a certain velocity

called the critical velocity [51]. Much of this research was affiliated with the design

of high-speed rocket test tracks. In the 1960’s these studies were extended to the

case of the Timoshenko beam on an elastic foundation [33], [90],[91],[92] and [1].

Finite element techniques for modeling Timoshenko beams were also developed in

this period [50],[21].

More recent studies have focused on computational research, but some the-

oretical work is still being conducted. Of particular interest to the studies of

electromagnetic launchers is the case of a moving step load [31],[32]. This particu-

lar problem is interesting because of its similarity to the electromagnetic repulsion

force between the rails of an electromagnetic launcher.

In contrast to earlier work on moving loads on elastic beams, in this dissertation

the moving load is calculated in response to a given displacement acceleration of a

slider on contact with the beam. This research focuses on transient accelerations

of the slider from rest to velocities beyond the critical and shear velocities of the

beam. The impact of resonant phenomena of the beam on the contact between

the slider and the beam are explored computationally and the wave dynamics of

the beam are explored experimentally on an electromagnetic launcher.

2.2 Equations of Motion

The first step in understanding the dynamics of an elastic beam is to present the

model and the equation of motion. A general theory would involve applying the

continuum theory of elasticity to both the elastic guide way and its supporting

structure. Such detailed studies are important at the armature interface but often

miss the overall wave dynamics of the entire system. Instead, reduced order models

using Bernoulli-Euler and Timoshenko beam models are used to describe three-
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dimensional beams using a one-dimensional continuum. The relevant coordinate

system for this description is pictured in Figure 2.1. The deflection w(x, t) of

the beam is represented by the deflection of the neutral axis, which is shown as

a dotted line in Figure 2.1. There are a number of beam models, but the two of

interest for this dissertation are the Bernoulli-Euler model and Timoshenko model.

The equations representing both will be presented here. Just some of the basic

assumptions behind these models will be presented here but full derivations of

these equations are also included in Appendix A for the sake of completeness.

Figure 2.1: Beam on Elastic Foundation Under Load

Figure 2.2(a) shows an element of a Bernoulli-Euler beam under bending. The

dotted line in this figure represents the neutral axis, and the lines perpendicular

to it are called the shear planes. In the Bernouilli-Euler model, the shear planes

are assumed to remain perpendicular to the neutral axis of the beam. In the

Timoshenko model, this restriction is lifted and the result is an additional degree

of freedom ψ(x, t), pictured in 2.2(b). This additional degree of freedom gives

the Timoshenko model a more realistic response at higher frequencies. For the

problems discussed in this body of work, this improvement in the model is vital.

The deflection of the beam can be described using a partial differential equa-

tion which can be derived using Newton-Euler or Lagrangian methods [39],[98].

The Newton-Euler derivations of the Bernoulli-Euler and Timoshenko models are
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(a) Bernoulli-Euler Degrees of Freedom

(b) Timoshenko Degrees of Freedom

Figure 2.2: Beam Equation Degrees of Freedom

included in Appendix A. For the Bernoulli-Euler beam on an elastic foundation

this partial differential equation is as follows.

EJ
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
+ k0Bw(x, t) = P (x, t) (2.1)

Where the description of the parameters of this equation are outlined in Table 2.1.

This model assumes that the shear planes remain perpendicular to the neutral axis

and it neglects rotary inertia and nonlinear geometric effects. These assumptions
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Table 2.1: Beam Equation Parameters
Symbol Description Units

E Elastic Modulus for Rail Material N/m2

G Shear Modulus for Rail Material N/m2

κ Timoshenko Shear Coefficient N/A
ρ Density of Rail Material kg/m3

J Cross-Sectional Moment of Inertia of Rail m4

A Cross-sectional Area of Rail m2

h Height of Rail m
B Width of Rail m
k0 Areal Stiffness of Foundation Material N/m3

are outlined in the derivation in Appendix A. As one can see, the dynamics of the

beam have been reduced to the dynamics of the neutral axis through w(x, t).

The differential equation for the Timoshenko model can be written in two dif-

ferent ways. The first representation includes both the deflection w(x, t) and cross-

sectional rotation due to shear deformation ψ(x, t) degrees of freedom [39],[98].

κAG

(
∂ψ(x, t)

∂x
− ∂2w(x, t)

∂2x

)
+ ρA

∂2w(x, t)

∂t2
+ k0Bw(x, t) = P (x, t) (2.2)

κAG

(
∂w(x, t)

∂x
− ψ

)
+ EJ

∂2ψ(x, t)

∂x2
= ρJ

∂2ψ(x, t)

∂t2
(2.3)

These equations can then be simplified in to one higher-order differential equation

for the deflection of the beam.

EJ
∂4w(x, t)

∂x4
− ρJ

(
1 +

E

κG

)
∂4w(x, t)

∂x2∂t2
+ ρA

∂2w(x, t)

∂t2

+
ρ2J

κG

∂4w(x, t)

∂t4
+ k0Bw(x, t) = P (x, t) (2.4)

This model allows shear deformation and does not neglect rotary inertia, but it

does still neglect geometric nonlinearities (see Appendix A). In both of these

reduced order models the transverse strains in the beam are not treated and the

wave and vibration motions of the foundation are neglected. As with the Bernoulli-

Euler model, the end result is a major simplification of a full three dimensional
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continuum model. When these simplified models are used in a finite element

simulation they can considerably reduce the number of elements and computation

time necessary as compared to a three-dimensional model of the same system.

2.3 Wave Dispersion and Wave Velocities of Beam Models

2.3.1 Derivation

The relationship needed for understanding the wave nature of a problem is the

dispersion relationship. The dispersion relationship relates the wave number k to

the angular frequency ω of a wave (k = 1/λ where λ is the wavelength of the

wave1). The dispersion relationship can be used to describe the velocity of waves

in a medium described by a linear mathematical model. In wave propagation

problems there are two important velocities; the phase velocity and the group

velocity [36]. The phase velocity represents the speed at which individual wave

components travel. In other words, each wave with a particular wavelength travels

at a particular velocity and this velocity is given by the phase velocity. The

mathematical definition of the phase velocity is as follows:

vph =
ω

k
(2.5)

The group velocity represents the speed at which modulations in the amplitude of

the wave travel. This is the speed at which energy and information can travel in

a medium. The mathematical definition of the group velocity is as follows.

vgr =
dω

dk
(2.6)

Since the dispersion relationship relates ω to k it can be used to calculate the

group and phase velocities for a particular wave problem. For the Bernoulli-Euler

1See [25] or [36] for in-depth description of basic wave theory
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and Timoshenko beam models, it is possible to derive the dispersion relationship

by simply ignoring the loading terms in Equations 2.1 and 2.4 and assuming a

wave solution of the form w(x, t) = Sin(kx − ωt). Plugging this solution into

Equation 2.1 gives the following dispersion relationship for the Bernoulli-Euler

Beam.

EJk4 − ρAω2 + k0B = 0 (2.7)

Analysis of this equation can be simplified by non-dimensionalization. This can

be accomplished by using the following substitutions.

k̄4 = Jk4, ω̄2 =
ρAω2

E
and k̄0 =

k0B

E
(2.8)

Substituting Equation 2.8 into Equation 2.7 gives the non-dimesnional form of the

dispersion relationship for the Bernoulli-Euler Beam.

k̄4 − ω̄2 + k̄0 = 0 (2.9)

The k̄0 term introduces a cut-off frequency below which no pure waves can prop-

agate. This cut-off frequency comes from the foundation supporting the rail and

is discussed in detail in the next section. The process for calculating the disper-

sion relationship for the Timoshenko beam is the same and it gives the following

relationship.

EJk4 − ρJ

(
1 +

E

κG

)
k2ω2 − ρAω2 +

ρ2J

κG
ω4 + k0B = 0 (2.10)

Non-dimensionalization is accomplished by the following additional substitutions.

r̄2 =
J

A2
and v̄2 =

E

κG
(2.11)

Substituting Equation 2.8 and Equation 2.11 into Equation 2.10 gives the non-

dimesnional form of the dispersion relationship for the Timoshenko beam.

k̄4 − ω̄2 − (1 + v̄2)r̄k̄2ω̄2 + v̄2r̄2ω̄4 + k̄0 = 0 (2.12)
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These dispersion relationships capture the wave character of beams quite well

even up to very high frequency vibrations. This will be discussed in the following

sections using plots of the dispersion relationships and phase and group velocities.

2.3.2 Bernoulli-Euler Beam Wave Velocities

It is a bit easier to understand the Bernoulli-Euler dispersion relationship so that

is where this analysis will begin. Solving Equation 2.9 for ω gives the following.

ω(k) = ±
√

k̄4 + k̄0 (2.13)

Where one solution is for positive frequencies and the other is for negative frequen-

cies. The negative solution is just a reflection of the positive solution. Plotting

the positive equation as a function of k gives the plot in Figure 2.3 for the free

beam (k̄0 = 0, thin line in Figure 2.3) and for the beam on an elastic foundation

(k̄0 = 1, thick line in Figure 2.3). These plots were generated by assuming that ω̄

is real and solving for complex values of k̄.

For the free beam there is no imaginary part of k̄ . This means that unattenu-

ated waves can exist for any frequency. In contrast to this, the beam on an elastic

foundation does have imaginary parts. This indicates that both attenuated and

unattenuated waves can exist when an elastic foundation is present. This obser-

vation has very serious implications for the electromagnetic launcher and will be

returned to repeatedly throughout this dissertation.

One other important observation is the high frequency behavior. Both the

free beam and the beam on and elastic foundation approach a quadratic in high

frequency regions. This has very important consequences for the wave velocities.

This can be studied by calculating the group and phase velocities. The equations
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Figure 2.3: Dispersion Relationship ω(k) for the Bernoulli-Euler beam for the
foundation-free beam (thin lines) and beam with a foundation (heavy lines).
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Figure 2.4: Phase velocity for the Bernoulli-Euler beam for the foundation-free
beam (thin lines) and beam with a foundation (heavy lines).
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Figure 2.5: Group velocity for the Bernoulli-Euler beam for the foundation-free
beam (thin lines) and beam with a foundation (heavy lines).
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for the wave velocities for the Bernoulli-Euler beam are as follows:

v̄BE
gr = ± 2k̄3

√
k̄4 + k̄0

(2.14)

v̄BE
ph = ±

√
k̄4 + k̄0

k̄
(2.15)

The group and phase velocities for the Bernoulli-Euler beam are plotted in Fig-

ures 2.4-2.5. The plot is shown for both a free beam and a beam on an elastic

foundation. In the free case, the phase and group velocities extend over the full

range of possible velocities (i.e. from zero to infinity). In the case of the beam on

an elastic foundation, the phase velocity has a minimum. This minimum is gener-

ated because of the offset seen in the real solutions in Figure 2.3 and it is referred

to as the critical velocity [51]. This velocity is vital to the computational research

in this dissertation and as such will be discussed in detail in Section 2.4. For now,

it is sufficient to point out that it represents the minimum possible unattenuated

wave velocity. It is a lower limit on the speed of waves in a beam on an elastic

foundation.

Another important thing to point out in Figures 2.4-2.5 is that for the Bernoulli-

Euler beam, the phase and group velocities extend out to infinity. This means

that, at least theoretically, waves could travel on a Bernoulli-Euler beam at in-

finite speed. This violates the laws of relativity and points out the fundamental

limitation of this model. For very high frequency problems, the Bernoulli-Euler

model is inaccurate. This is the primary justification for using the Timoshenko

model.

2.3.3 Timoshenko Beam Wave Velocities

As already stated, the Timoshenko dispersion relationship is a bit more difficult

to interpret. The major reason for this is because the dispersion relationship in
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Equation 2.12 is fourth order. This gives rise to four solutions.

ω(k) = ±

√
1 + r̄k̄2(1 + v̄2)±

√
(1 + r̄k̄2(1 + v̄2))2 − 4r̄2v̄2(k̄4 + k̄0)

2r̄2v̄2
(2.16)

The positive solutions are displayed in Figure 2.6 for the free beam and the

beam on an elastic foundation. These plots were made with the parameters set to

v̄ = 0.5 and r̄ = 0.5 for the two cases k̄ = 0 and k̄ = 1. As with the Bernoulli-

Euler beam, Figure 2.6 was generated by assuming a real value of ω and solving for

complex values of k. In this case, the free beam only has imaginary parts when the

real part is zero. This is reflected in the ellipse in Figure 2.6. The pure real parts

of the free beam dispersion consist of two different modes. One mode represents

bending waves and the other represents shear waves.

As with the Bernoulli-Euler beam, the Timoshenko beam on an elastic founda-

tion allows the possibility of both attenuated and unattenuated waves. This has

implications for the wave velocities that can be studied by looking at plots of the

group and phase velocities. The equations for these velocities for the Timoshenko

beam are as follows

v̄T
gr = ±

k̄(1 + v̄2 ± 1+v̄2+r̄k̄2(v̄2−1)2√
(1+r̄k̄2(1+v̄2))2−4(k̄4+k̄0)r̄2v̄2

)
√

2v̄(1 + r̄k̄2(1 + v̄2)±
√

(1 + r̄k̄2(1 + v̄2))2 − 4(k̄4 + k̄0)r̄2v̄2)
(2.17)

v̄T
ph = ±

√
1 + r̄k̄2(1 + v̄2)±

√
(1 + r̄k̄2(1 + v̄2))2 − 4r̄2v̄2(k̄4 + k̄0)

2r̄2k̄2v̄2
(2.18)

Plots of the phase and group velocity for the Timoshenko beam are shown in

Figures 2.7-2.8. As with the Bernoulli-Euler model, the free beam has only real

solutions and the beam on an elastic foundation has complex and pure real so-

lutions. The point where these complex and pure real modes join represents the

critical velocity for the Timoshenko beam on an elastic foundation. The equation

for this velocity will be shown in Section 2.4
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Figure 2.6: Dispersion Relationship ω(k) for the Timoshenko beam for the
foundation-free beam (thin lines) and beam with a foundation (heavy lines).
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Figure 2.7: Phase velocity for the Timoshenko beam for the foundation-free beam
(thin lines) and beam with a foundation (heavy lines).
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Figure 2.8: Group velocity for the Timoshenko beam for the foundation-free beam
(thin lines) and beam with a foundation (heavy lines).
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Probably the most important difference between the Timoshenko and Bernoulli-

Euler models is the high-frequency behavior. In the high frequency limits, the two

pure real modes of the Timoshenko beam asymptotically approach two different

velocities, these are referred to as the shear and bar velocities and their expressions

are as follows.

vbar =

√
E

ρ
(2.19)

vsh =

√
κG

ρ
(2.20)

The bar velocity represents the highest possible wave speed for a traveling wave in

a beam. This is the speed of a compressional wave. The shear speed represents the

upper limit for a bending wave. These two velocities are characterized primarily

by the material properties of the rail. It should be noted that the shear coefficient

κ is dependent on the shape of the cross-section of the rail, but is usually near

its value for a rectangular beam (κ ≈ 5/6) [70],[45]. These upper speed limits are

the reason for choosing this model over the Bernoulli-Euler model. The Bernoulli-

Euler model allows for unattenuated wave solutions with velocities extending out

to infinity(see Figures 2.4-2.5). The Timoshenko model limits the waves to more

realistic propagation velocities. It is important to note that in the three dimen-

sional theory of elasticity for isotropic materials there are two non-dispersive elastic

waves associated with compression (dilatation) and shear [25], [36]. The speed of

these waves are close to, but slightly different from the Timoshenko beam waves

vbar and vsh.

2.4 Critical Velocities

As shown in the previous sections, the free beam dispersion relationships and wave

velocities change considerably when one adds in an elastic foundation. The primary
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difference is in an offset in the point where the dispersion relationship crosses the

vertical axis. This offset spawns a branch of complex wave numbers that pushes

the minimum phase velocity from zero up to a finite number.

The minimum in the phase velocity curve corresponds to the critical velocity.

As stated in the previous section, the critical velocity represents the minimum

possible unattenuated wave speed. The equation for the critical velocity for a

Bernoulli-Euler beam on an elastic foundation is [51]:

vcr =

(
4Bk0EJ

ρ2A2

)1/4

(2.21)

The equation for the critical velocity of a Timoshenko Beam is a bit more

complicated. It is defined by the following relationship (see [15] for the derivation).

vcr =

√√
r2
2 − 4r1r3

2r1
− r2

2r1
(2.22)

Where the parameters are defined as follows.

r1 =

(
ρA− k0BJ

κAG

)2

(2.23)

r2 = 2

(
ρA− k0BJ

κAG

)
EJk0B

κAG
+ 4k0BJ (2.24)

r3 =

(
EJk0B

κAG

)2

− 4EJk0B (2.25)

While the equation for the Timoshenko critical velocity is different, the interpre-

tation is the same. It represents the point where the branch for unattenuated

modes joins the branch for attenuated modes in k-space. For the parameter values

for a typical electromagnetic launcher (see Chapter 3, Table 3.1) the two critical

velocities given by Equations 2.21-2.22 only differ by 6%. It is because of this

small difference that throughout the remainder of this dissertation, when the crit-

ical velocity is calculated or referred to, Equation 2.21 will be used for the sake of

simplicity.
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2.4.1 Foundation Mass Effects

One effect that is not taken into account in the models presented so far is the mass

and inertia of the foundation. In an electromagnetic launcher, the containment is

typically made of steel laminates and fiberglass and it is very heavy. For a better

model the dynamics of the launcher the kinetic energy of this foundation should

be taken into account. The translational kinetic energy in a length L of the beam

can be written in the following way.

KEBeam
Trans =

1

2

∫ L

0

ηr

(
∂w(x, t)

∂t

)2

dx (2.26)

Where ηr = ρA is the mass per unit length of the rail. The mass of the foundation

can also be considered using a similar relationship which will be demonstrated in

this section. It should be noted that one could potentially include rotational effects

as well, but these will not be considered in this section.

Figure 2.9 shows the geometry of the foundation and the rail for this calculation.

The foundation is assumed to have a width B that is equal to the width of the rail,

and a height of hf . It is also assumed to have a density of ρf that translates to

a mass per unit length of ηf = ρfBhf . The foundation is pictured as connecting

the rail to an immovable surface and it has a stiffness per unit area of k0. Also

pictured in Figure 2.9 is the deflection of the mass in the foundation wf (y, x, t) at

a distance y from the immovable surface. The translational kinetic energy of the

foundation can be written in terms of this deflection in the following way.

KEFound
Trans =

1

2

∫ L

0

(∫ h

0

ρfB

(
∂wf (x, y, t)

∂t

)2

dy

)
dx (2.27)

For this calculation, the velocity of the foundation at y is assumed to be equal to

the velocity of the rail on the side that connects to the rail at y = h and equal to

zero on the opposite side at y = 0. It is assumed to be linear in between. This
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means that the velocity of the foundation can be written in terms of the velocity

of the rail in the following way.

∂wf (x, y, t)

∂t
=

y

hf

∂w(x, t)

∂t
(2.28)

This assumption allows one to rewrite the translational kinetic energy of the foun-

dation in terms of the deflection of the rail.

KEFound
Trans =

1

2

∫ L

0

(∫ h

0

ρfB

(
y

hf

∂w(x, t)

∂t

)2

dy

)
dx (2.29)

Carrying out the integration over y gives the following.

KEFound
Trans =

1

2

∫ L

0

ηf

3

(
∂w(x, t)

∂t

)2

dx (2.30)

Where the substitution ηf = ρfBhf has been used. Adding this to the translational

kinetic energy of the beam in Equation 2.26 gives the total translational kinetic

Figure 2.9: Effective Mass of Foundation
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energy.

KETot
Trans =

1

2

∫ L

0

(
ηr +

ηf

3

) (
∂w(x, t)

∂t

)2

dx (2.31)

This means that when the translational kinetic energy of the foundation is consid-

ered, the effective mass per unit length of the rail is increased. This effective mass

per unit length is as follows.

ηeff = ηr +
ηf

3
(2.32)

This can be taken a step further by observing that the translational kinetic energy

is the only place that the mass per unit length appears in the derivation of the

equation of motion for the Bernoulli-Euler beam (e.g. see [39]). This allows one to

write, without loss of generality, the modified Bernoulli-Euler equation of motion.

EJ
∂4w(x, t)

∂x4
+ ηeff

∂2w(x, t)

∂t2
+ k0Bw(x, t) = P (x, t) (2.33)

The corresponding critical velocity for this system can then be written as follows.

vcr =

(
4Bk0EJ

η2
eff

)1/4

(2.34)

This indicates that the critical velocity of a beam on an elastic foundation can be

affected by the mass of the foundation. A heavy foundation will effectively lower

the critical velocity. Evidence of this lowering of the critical velocity is seen in the

experimental analysis done in Chapter 4.
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Chapter 3

Rail Launcher Dynamics

3.1 The Model

Electromagnetic launchers offer difficult challenges for simulation using finite ele-

ments. Their coupled nature and large aspect ratios cause the number of necessary

nodes to become large very quickly. In addition to this, the high frequency nature

of the electromagnetic fields and structural vibrations make the necessary time

steps very small. The combination of these two requirements makes fully-coupled

three-dimensional simulations intractable in a reasonable amount of time. In this

section, the basic geometry and the simplifications that have been employed to

simulate the electromagnetic launcher will be presented.

The first simplification is to model the launcher in two dimensions. This reduces

the number of nodes so that the problem can become solvable in a reasonable

amount of time. The major consequence of modeling this system in two dimensions

is that it is not possible to properly model the electromagnetic field. This means

that the mechanical effects of the field have to be approximated in a self consistent

way. The rails of the electromagnetic launcher repel each other just like two current

carrying wires. The force per unit length between the two rails is proportional to

the square of the flowing current I and inversely proportional to the distance r

between the two [72].
Fmag

L
=

µ0I2

2πr
(3.1)

The propulsion force on the armature is also proportional to the square of the

current (see Equation 1.7). This means that the repulsive pressure on the rails

and the acceleration of the armature will be linearly proportional to each other.

a ∝ Fmag

L
(3.2)
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In some of the simulations in this dissertation, the armature was moved by applied

displacements and repulsive pressures were applied to the rails. In these simula-

tions, Equation 3.2 was followed so that the repulsive forces on the rails would be

consistent with the acceleration of the armature.

The source of the mechanical forces is the interaction of the magnetic field

with the flowing current. The magnetic pressure on a current carrying surface is

proportional to the square of the magnetic field [72].

Pmag =
B2

2µ0
(3.3)

This equation comes from the the Maxwell stress tensor. For the problems in this

chapter, it is simply used to give a rough approximation and scaling law.

The second major simplification is to model the rails using one-dimensional

beam elements. This is done by using Timoshenko beam elements. The justifica-

tion for this simplification of the model is covered in detail in Chapter 2.

Finally, some of the research in this chapter has been previously published in the

IEEE Transactions on Magnetics. These portions are reprinted, with permission,

from [48] c©2006 IEEE and [49] c©2007 IEEE. Permission of the IEEE does not

in any way imply IEEE endorsement of Cornell University’s products or services.

Internal or personal use of this material is permitted. However, permission to

reprint/republish this material for advertising, promotional purposes, creating new

collective works for resale or redistribution must be obtained from the IEEE.

3.2 Classification of Foundation

The first step in modeling the rails of an electromagnetic launcher as a Timoshenko

beam on an elastic foundation is to put together reasonable estimates of all of the

parameters in Equation 2.4. The majority of these parameters are simply defined
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by the materials being used for the rails. The stiffness, k0 of the foundation is more

difficult to obtain. It was found by using a simplified static two-dimensional model

of the containment. This calculation will be shown for two different laboratory

launchers.

3.2.1 Institute for Advanced Technology Launcher

The Medium Caliber Launcher (MCL) at the Institute for Advanced Technology

(IAT) is arguably the most studied rail launcher in the world. It is for this reason

that this launcher was modeled. A drawing of the approximate cross-section of the

launcher is shown in Figure 3.1(a). The firing capabilities of this launcher can be

found in the literature [76].

Table 3.1: Medium Caliber Launcher Parameters

Symbol Description Value

E Elastic Modulus for Rail Material 120 GPa
G Shear Modulus for Rail Material 47 GPa
κ Timoshenko Shear Coefficient 0.833
ρ Density of Rail Material 8320 kg/m3

J Cross-Sectional Moment of Inertia of Rail 2.5× 10−9 m4

A Cross-sectional Area of Rail 3× 10−4 m2

h Height of Rail 0.01 m
B Width of Rail 0.03 m
k0 Areal Stiffness of Foundation Material 8.44× 1011 N/m3

vcr Bernoulli-Euler Critical Velocity 1486 m/s
vsh Shear Velocity 2170 m/s
vcr Bar Velocity 3797 m/s

For this simulation, the rails were removed and a pressure was applied to the

insulation material behind the rail and the deflection was calculated for various

static pressures. The boundary conditions and applied pressures are shown in

Figure 3.1(b). The final result of this calculation is shown in Table 3.1. The

stiffness shown in this table is calculated at the point of maximum deflection of
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(a) Cross Section Sketch

(b) Boundary Conditions and Applied Loads

Figure 3.1: Approximate Cross Section of Medium Caliber Launcher
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the insulator surface directly behind the center of the rail. The maximum deflection

was taken to give a ’worst case’ number for the stiffness (i.e. the softest value for

the stiffness). In addition to the stiffness, the important material and geometric

parameters for the MCL are summarized in Table 3.1. These numbers are not

intended to be the exact values for the MCL specifically. They are only meant to

capture the basic parameters of a laboratory launcher of that scale.

3.2.2 Georgia Institute of Technology Launcher

The Georgia Institute of Technology launcher was constructed under an Office

of Naval Research Multidisciplinary University Research Initiative (ONR-MURI)

grant. This launcher was designed for studies of friction and wear in the bore of

the launcher. The majority of the research in this dissertation was funded under

this grant, much of it is related to this launcher so it is necessary to present the

stiffness calculation for it as well.

Before describing the stiffness calculation, this is an appropriate place to intro-

duce the capabilities of this launcher. The Georgia Tech. launcher is relatively

small by laboratory launcher standards. It is 1.5 m in length and fires armatures

that weigh approximately 10 g to velocities in excess of 2 km/s. The capacitor

power supply stores 200 kJ of energy distributed over six different banks. Each

bank can be fired individually and the delay between each bank is programmable.

Pictures of the launcher are shown in Figure 3.2. The containment is made of elec-

trically isolated stainless steel laminates. These laminates are also isolated from

the rails with G-10 insulators. The launcher is housed in an acoustic chamber and

fires into an evacuated catch chamber to reduce noise.

A drawing of the cross-section of the foundation used in the simulation is shown

in Figure 3.3 (see Figure 3.2(d) for a photograph). The real launcher is held
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(a) Dismantled Launcher Containment (b) Breech Clamp and Power Cables

(c) Assembled Launcher Containment (d) Picture of Cross Section

Figure 3.2: Georgia Institute of Technology Launcher
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(a) Cross Section Drawing

(b) Cross Section Boundary Conditions

Figure 3.3: Cross Section of Georgia Institute of Technology Launcher
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together by a series of bolts and in the simulation these bolts are approximated by

the blocks shown in Figure 3.3(b). As with the MCL, a pressure was applied to the

insulation material behind the rail and the deflection was calculated for various

static pressures. The boundary conditions and applied pressures are shown in

Figure 3.3. The final result of this calculation is shown in Table 3.2. As before,

the stiffness shown in this table is at the point of maximum deflection of the

foundation. In addition to the stiffness, a summary of the necessary parameters

for modeling this launcher are shown in Table 3.2.

Table 3.2: Georgia Institute of Technology Launcher Parameters

Symbol Description Value

E Elastic Modulus for Rail Material 120 GPa
G Shear Modulus for Rail Material 47 GPa
κ Timoshenko Shear Coefficient 0.833
ρ Density of Rail Material 8320 kg/m3

J Cross-Sectional Moment of Inertia of Rail 1.372× 10−9 m4

A Cross-sectional Area of Rail 1.815× 10−4 m2

h Height of Rail 0.0096 m
B Width of Rail 0.0189 m
k0 Areal Stiffness of Foundation Material 5.45× 1011 N/m3

vcr Bernoulli-Euler Critical Velocity 1314 m/s
vsh Shear Velocity 2170 m/s
vcr Bar Velocity 3797 m/s

3.3 Modeling the Beam on an Elastic Foundation

The basic principle of the finite element method is to discretize the dynamics of the

system by representing the components using nodes and interpolation functions.

The basic equation being solved in a finite element analysis is as follows.

[M ]δ̈ + [C]δ̇ + [K]δ = F (3.4)
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Where δ represents the deflection of the nodes, [M ] is called the mass matrix, [C] is

the damping matrix, [K] is the stiffness matrix and F represents the forces at the

nodes [44], [71]. The mass, stiffness and damping matrices are derived based on the

physics that the elements are intended to model. This section will briefly discuss

the Timoshenko beam elements used in ANSYS. The purpose of discussing these

elements in terms of their stiffness matrices is to point out their limitations, and

introduce an alternative method for simulating a beam on an elastic foundation

that allows more complexity of the model. Finally, the verification solution for

these elements will be shown.

3.3.1 Rail Element Formulation

The beam elements used in the simulations in this dissertation are the BEAM54

elements in ANSYS. They are two node elements derived from the Timoshenko

beam theory [106], [82]. The interesting thing about the BEAM54 elements is that

they include the stiffness of the foundation into the element mass and stiffness

matrices. This representation reduces the number of elements necessary to model

an elastic foundation but it limits the flexibility of these elements in a number of

ways.

First, damping cannot be taken into account in the foundation itself. A damp-

ing matrix made of weighted versions of the mass and stiffness matrix can be added

into the model in the following manner.

[C] = α[M ] + β[K] (3.5)

This is the standard method for adding damping into a system in ANSYS and it

is referred to as Rayleigh damping. The problem with this type of damping is that

the damping coefficients do not necessarily correspond with a damping coefficient
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that one might measure in a laboratory experiment. This complication will not be

studied in this dissertation but it is worth mentioning because damping is seen in

the experimental data in Chapter 4 and should be taken into account in the design

of an actual launcher.

The other major limitation with this type of construction is that only a linear

stiffness is available. The devices being modeled in this dissertation have inherently

non-linear foundations and so a more adaptable formulation is necessary. This

flexibility can be gained back in a surprisingly simple way. This is done by setting

the foundation stiffness equal to zero in the beam element formulation and adding

spring-damper elements at either end of the beam element. This modification

increases the number of nodes necessary, but it widens the number of problems that

can be explored. The simulations in this dissertation use both of these formulations

so it is necessary to run verification simulations for both of these situations. This

is the topic of the next section.

3.3.2 Verification of the Elements

The first step in any finite element analysis is verification of the elements. This

is done by solving a problem using both the elements and an analytic model.

For the problems explored in this dissertation, an appropriate element verification

can be made using the problem of a load moving at a constant velocity on and

infinitely long beam. This specific case is solved in great detail by Frýba [34] and

the analytic solutions of interest for this dissertation are included in Appendix B

for convenience.

For these simulations, the beam is made long enough for there to be no wave

reflections from the ends of the beam. This is necessary to approximate the infinite

beam. This simulation is performed for four different velocities and the results are
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Figure 3.4: Verification for load velocity below the critical velocity

Figure 3.5: Verification for load velocity between the critical and shear velocities
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Figure 3.6: Verification for load velocity between the shear and bar velocities

Figure 3.7: Verification for load velocity above the bar velocity
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shown in Figures 3.4-3.7. In these figures, Method 1 refers to the formulation in

the previous section that includes the foundation stiffness in the mass and stiffness

matrix of the BEAM54 element and Method 2 refers to the formulation where

spring elements were added to the ends of each beam element.

These results are shown for the beam properties listed in Table 3.1. Both of

these finite element models match the analytic results very well over all of the

velocity ranges up to and beyond the bar velocity. The plots in Figures 3.4-3.7

were simulations of a 20m long beam with 10,000 befam elements where the load

traversed the first 10 meters of the beam. The velocity of the load is indicated in

each plot along with the velocity range which each solution represents.

Fortunately, in this problem there is also some intuition to be gained by look-

ing at these quasi-static solutions. One interesting thing to be pointed out in

Figures 3.4-3.7 is the motion of the load relative to the point of maximum deflec-

tion. In the first case, Figure 3.4, the load lies directly at the point of maximum

deflection. This is similar to the deflection when the load is stationary. In the sec-

ond case, Figure 3.5, the load has moved up to the point of zero deflection. At this

point, the load is moving fast enough to climb out of the deflection well generated

by the load. In the third case, Figure 3.6, the load has moved to the top of the

deflection well. The load is moving at a constant velocity in these equations but

when the load is accelerating, it can transition between these quasi-static states.

Another interesting thing to point out in these analytic solutions is the fact

that the case pictured in Figure 3.5 shows no attenuation on the waves in front of

or behind the moving load. In Figure 3.4 there are no waves, and the solutions

in Figures 3.6-3.7 show no waves in front of the armature. This means that the

velocities between the critical and shear velocities can be thought of as a radiation

zone where the load is capable of sending out waves in both directions. This wave
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radiation will have dramatic consequences for an electromagnetic launcher [48],[49].

3.4 Rectangular Armature

With the stiffness of the launcher calculated and the rail elements verified, it is

possible to model the dynamics of the launcher using the finite element model

described in section 3.1. This simulation will be presented in this section. The

results of this simulation have been previously published [48].

First, a symmetric rectangular armature is modeled to exclude the complexities

of a more realistic geometry. This simplification will be removed in later sections.

The basic geometry of the finite element mesh is shown in Figure 3.8. In this

picture, two rails are shown, this is just for display purposes. In the actual simula-

tion, symmetry was assumed and only one half of the armature and one rail were

actually simulated. The launcher was modeled as being 1.5 meters long and the

armature was 7 cm long. The material parameters and geometry of this system

are based on the Medium Caliber Launcher presented in Section 3.2.1.

Figure 3.8: Square Armature Finite Element Mesh ( c©2006, IEEE. Reprinted, with
permission from Johnson and Moon, 2006)

The armature shown in Figure 3.8 is slightly wider than the distance between

the rails. This extra width is what causes the initial static pre-stress between the
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Figure 3.9: Acceleration and Pressure as a Function of Time

rails and armature (pictured later in Figure 3.12). This is done in experimental

launchers so that electrical contact is maintained throughout the launch.

The boundary conditions and forces are also pictured in Figure 3.8. The contact

between the armature and the rails was modeled using sliding contact elements with

no friction that were capable of contact separation. The lack of friction makes it

necessary to accelerate the armature by applied displacements. A pressure was

applied to the rails behind the center of the armature to approximate the effects

of the magnetic field. The pressure and the acceleration are ramped on at the

beginning of the launch following the function plotted in Figure 3.9. This function

assumes a gradual turn-on of the acceleration and pressure up to a constant value

that is then maintained through out the launch. This is essentially the same as

assuming an ideal power supply. The gradual turn-on is necessary to get rid of
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jerk-effects (i.e. abrupt changes in the acceleration, see Section 3.5). When the

acceleration is ramped on too fast, waves are radiated from the armature. The

acceleration and applied pressure were scaled so that they are consistent with each

other according to Equation 3.2. The final result of all of this is a simulation of

an armature accelerating from zero up to approximately 3 km/s as it exits the rail

guide way in about 1.2 ms. This is accomplished by solving approximately 13, 000

transient load steps.

As a final note it should be also stated that the materials used in this simulation

have been assumed to have a linearly elastic response throughout the launch. Large

enough stresses to cause plastic deformations were encountered but studying these

higher order effects is not the purpose of this simulation.

3.4.1 Railway Dynamics

The first thing to discuss is the dynamics of the rails during this launch. This is

done by plotting a few snapshots of the rail deflection at different times. These

plots are shown in Figure 3.10 The purpose of this figure is to illustrate the fact

that waves propagate out in front of the armature after it passes through the

critical velocity. This plot can be made more enlightening by taking many of

these ‘snapshots’ in time and generating a surface plot of the entire time history

of the beam. A gradient plot of this surface is shown in Figure 3.11. In this

plot, there are two vertical lines that show when the armature passes through the

critical velocity and the shear velocity. In addition to this, there are dotted lines

showing the position of the front and rear of the armature. When the critical

velocity is reached, waves propagate out in front of and behind the armature.

In this particular simulation, the armature accelerates past these waves. This

phenomenon has serious implications for the contact pressure between the armature
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Figure 3.10: Snapshots of Rail Deflections Throughout Launch ( c©2006, IEEE.
Reprinted, with permission from Johnson and Moon, 2006)

and the rails.

After passing through the critical velocity the armature is no longer centered in

the minimum of the deflection curve. This is analogous to the constant load situ-

ation where the load starts to climb out of the ‘deflection well’ (see Section 3.3.2).

The armature eventually accelerates past the shear velocity. When this occurs, the

armature is now traveling faster than the waves it radiated at the critical velocity.

This means that it catches up to them and passes over them. This can be seen

in the zoomed in plot in Figure 3.11. This causes serious interference effects that

drastically change the contact pressure which will be shown in the next section.
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(a) Dynamic Rail Deflection

(b) Dynamic Rail Deflection in the Radiation Region

Figure 3.11: Deflection of the Rails as a Function of Time for Square Armature
( c©2006, IEEE. Reprinted, with permission from Johnson and Moon, 2006)
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3.4.2 Contact Pressure

The dynamics of the rails illustrated in the previous section strongly influence the

contact pressure between the armature and rails. Figure 3.12(a) shows the normal

static contact pressure between the rails and armature before the magnetic pressure

is applied to the rails. The normal contact pressure can be made into a surface

plot in a similar fashion as the rail deflection in the previous section. This plot can

be used to visualize the contact pressure dynamically as the armature accelerates

down the rails. This surface plot and its corresponding contour gradient plot are

shown in Figure 3.12. The time history had to be split into three different plots;

this is because it jumps in magnitude twice, making parts of the time history

difficult to see on the same scale. These figures also include straight lines showing

the critical and shear velocities. The x-axis on these plots represents the distance

along the armature; measured from the rear of the armature (i.e. the pressure is

being displayed in the frame of reference of the armature). Example snapshots of

each region are also shown in Figure 3.12.

Figure 3.12(b) shows the region when the armature passes through the critical

velocity. As one can see, the contact pressure shifts towards the front of the

armature. This is caused by the fact that the armature is beginning to pass over

the wave front that it has been traveling with. This is the same effect seen with

the constant load when it climbed up the side of the ‘deflection well’ at velocities

higher than the critical velocity (see Figures 3.4-3.7). This effect causes both the

position and magnitude of the contact pressure to change.

Figure 3.12(d) shows the region when the armature passes through the shear

velocity. The change in this diagram is not as severe as the critical velocity, but

as one can see, the magnitude does start to increase after the shear velocity is

reached. This is also consistent with the verification solutions. There exists no
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Figure 3.12: Dynamic Contact Pressure for Square Armature ( c©2006, IEEE.
Reprinted, with permission from Johnson and Moon, 2006)
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analytic solution for the quasi-static case (see Equation B.1) at the critical velocity,

but there is an analytic solution at the shear velocity. It is for this reason that

one would expect something more dramatic to occur at the critical velocity than

at the shear velocity.

A short time after the shear velocity, the contact area of the armature moves

to the rear and disappears, concurrently another contact area develops towards

the front of the armature and moves towards the rear. This cycle repeats itself,

and corresponds to the armature skipping over the waves on the rails. This effect

is seen in Figure 3.12(f). The slash pattern represents points of pressure that are

moving backward relative to the armature; this is reflected in the negative slope

of these slashes. This shows that the armature is actually skipping over the top of

these elastic waves. In a real electromagnetic launcher the current flow would be

interrupted at the onset of this skipping phase and an arc could form. The relative

velocity between the armature and waves is about 400 m/s and the maximum

contact pressure is far beyond the shear strength of the copper rails (approx. 0.2

GPa). The contact pressure is also very sharply peaked. As one can imagine, this

could cause the gouges seen in hypervelocity electromagnetic launchers [60]. The

model being explored in this dissertation is not sophisticated enough to offer an

outright explanation for gouging, but it does show a potential avenue for explaining

for the onset of rail gouging. The presently accepted model for gouging is an

empirical model that explores the interaction between two sliding interfaces based

on collected data [93]. This empirical model assumes that the pressure between

the rails and armature increases to a certain threshold where gouging will begin

to occur. This gouging threshold is a function of the material properties of the

two sliding bodies. What this simulation shows is how the pressure increases. The

waves in the rails cause the rails to essentially pinch the armature as it pushes to
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higher velocities. This model is not quite sophisticated enough to give an accurate

representation of the gouging threshold because the rail is only being modeled in

one dimension and the materials are being modeled as linear elastic. It is possible

though, that a three-dimensional or even a two-dimensional model of the rail might

be able to correlate better with the data collected on rail gouging.

3.5 ‘Jerk Effect’ Waves

In the previous section, the simulations were carefully constructed so that the ac-

celeration did not change abruptly (See Figure 3.9). The acceleration was ramped

on over a period of time (roughly equal to 200 µs). This was done because when

the acceleration is ramped on more quickly, waves are seen to radiate at the begin-

ning of the launch. When this phenomenon was first seen it was thought to simply

be a consequence of a poorly formulated acceleration curve, but these waves have

been observed on the Georgia Institute of Technology launcher (See Section 4.2.2).

It is for this reason that this section will explore this phenomena computationally.

Throughout this dissertation, this phenomena is referred to as ‘jerk effect’ wave

radiation because it occurs when there is a sharp change in the acceleration which

is referred to as jerk.

To explore these ‘jerk effect’ waves, a simulation was constructed that would

show them. For the sake of comparison, this simulation used the exact same

geometry and material parameters as the simulation in the previous section. The

only difference was that the acceleration was ramped on in approximately 20µs.

This is shown in the plot in Figure 3.13. This acceleration is still ramped on

continuously, but it is ramped on ten times faster. It is important to note that this

does make the exit velocity of the armature slightly different than the simulations

in the previous section, but the difference is only a few percent.
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Figure 3.13: Acceleration and Pressure as a Function of Time for Jerk Effect
Simulation

3.5.1 ‘Jerk Effect’ Railway Dynamics

As before, the first thing to look at is the dynamic deflection of the rails. This

is plotted in Figure 3.14. The major difference between this plot and Figure 3.11

is that the wave radiation begins almost as soon as the armature starts to move.

The amplitude of these waves will be a function of the amount of jerk that there

is but in general they will be smaller in amplitude than the waves seen after the

critical velocity. It is important to stress that this wave radiation effect is distinct

from the critical velocity wave radiation and should be treated as such.
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Figure 3.14: Dynamic Rail Deflection With Jerk Effect Waves

3.5.2 ‘Jerk Effect’ Contact Pressure

Even though the jerk effect waves are smaller in amplitude than the critical velocity

waves, they can still have a dramatic impact on the contact pressure between the

armature and the rail. This is shown in Figure 3.15. The first thing to note is

that the contact pressure shifts abruptly to the front of the armature when the

acceleration is ramped on (near 300 µs in Figure 3.15). This is in contrast to the

the more continuous change that is seen in Figure 3.12. After the acceleration is

ramped on, the contact pressure is seen to oscillate back and forth. This oscillation

appears to be caused by vibrations of the armature itself. This is reflected in the

constant frequency of these oscillations in the reference frame of the armature (see

Figure 3.15(a)). If they were caused by the armature passing over waves in the rail

then the frequency would increase dramatically as the armature accelerated. In a
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Figure 3.15: Dynamic Contact Pressure With Jerk Effect Waves
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real launcher, this jerk is believed to occur when the armature breaks free of the

static friction between it and the rail. This oscillation of the contact pressure is

an interesting side effect that could be detrimental to the overall performance and

integrity of the armature to rail contact. Measurement of these waves could offer

a technique for comparing different armature designs and material combinations

(see Section 4.2.2).

As before, when the armature passes through the critical velocity, the contact

pressure shifts forward and increases in amplitude. This effect is a bit harder to

see in this simulation but it is visible in Figure 3.15(a). Finally, in the region above

the shear velocity, the armature is skipping over the waves in the rail, just as it

did in the simulation in the previous section.

3.6 ‘C’ Shaped Armature

The next step in making this simulation less idealized is to model a more realistic

armature shape. Typical armatures are shaped with trailing arms as shown in

Figure 3.16. This type of armature is referred to as a ‘C’ shaped armature [40].

The idea behind this armature design is to take advantage of the electromagnetic

field to keep the armature in contact with the rails. The trailing arms carry

currents traveling in opposite directions, these currents repel each other and push

the armature legs against the rails. The removed section in the middle of the

armature also reduces the parasitic mass for the launch.

The overall method for simulating the ‘C’-shaped armature is very similar to

the square armature in the previous section. A pressure is applied to the rails

behind the armature and the armature is moved by an applied displacement. The

pressure and acceleration are then scaled in the same way indicated in the previous

section. The major difference is that a repulsive pressure must also be applied to
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Figure 3.16: ‘C’-Shaped Armature Finite Element Mesh ( c©2007, IEEE. Reprinted,
with permission from Johnson and Moon, 2007)

the trailing arms of the armature. This was done, and to keep things simple the

pressure was assumed to be 32% larger than the pressure applied to the rails. This

increase in pressure is justified because of the increased magnetic field behind the

armature. The percentage used corresponds to a 15% increase in the magnetic field

directly behind the armature as compared to the field between the rails far behind

the armature. This is a conservative number for the increase in the magnetic field,

but other values have been simulated and the general observations that will be

made about this simulation do not change with this percentage. The magnitudes

of the pressures change, but the dynamic effects discussed in this section are still

present.

As with the square armature, the final result of this simulation is an armature

accelerated from zero to 3 km/s on 1.5 meter long rails in 13,000 load steps. The

material parameters and geometry of this system are also based on the Medium

Caliber Launcher parameters presented in Section 3.2.1.
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3.6.1 Railway Dynamics with a ‘C’ Shaped Armature

As before, the first thing to plot is the dynamics of the rails. Figure 3.17 shows

the surface plot of the railway dynamics. The railway dynamics are very similar to

those of the square armature. Wave radiation occurs at the critical velocity in the

same way it does in Figure 3.11. The only major difference is that the maximum

deflections are slightly larger. This is just because of the larger interference fit of

the C-Shaped armature versus the square armature pictured in Figure 3.8, and the

transverse load applied to the trailing arms.

3.6.2 Contact Pressure with a ‘C’ Shaped Armature

The contact pressure can also be plotted for this simulation. This plot is shown

in Figure 3.18. The surface plot had to be split into two different plots because of

the large increases in the contact pressure.

In this simulation, the armature begins with a small portion at the front in

contact with the rails. The rear of the armature is then brought into contact as

the repulsion force between the trailing arms increases. The contact pressure is

relatively evenly distributed over the contact interface until the armature reaches

the critical velocity. At this point the contact pressure again moves forward and

increases in amplitude. In contrast to the square armature, the rear maintains

contact through this transition. This is because of the repulsion forces between

the trailing arms.

As with the square armature, a short time after the shear velocity the contact

pressure moves towards the rear of the armature and disappears. The front of the

armature comes back into contact with the rails and moves towards the rear of

the armature. This process repeats just as it did with the square armature. This
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(a) Dynamic Rail Deflection

(b) Dynamic Rail Deflection in the Radiation Region

Figure 3.17: Deflection of the Rails as a Function of Time for ‘C’-Shaped Armature
( c©2007, IEEE. Reprinted, with permission from Johnson and Moon, 2007)
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indicates that the ‘C’ shaped armature will skip over the stress waves as well.

Figure 3.18: Dynamic Contact Pressure for ‘C’-Shaped Armature ( c©2007, IEEE.
Reprinted, with permission from Johnson and Moon, 2007)

The major difference between this situation and the square armature is that

the repulsion force on the trailing arms keeps the rear of the armature in contact

with the rails for a slightly longer period of time. As one can see though, the shift

forward at the critical velocity and the skipping phase after the shear velocity still

occur with the C-shaped armature.
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3.7 Nonlinear Foundation

The simulations up to this point have assumed that the foundation is perfectly

linear. For a real launcher, this is not the case. The containment is typically soft

for small loads and becomes more stiff for larger loads. This results in a nonlinear

load-deflection curve. This curve has actually been measured for the Georgia Tech.

launcher. A hydraulic device was constructed by Dr. Scott Bair of Georgia Tech.

for just this purpose. This device fits inside the bore of the assembled launcher

and applies a symmetric load to both rails while measuring the displacement. A

typical curve from one of these measurements is shown in Figure 3.191. As one

Figure 3.19: Measured Load-Deflection Curve for Georgia Tech. Launcher

can see, the real launcher is very soft at first and then becomes stiffer as the

1Data in Figure 3.19 courtesy of Dr. Scott Bair of Georgia Tech.
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load increases. This is most likely because of small gaps in the system when the

launcher is clamped together. Using the elements of the spring-damper formulation

discussed in Section 3.3 it is possible to put together a simulation with a nonlinear

foundation.

This simulation was done using data from the Georgia Tech. launcher. A

current curve was taken from an experiment on the launcher. The square of this

current was integrated to get the acceleration and then the acceleration was scaled

to fit the velocity information from the same launch. The experimental current

and integrated armature displacement curves are shown in Figure 3.20. These

two were used as inputs for the displacement of the armature and the pressure

applied to the rails. The boundary conditions for this launch were the same as

those shown in Figure 3.16 except that the bore was only assumed to be 12.7

mm(the armature was scaled accordingly). The rail parameters were taken from

Table 3.2 and the load-deflection curve from Figure 3.19 was used for the nonlinear

foundation springs.

A surface plot of the dynamic deflection for this simulation is shown in Fig-

ure 3.21. The interesting thing about this plot is that waves are now being gen-

erated well before the armature reaches the critical velocity. In this particular

simulation, wave radiation begins at roughly 0.7 ms. This point in time corre-

sponds to an armature velocity of just under 1100 m/s. The expected critical

velocity for a linear foundation is 1314 m/s as shown in Table 3.2. This means

that a nonlinear foundation will effectively lower the velocity at which waves are

generated. This is a reasonable result since the critical velocity depends on the

stiffness of the foundation. Having a nonlinear load-deflection curve of the form

shown in Figure 3.19 lowers the effective stiffness of the foundation. This reduction

of the onset of wave radiation will also be seen in the experimental data presented
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(a) Current Data From Georgia Tech. Launcher

(b) Calculated Displacement Curve for Armature

Figure 3.20: Current and Displacement Input for Simulation
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Figure 3.21: Dynamic Deflection of Rails During Launch

later in this dissertation. In fact, this particular simulation is compared directly

to experimental data in Section 4.2.1.

In addition to nonlinear foundation effects, this particular launch shows the

phenomenon of wave reflection. Waves are reflected from the end of the rail before

the armature leaves the bore of the launcher. This effect occurs when the armature

is traveling fast enough to radiate waves, but too slowly to pass over those waves.

This effect is seen in experimental measurements in Section 4.2.1
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Chapter 4

Stress Wave Measurements on the

Georgia Institute of Technology

Launcher
One of the primary purposes of the Georgia Tech. launcher is to help develop

diagnostic and sensor techniques to advance the study of wear in electromagnetic

launchers. Since the simulations in Chapter 3 indicate that elastic waves may

contribute to the damage of the rails, an effort was made to measure the stress

waves in the rails of the Georgia Tech. launcher. To conduct these measurements,

a device had to be constructed that was capable of measuring high frequency, large

magnitude strains in a pulsed electromagnetic field.

The requirements for this device were defined with the help of the wave simula-

tion results in Chapter 3 and a device was constructed by researchers at the Georgia

Tech. Research Institiute (GTRI) and Micron Optics. Experiments were then con-

ducted by the author and researchers from the Georgia Institute of Technology and

GTRI. The results of these experiments will be presented in the following sections.

4.1 Fiber Optic Sensor System

To construct a device for measuring the stress waves in the rails of the Georgia Tech.

launcher it was first necessary to define the requirements of the measurement sys-

tem. This was done using the simulation results in Section 3.7. These results show

that the magnitudes of the strain maxima are on the order of 5000−10000 µm/m.

The frequencies involved require the strain measurement device to be capable of

sampling rates greater than 200 kHz. It was decided that the device should be ca-

pable of a measurement range of ±5000 µm/m and a minimum sampling frequency
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of 200 kHz. The simulations actually show strains larger than this range, but a

trade-off between resolution and maximum range had to be considered. This range

turned out to be sufficient because the armature wears during each shot and this

causes the strain maxima to be below the predictions of the simulations (which do

not model wear).

Before the results are presented a brief explanation of how fiber Bragg grating

strain sensors work is necessary. This will be just a simple explanation of how

strains are measured using fiber Bragg grating sensors.

Peak wavelength 

depends on 

FBG spacing

Broadband 

   source

Reflected

spectrum 

FBG sensor spacing

depends on strain

!

Peak reflected

wavelength depends

on FBG  spacing

Amp.

!

Amp.

FBG sensor

(a) Fiber Bragg Grating Measurement Concept

(b) Fiber Bragg Grating Sensor Attached to Rail

Figure 4.1: Fiber Bragg Grating Strain Measurement
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The sensor itself is a short Bragg grating near the end of an optical fiber. The

Bragg grating portion of the sensor is attached to the specimen using a special

adhesive. A picture of one of these sensors attached to a copper rail from the

Georgia Tech. launcher is shown in Figure 4.1 along with a sketch of the basic

mechanism by which they operate.

The basic principle of operation of one of these sensors is relatively simple. First

a broadband light source is transmitted down the fiber. When the light reaches

the sensor the majority of light passes through unimpeded, but a small band of

light is reflected back down the fiber and back to the measurement device. This

process is pictured in Figure 4.1. The wavelength λ of this reflected signal depends

on the spacing of the grating in the following way [19].

λ = 2nD (4.1)

Where D is the period of the grating and n is the refractive index of the fiber

material. For the case of a fiber Bragg grating attached to a specimen, when the

specimen is strained, so is the fiber. This translates to a change in the reflected

wavelength. The wavelength of the reflected signal is measured and this gives a

measure of the strain according to the following equation.

ε = η∆λ (4.2)

Where ε is the strain, ∆λ is the change in the peak reflected wavelength and η is

a calibration constant. For the sensors used in the experiments in this chapter the

typical change in wavelength was 1.2 pm per microstrain. The difficult part of this

type of measurement is to detect these very small changes in the peak reflected

wavelength. This is typically accomplished using a wavelength tunable filter. These

systems are typically limited to frequencies below 2 kHz so they would not work

for our application. To solve this problem, Micron Optics developed a Fabry-

Perot tunable filter based system that meets our high frequency requirements.
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The details of this specific device are proprietary, but a description of Fabry-Perot

tunable filters in general can be found in a book by M. Vaughan [102]. Essentially,

a Fabry-Perot filter uses interference of light between two parallel planes that

only allows transmission of a small bandwidth of light. A tunable Fabry-Perot

filter changes the spacing of the parallel planes to change the peak transmission

wavelength. This is used to scan over the output of the fiber Bragg grating to give

a measure of the peak wavelength reflected from the sensor (which leads to the

measurement of strain).

4.2 Measurements

Figure 4.2: Modified Georgia Tech. Launcher Cross-Section

Various strain measurements were made during the launch of the projectile.

The intention of these measurements was to test the validity of the finite element

simulations of Chapter 3. This was done by measuring the strain at various po-

sitions along the length of the launcher for various different launch energies. To

accommodate the strain gages, a minor modification to the insulators behind the
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rails had to be made. A 0.1875” diameter ball end mill was used to cut a small

channel down the length of these insulators to accommodate the strain gages (ap-

proximate depth = .07”). A drawing of the modified containment is pictured in

Figure 4.2.

4.2.1 Single Rail Experiment

Figure 4.3: Gage Positions for Single Rail Experiments

The first set of tests conducted involved instrumenting just one of the rails.

For this test, strain gages were placed at 0.3 m, 0.4 m, 1.1 m and 1.3 m from

the start position of the armature as pictured in Figure 4.3. The launcher was

then fired at launch velocities ranging from 0.9 km/s to 1.9 km/s and the dynamic

strain was recorded on all four channels. The data for these launches is shown

in Figures 4.4-4.7 along with the current pulses. The data from these launches

shows that the strain can reach values of 5000 µm/m as the armature passes by.

This observation is well in line with the predictions of the simulation. It should

be noted that a large dip in the strain was seen in Figure 4.7 on the fourth sensor.

This anomaly is believed to be a problem with the data acquisition card used in

the strain measurement device.
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Figure 4.4: 900 m/s launch velocity single rail strain test. (a) Drive Current, (b)
Strain at 0.3 m, (c) Strain at 0.4 m, (d) Strain at 1.1 m, (e) Strain at 1.3 m
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Figure 4.5: 1200 m/s launch velocity single rail strain test. (a) Drive Current, (b)
Strain at 0.3 m, (c) Strain at 0.4 m, (d) Strain at 1.1 m, (e) Strain at 1.3 m
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Figure 4.6: 1600 m/s launch velocity single rail strain test. (a) Drive Current, (b)
Strain at 0.3 m, (c) Strain at 0.4 m, (d) Strain at 1.1 m, (e) Strain at 1.3 m.
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Figure 4.7: 1900 m/s launch velocity single rail strain test. (a) Drive Current, (b)
Strain at 0.3 m, (c) Strain at 0.4 m, (d) Strain at 1.1 m, (e) Strain at 1.3 m
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A definite transition from no wave radiation to wave radiation is visible. This

transition is indicative of passing through a critical velocity. This is seen in all

of the launches in Figures 4.4-4.7. Interestingly enough, wave radiation is visible

even in the 800m/s launch. This is well below the predicted value for a linear

foundation and shows that either the nonlinearity in the load deflection curve of

the foundation (see Section 3.7) and/or the inertia effects of the foundation (see

Section 2.4.1) cause wave radiation to occur below the critical velocity predicted

by the simple linear theory (Section 2.4). At this point it is difficult to say which

of these effects is the most prominent.

Another phenomenon that is seen in these plots is wave reflection. This is

most visible in Figure 4.5 where the first wave reflection is seen at approximately

1500 µs on the fourth sensor. The wave can then be followed all the way back

to the first sensor where it has decreased in amplitude. In this particular shot,

the armature left the end of the launcher at approximately the same time that

this wave reflection is seen(≈ 1600 µs). This means that the wave had to have

reflected from the end of the beam before the armature left the launcher. The end

result of this is that the armature had to have passed over this wave. This sort of

interaction is also seen in the simulations of Chapter 3.

One phenomena visible in these tests that is not in the simulations is the

reduction of strain along the length of the rails. For example, in Figure 4.6 the

maximum strain on the first and second gages is nearly 5000 µm/m, while on the

third and fourth gages it has dropped by nearly a factor of five. The simulations

in Chapter 3 predict that this strain should increase farther down the rails. This

discrepancy can be explained by the fact that the simulation does not take into

account the wear of the armature during launch. For these high velocity launches,

the contact surface of the armature is melted during the launch. This decreases the

84



Figure 4.8: Armatures Fired at Various Velocities

interference fit and would cause a decrease in the strain seen at the muzzle end of

the launcher. A picture of some armatures fired on the Georgia Tech. launcher at

velocities similar to those in these launches is shown in Figure 4.8. These are not

the actual armatures fired on the shots in Figures 4.4-4.7, but they do illustrate

the typical wear patterns seen during launch. In low velocity shots, the surfaces

of the armature melt and wear down and the trailing arms melt off in very high

velocity shots. The damage to the front of the armatures in Figure 4.8 is due to

them hitting the end of the catch chamber.

Another interesting plot to make is the maxima of the strain signals as a func-

tion of the instantaneous velocity for each of the sensors. The instantaneous ve-

locity can be calculated by integrating the square of the current and then using a

least squares program to scale it to the information from the b-dots. This instan-

taneous velocity can then be interpolated at the position of the armature. This

plot is shown in Figure 4.9. Both the maximum tensile and compressive strains

are shown for each of the sensors for all of the shots in Figures 4.4-4.7. In this plot

it is seen that the strain increases dramatically after approximately 1 km/s. This

is expected when the armature passes into a wave radiation state. This transition
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(a) Strain Maxima Near Breech

(b) Strain Maxima Near Muzzle

Figure 4.9: Strain maxima as a function of instantaneous armature velocity in
sensors near muzzle and breech.
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can also be seen in the actual strain data in Figures 4.4-4.7. It is interesting that

the gages at the muzzle end of the launcher are essentially flat until approximately

1600 m/s, where a small increase is visible. This increase in the strain in this

shot could be due to the fact that the armature is approaching the shear speed of

the beam. This statement is only a conjecture of course, but this launch reached

the highest velocity that has been attained on the Georgia Institute of Technology

launcher and so no data is available beyond this point. This is definitely a question

for future research.

4.2.2 ’Jerk Effect’ Wave Analysis

For the plots shown in Figures 4.4-4.7, there is consistently a small wave that is

traveling in front of the armature. This wave is believed to be generated when

the armature breaks free from the static friction between the armature and guide

rails. When this occurs, there is a discontinuity in the acceleration of the armature.

This wave radiation can be called ’jerk effect’ wave radiation. This effect has been

seen computationally (see Section 3.5) and this section will look at it a little more

closely for the experimental data from the launches in the previous section.

Table 4.1: Jerk Effect Analysis Parameters

Shot Velocity Wave Offset Time Wave Velocity Armature Release Current

900m/s 58 µs 1720m/s 0.095MA
1200m/s 58 µs 1720m/s 0.180MA
1600m/s 57 µs 1750m/s 0.153MA
1900m/s 60 µs 1670m/s 0.138MA

This analysis will focus on first two gages from the low velocity shot. Fig-

ure 4.10 shows zoomed in versions of these waves. If the second signal is offset

then these two signals can be plotted on top of each other. This is also shown

in Figure 4.10. The offset necessary to make this work for this particular launch
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Figure 4.10: Jerk Effect Analysis Plot for 900 m/s shot. (a) Strain at 0.3 m, (b)
Strain at 0.4 m, (c) Strains offset in time so that the peaks overlap, (d) Drive
current during shot
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Figure 4.11: Jerk Effect Analysis Plot for 1200 m/s shot. (a) Strain at 0.3 m, (b)
Strain at 0.4 m, (c) Strains offset in time so that the peaks overlap, (d) Drive
current during shot

89



Figure 4.12: Jerk Effect Analysis Plot for 1600 m/s shot. (a) Strain at 0.3 m, (b)
Strain at 0.4 m, (c) Strains offset in time so that the peaks overlap, (d) Drive
current during shot
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Figure 4.13: Jerk Effect Analysis Plot for 1900 m/s shot. (a) Strain at 0.3 m, (b)
Strain at 0.4 m, (c) Strains offset in time so that the peaks overlap, (d) Drive
current during shot
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is 58 µs. Since the gages were offset from one another by 0.1 m then this wave is

traveling at approximately 1720 m/s. If this velocity is propagated back to the

start position of the armature then one finds that the wave was radiated 18 µs

after the capacitor banks were fired. This point is indicated in the fourth plot

of Figure 4.10 with a vertical line. This indicates that the armature broke free

at approximately 0.095 MA of current. Since the force on the armature can be

related to the current, through Equation 1.7, this is essentially a measure of the

frictional force between the armature and the rails. The corresponding values from

this analysis for all four shots are shown in Table 4.1.

This analysis could be used as a comparative test for different armature designs

and material parameters. For example, two similarly shaped armatures could

be coated with different materials to see how coatings effect the initial contact

friction. Tests of this sort have not been conducted yet, but with this jerk effect

measurement a quantitative comparison could be made. It should be noted that

these shots were fired on the same set of rails and that each shot lays down a layer

of material on the rails so if frictional tests are conducted then new rails should be

used. Of course all of this is heavily dependent on whether the jerk effect waves are

visible. In the tests in the next section, they are not. These tests were performed

after the launcher containment was modified. Between these two test series, the

laminates of the launcher containment were found to slip apart. The containment

was fixed, and a large aluminum plate was added to the top. With the addition

of this plate the jerk effect waves are no longer visible. The exact mechanism that

caused this is unknown, but is probably because of the extra bending rigidity that

the aluminum plate offers over the laminated structure. This would be another

interesting phenomenon to study in future tests.
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4.2.3 Computational Comparison

The data in Figure 4.5 shows some of the same phenomena seen in Chapter 3

such as wave reflection and ‘jerk effect’ waves (see Sections 3.4 and 3.5). It is for

this reason that this launch was simulated for a comparison. The results of this

comparison will be shown in this section. The launch simulated in Section 3.7 was

actually based on the experimental data from the launch in Figure 4.5. The final

results of this simulation are plotted in Figure 4.14. The computational results have

been offset just so that the results can be more easily compared. This simulation

illustrates both the strengths and weaknesses of this simulation technique.

First of all, the signals do not correspond exactly in time because of the lack of

experimental information about the armature position during launch. The strain

at the breech end of the launcher is similar in shape between the two. The mag-

nitude is off because the armature simulated in this launch is different than the

armatures actually used in the launcher (compare Figures 4.8 and 3.16). The ar-

mature appears to radiate waves before the simulation. This is reflected in the

width of the wave group at the muzzle end and the wave generation seen in the

second sensor (Figure 4.14(b)). The experimental data shows more wave peaks

than the simulated data. This early wave radiation could be caused by extra slack

in the foundation or inertial effects from the mass of the foundation. The simplified

model being explored here is capable of exploring the extra slack, but the inertial

effects would have to be taken into account using mass elements attached to the

foundation springs.

Another difference is that the strain in the simulation is higher at the muzzle

end of the launch. This discrepancy is primarily because the simulation does not

model the wear of the armature during launch. To get a better representation of

the magnitude of the strain, the wear of the armature must be modeled in a future

93



Figure 4.14: Comparison of Simulated System and Experimental Measurements.
(a) Strain at 0.3 m, (b) Strain at 0.4 m, (c) Strain at 1.1 m, (d) Strain at 1.3 m
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version of this simulation.

Finally, wave reflection is seen in both the simulation and experiment. This

reflected signal occurs in this shot because the armature was traveling just fast

enough to radiate waves, but not fast enough to pass over them. The magnitude

and temporal width of these reflected waves are similar in the experiment and

simulation (See Figures 4.14(c) and (d))

4.2.4 Two-Rail Experiments

Figure 4.15: Gage Positions for Two Rail Experiments

The next set of tests on the Georgia Tech. launcher consisted of instrumenting

both of the rails during the launch. This was done according to the diagram in

Figure 4.15. This time the launcher was fired at five different velocities and the

results are shown in Figures 4.16-4.20. This data shows some interesting char-

acteristics. First of all, the signals from the breech sensors are roughly equivalent

for each launch (in most cases), while the signals from the muzzle sensors are very

different. The muzzle data shows a bias towards more strain in the top rail. This

indicates that the armature has worn down to a loose fit between the rails and has

probably lost stability. The reason for the bias towards the top is unknown, but
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Figure 4.16: 900 m/s launch velocity two rail strain test. (a) Drive current, (b)
Strain at 0.4 m in top rail, (c) Strain at 0.4 m in bottom rail, (d) Strain at 1.2 m
in top rail, (e) Strain at 1.2 m in bottom rail
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Figure 4.17: 1100 m/s launch velocity two rail strain test. (a) Drive current, (b)
Strain at 0.4 m in top rail, (c) Strain at 0.4 m in bottom rail, (d) Strain at 1.2 m
in top rail, (e) Strain at 1.2 m in bottom rail
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Figure 4.18: 1300 m/s launch velocity two rail strain test. (a) Drive current, (b)
Strain at 0.4 m in top rail, (c) Strain at 0.4 m in bottom rail, (d) Strain at 1.2 m
in top rail, (e) Strain at 1.2 m in bottom rail
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Figure 4.19: 1500 m/s launch velocity two rail strain test. (a) Drive current, (b)
Strain at 0.4 m in top rail, (c) Strain at 0.4 m in bottom rail, (d) Strain at 1.2 m
in top rail, (e) Strain at 1.2 m in bottom rail
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Figure 4.20: 1800 m/s launch velocity two rail strain test. (a) Drive current, (b)
Strain at 0.4 m in top rail, (c) Strain at 0.4 m in bottom rail, (d) Strain at 1.2 m
in top rail, (e) Strain at 1.2 m in bottom rail
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it could be that the armature has moved into a divergent state of stability (see

Chapter 5).

The next observation can be made by comparing data from subsequent shots

from the breech end sensors. For example, if one compares the strain in the breech

sensors between Figures 4.18, 4.19 and 4.20 it is easy to see that the number

of oscillations of the strain increases. In lower velocity shots, the strain looks

essentially the same as it does in Figure 4.19 (in shape, not magnitude). What

this shows is that as the armature velocity increases, the magnitude of the waves

increases and the number of waves also increases. This is representative of a

transition to a wave radiation state as seen in the simulations in Chapter 3.

Another way to demonstrate this transition is to plot the maximum strain in

each rail as a function of the instantaneous velocity of the armature. This plot is

shown in Figure 4.21. As in Section 4.2.1, the velocity in this plot is an approximate

value for the instantaneous velocity as the armature passes the strain gage. The

strain is seen to increase at about 800 m/s in this case. This data set also shows

roughly flat strain at the muzzle end of the launcher. Again, this is most likely

due to the wear of the armature.

It should also be noted that an attempt was made to compare data between

the tests in this section, Section 4.2.1 and other tests that were performed (See

Appendix E for the data from these tests). It was found that large discrepancies

exist between tests on different builds of the launcher. In other words, if tests

are performed and then the launcher is taken apart, put back together then the

strain maxima will be different. This indicates that there is some repeatability

issues associated with the assembly of the launcher. The source of this uncertainty

is unknown, but it does need to be studied because it will probably affect non-

mechanical measurements as well.
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(a) Strain Near Breech

(b) Strain Near Muzzle

Figure 4.21: Strain maxima as a function of instantaneous armature velocity near
muzzle and breech.
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Chapter 5

Armature Stability
The stability of the armature in the bore of the launcher is an important phe-

nomena to understand for all of the possible applications of an electromagnetic

launcher. In the design of any launching system it is vital to understand the angu-

lar motion of the projectile as it is being accelerated and after it exits the launcher.

In classical weapons design, in-bore angular motion of the projectile relative to the

axis of the bore is referred to as balloting [17]. Balloting can cause damage and

wear to the bore and the payload of the projectile. As the projectile exits the

bore it will rotate, this is referred to as tip-off. These phenomena directly effect

the accuracy of the launcher. In the case of a Naval rail launcher with a range

of 300 km, even a small tip-off could be problematic. It should be noted that

the present vision of a Naval launcher includes guided projectiles, but any tip-off

will directly effect the amount of payload mass that is dedicated to the guidance

system, reducing the overall efficiency/effectiveness of the system.

Much of the literature associated with balloting is directed towards conven-

tional weapons(e.g. see [80] and [88]). The issue of balloting in electromagnetic

launchers specifically has been explored in the literature to some extent as well.

Balloting has been looked at as a function of the stiffness of the armature and

bore rider [17] and the straightness of the rails [14]. The work in this dissertation

also looks at the effect of the stiffness of the armature and bore-rider, but explores

the problem from the perspective of stability. In the previous chapters of this dis-

sertation, the armature was constrained to follow the axis of the launcher during

launch. This constraint prohibits balloting and tip-off effects. In the simulations

in this chapter this constraint was removed so that the dynamics of the armature

could be explored. Removing this constraint requires that both of the rails be sim-

103



ulated. The first finite element simulation in this section does this for a geometry

similar to the Georgia Tech. launcher. Next, a mathematical model of a projectile

accelerated down the bore of a launcher is considered. This model is explored from

the perspective of the stability of the armature. It is found that the stability of

the armature could be compromised if the armature and payload are not designed

properly. The armature could go into an unstable state of divergence or flutter

depending on the relative positions of the center of pressure and center of mass.

5.1 Two Rail Simulation

To explore the stability of the armature, a simulation of the Georgia Tech. launcher

including both rails was developed. For the lateral dynamics of the armature to

be visible, it is necessary for the armature to have more than just one degree of

freedom. This means that the armature must be pushed by an external pressure

instead of an applied displacement. This complication is considerably more difficult

than it appears. The main problem is associated with the friction between the

armature and the rails. This has to be included for the armature to be constrained

in the simulation. Since no experimental friction models exist for a rail launcher,

an approximate friction had to be used. For the simulations in this section, the

friction was assumed to drop exponentially with the velocity of the armature. A

plot of this friction coefficient is shown in Figure 5.1. The static friction was

assumed to be approximately 0.25 and this dropped to one fifth of its original

value at high velocities. Since no experimental model of friction exists for these

systems, this friction model is essentially a guess.

The boundary conditions for this simulation are pictured in Figure 5.2. In

this case, both rails were actually simulated and the foundation was assumed to

be nonlinear as pictured in Figure 3.19 in Section 3.7. The armature was shaped
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Figure 5.1: Assumed Friction Model
.

like the Georgia Tech. launcher armature and an offset in the center of mass

was introduced. This offset was introduced by offsetting the middle region of

the armature as shown in Figure 5.2. This offset was introduced to break the

symmetry in order to test whether any instabilities might be present. The front of

the armature in Figure 5.2 has what is referred to as a bore rider. In the simulation

in this section this bore rider is assumed to be more narrow than the space between

the rails by approximately 0.25 mm on each side. In experiments, this space is filled

by wrapping non-conductive tape around the end of the armature. It is possible for

this tape to be pushed off of the tip of the armature during loading or launch and

it will be ignored in this simulation to look at a worst case scenario for the stability

of the armature. For this simulation, the applied pressure was scaled according
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Figure 5.2: Boundary Conditions for Two Rail Simulations
.

Figure 5.3: Off-Axis Tip Deflection of Armature
.
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to the current in Figure 3.20. The pressure in the throat of the armature was

multiplied by 50% to attain a higher launch velocity. In these simulations, this

gave the armature a final velocity of approximately 1400 m/s.

This simulation was run for various offsets of the center of mass, and the results

are shown in Figure 5.3. This plot shows the off-axis deflection of the tip of the

armature as a function of time. As one can see, the front of the armature tips to

one side and oscillates for the entire launch. This is very similar to the results in

the literature [17],[18]. From the perspective of stability analysis, this pitching of

the armature to one side is indicative of an unstable system that is in a state of

divergence. This interpretation will be discussed in detail using a mathematical

model in the next section.

5.2 Mathematical Model

A relatively simple model can be constructed to study the basic lateral dynamics

of the launcher during launch. The basic geometry and a free-body diagram of the

armature for this model are shown in Figures 5.4 and 5.5. This is a model of a

projectile with spring-loaded sliding contacts and two degrees of freedom x and θ

which represent the deflection of the center of mass and rotation about the center

of mass away from the centerline of the guide way. The sliders are constrained to

slide in between two guides which are analogous to the rails of an electromagnetic

launcher. The only difference is that in this section, the rails are assumed to be

stationary. A model very similar to this was explored by Chu and Moon [16] for

the dynamics of magnetically levitated vehicles. For the electromagnetic launcher,

a modified version of their model is necessary. The major modification to the Chu

and Moon model is that the longitudinal forces are assumed to be proportional to

the lateral forces via a friction coefficient µ as shown in Figure 5.5. The derivation
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Figure 5.4: Armature Stability Model Geometry

Figure 5.5: Armature Free-Body Diagram
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of the equation of motion for this system can be found in Appendix D The equation

of motion for this system is as follows.



m 0

0 Im








ẍ

θ̈



 + (5.1)




4k 4kε

4k(ε + µd) 4k(a2 + ε2 + µε(d + ∆) + ∆µρ) + aymρ








x

θ



 = 0

For the sake of brevity, the derivation of this equation of motion is presented in

Appendix D. The distances 2a and 2d represent the length of the armature and the

width of the guide way. The distance from the geometric center of the armature

to the center of mass is represented by ε and the propulsion force T is applied at

a distance ρ from the center of mass as shown in Figure 5.4. The propulsion force

has been assumed to give a constant acceleration ay along the y direction. This

assumption is covered in detail in Appendix D. The mass and moment of inertia

about the center of mass are represented by m and Im. The stiffness of the springs

is represented by k and the interference fit in between armature and the guide

way is ∆. This is a very simplified model of an armature, but the intention here

is just to get a rough idea of the requirements on stability for an armature in a

rail launcher. A key property of these equations is that the stiffness matrix is not

symmetric. This means that it is possible to have complex eigenvalues that can

lead to flutter instabilities. Similar properties are found in the Chu-Moon model

for magnetic levitation stability [16].

5.3 Stability Analysis

Stability information can be extracted from Equation 5.1 by solving this system

as a generalized eigenvalue problem. This can be accomplished by first writing
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Equation 5.1 in a shorter form.

[M ]q̈ + [K]q = 0 (5.2)

Where q is the vector containing x and θ and [M ] and [K] are the mass and stiffness

matrices as shown in Equation 5.1. If one assumes a solution of the form q = q̂eiωt

where q̂ is a constant, then Equation 5.2 becomes the following

[M ]−1[K]q̂ = ω2q̂ (5.3)

Which is just an eigenvalue problem for the eigenvalue ω2. The characteristic

equation for this problem is as follows.

det([M ]−1[K]− ω2[I]) = 0 (5.4)

Where [I] is the identity matrix. Carrying out the determinant gives the following

equation for ω.

ω4 − αω2 + β = 0 (5.5)

Where α and β are given by the following expressions.

α =
4k

mIg
(aymρ + 4k(a2 + ∆µ(ε + ρ))) (5.6)

β =
1

mIg
(4k(Ig + m∆µρ + m(a2 + ε(ε + µ(d + ∆)))) + m2ay)

The stability of the system is defined by the value of ω. This can be understood

by looking at the assumed form of the solution and re-writing ω in terms of its

real and imaginary parts ωr and ωi.

q ∝ eiωt = e(iωr−ωi)t (5.7)

When the imaginary part of ω is negative and the real part is zero the solution will

grow exponentially. This is referred to as divergence. When the imaginary part of ω

is negative and the real part is non-zero the solution will oscillate with an envelope
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Figure 5.6: Stability Diagram

that diverges to infinity. This type of solution is referred to as flutter. When

the imaginary part is equal to zero, the solution will oscillate. When damping

is included, these oscillations will die down. Either way, this represents a stable

solution to the differential equation.

In addition to looking at the frequency of the solution it is possible to describe

the stability of the system using the parameters α and β. These quantities give

the stability of the system according to the plot in Figure 5.6. See [16] or [94] for

an in-depth explanation of this plot. Because of the large number of parameters

in this problem it is helpful to generate a specific example to explore the stability

of the system. This is the purpose of the next section.
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5.3.1 Stability Parameters

Now that the stability requirements have been obtained graphically, it is useful to

develop approximate values for all of the parameters in Equation 5.1. Of course,

the actual values depend heavily on the launcher and armature being used but it

is possible to put together a reasonable set of estimates for a typical launcher. The

values for this section are shown in Table 5.1.

Table 5.1: Armature Stability Parameters Estimates
Symbol Representative Value

m 0.01 kg
Im 1.6× 10−7 kgm2

a 5 mm
d 5 mm
∆ 0.5 mm
µ 0.25
kf 2.3× 108 N/m
kr 2.3× 107 N/m

krail 1.25× 109 N/m
kcont 5.5× 107 N/m
ay 0.25× 106 m/s2

The parameters in Table 5.1 are roughly comparable to the Georgia Tech.

launcher armature pictured in Figure 5.2. The coefficient of friction is from the

work of Richard Marshall and Chadee Persad [60]. This is a rough guess at the

average friction coefficient since a dynamic value has not been measured in an

electromagnetic launcher. The mass is the actual value for the Georgia Tech.

armature and the moment of inertia is calculated from the value for a rectangular

plane of length 2a and width 2d (i.e. Im = m
12((2a)2 + (2d)2)). The acceleration ay

is assumed to be 0.25×106 m/s2 which is a reasonable value for an electromagnetic

launcher. The geometric parameters a and d are also loosely based on the armature

pictured in Figure 5.2. The interference fit is assumed to be approximately 0.5 mm.
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The difficult parameter to estimate is the stiffness of the springs pictured in

Figure 5.4. These springs can be used to describe the stiffness of the armature or

they can also be used to include the stiffness of the rail and containment. To get

the total stiffness of the springs the stiffnesses of the different components must

be added together. Springs in series add reciprocally so the total stiffness can be

calculated in the following way.

1

ktot
=

1

karmature
+

1

krail
+

1

kcont
(5.8)

Estimates of all of these will be presented here so that their relative values can

be compared. Some of these components are under compressive loads so their

stiffnesses can be approximated by using the following equation [71].

k ≈ EA

L
(5.9)

Where E is the elastic modulus of the material, A is the cross-sectional area per-

pendicular to the load and L is the length of the component along the direction of

compression.

The armature actually has two different stiffnesses. It is very stiff in the front

and relatively soft in the rear. This is because the rear of the armature is primarily

under bending stresses while the front is primarily under compressive stresses. The

mathematical model presented in the previous section does not consider the two

different stiffnesses so estimates for both of the front and rear of the armature will

be presented here. These estimates are labeled kf and kr in Table 5.1 . It should

be noted that for the following discussion, the armature will be assumed to be in

a square bore launcher. This means that its width and height are both equal to

2d. The estimate of kf in Table 5.1 was calculated by assuming that the cross-

sectional area of the part of the armature under compression is equal to (2a/3)(2d)

(i.e. length of 2a/3 and width of 2d)and the length under compression is equal to
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2d.

kf ≈
2Ea

3
(5.10)

Where E is the elastic modulus of the armature material (assumed to be aluminum,

E = 70 GPa). Because the rear of the armature is under bending stresses, kr will

be roughly one tenth of this value. This value is also listed in Table 5.1.

The stiffness of the rail can be also be approximated by assuming it is under

compression. The rails are typically made of copper so the elastic modulus is

approximately 120 GPa. The length of the armature is equal to 2a and the width

of the armature is 2d so the effective area of the rail under compression is 4ad. The

effective length is equal to the height of the rail which is approximately 9.6 mm

for the Georgia Tech. Launcher. Plugging these numbers into Equation 5.9 give

the effective stiffness krail in Table 5.1.

Finally, the stiffness of the containment kcont can be approximated using the

stiffness per unit area k0 that was calculated in Table 3.2. multiplying this by the

effective cross-sectional area under compression (4ad as with the rail) gives the

value in Table 3.2.

When the stiffnesses are added together reciprocally, the smallest one domi-

nates. The smallest stiffnesses in Table 5.1 are kr and kfound and they are both on

the order of 107 N/m. This means that, depending on which components are con-

sidered, the effective stiffness of the springs will be between 107 N/m and 108 N/m.

In the following plots both of these values will be used.

In Figure 5.7, the stability is plotted as a function of the distance to the center

of mass ρ and the distance to the center of pressure ε. This plot is shown for two

different stiffnesses. As one can see, with these particular parameters the armature

could be divergent, flutter or stable during launch. For flutter to occur, ε would

have to be negative. If the center of pressure is to far behind the center of mass
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(a) Stability Diagram for k = 1× 107

(b) Stability Diagram for k = 1× 108

Figure 5.7: Stability Diagrams for ρ and ε
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then the armature will be in a state of divergence. This is essentially what occurred

in the simulation in Section 5.1. The center of pressure of the applied load was

well behind the center of mass of the armature. The magnitude of the stiffness

will also affect the position of the lines dividing the stable and unstable regions.

This is important to take into consideration not only in the structural design of

armatures but also in the thermal design. As the armature heats up during launch,

it’s effective stiffness will change and this could potentially push it into an unstable

region.

Most projectile designs in the literature show the armature as pushing the pay-

load from behind while using a bore-rider at the front of the payload (e.g. see [56]).

In principle, these designs could have a negative value for ε so stability calculations

should be taken into account in their design to avoid flutter. In addition to this,

since the armature is pushing the payload in most of these designs, the value of ρ

will most likely be negative. This could lead to divergent solutions. Either of these

problems will severely influence the overall effectiveness of any electromagnetic

launching system.

5.3.2 Simulations of Armature Stability Regions

In the interest of exploring the different regions in Figure 5.7 a MATLAB program

was written to simulate Equation 5.1. This program solves the differential equation

using a fourth order Runge-Kutta solver and the results will be presented in this

section for the three different regions. For the following simulations, the initial

displacement of the center of mass and the initial rotation of the armature were

assumed to be non-zero. The initial displacement was equal to 10−4 m and the

initial angle was set to 10−4 radians. This was done so that the instabilities would

be brought out. The initial velocities and accelerations were assumed to be zero.
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All of the simulations in this section are of the system described in Figure 5.7 with

a spring stiffness of 1× 107N/m.

An example of the stable region is shown in Figures 5.8 and 5.9. Both the

time history are shown as well as the phase plane plot of each coordinate versus

its velocity. These plots are for the case when ρ = 0.1 and ε = 0.004. For this

case, the armature is stable. This stability is reflected in the oscillatory nature of

the solution. For this case the eigen-frequencies are pure real and since there is no

damping the oscillations do not die down. The vibrations in x and θ are coupled

so if vibrations are generated in one of the degrees of freedom, they will generate

vibrations in the other.

Next, an example of the divergence region is shown in Figures 5.10 and 5.11.

As before, both the time history and the phase plane are plotted. These plots are

for the case when ρ = −0.2 and ε = 0.004. For this case, the armature is in a state

of divergence. This is reflected in the fact that θ and x blow up to large values. As

with the vibrations, the coupled nature of the problem causes both of the degrees of

freedom to diverge. It is important to note that the large deflections and rotations

seen in Figures 5.10 and 5.11 are so large because of the absence of any nonlinear

restoring terms in the Equation 5.1. In the physical system, nonlinearities would

take over well before the deflections/rotations would get this large.

Finally, an example of the flutter region is shown in Figures 5.12 and 5.13.

Again, both the time history and the phase plane are plotted. This plots are for

the case when ρ = −0.05 and ε = −0.001. For this case, the armature is in a

state of flutter. This is reflected in the fact that θ and ρ both blow up to large

values while oscillating. Again, the coupling between the degrees of freedom causes

flutter to be seen in both x and θ. As with the divergent solution, the deflection

and rotation shown in Figures 5.12 and 5.13 will grow without bound for this
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Figure 5.8: Stable Solution: Top - Displacement of Center of Mass vs. Time.
Bottom - Velocity vs. Displacement
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Figure 5.9: Stable Solution: Top - Rotation about Center of Mass vs. Time.
Bottom - Angular Velocity vs. Angle
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Figure 5.10: Divergent Solution: Top - Displacement of Center of Mass vs. Time.
Bottom - Velocity vs. Displacement
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Figure 5.11: Divergent Solution: Top - Rotation about Center of Mass vs. Time.
Bottom - Angular Velocity vs. Angle
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simple linear model. This can be corrected by considering nonlinearities in the

model. This complication will be considered in the next section.

5.3.3 The Effect of Nonlinearities

As shown in the previous section the deflection and rotation of the armature can

grow without bound for the simple linear model when the armature is in a divergent

or flutter state. In a physical system, these values would be bounded by nonlinear

terms that would dominate the dynamics for large deflections. A simple model to

consider nonlinearities is the Duffing equation [74].

ẍ + αx + βx3 = f(t) (5.11)

This equation describes the dynamics of an oscillator with a nonlinear load deflec-

tion curve given by αx+βx3 that is driven by a forcing function f(t). This version

of the Duffing equation ignores damping. An in-depth discussion of the properties

of this system including damping can be found in text books on chaos [74]. The

x3 term serves to give a first order impression of the effect of nonlinearities. For

the armature model being considered in this chapter, the nonlinearity would have

to be taken into account in both degrees of freedom. This can be done in the

following way.



m 0

0 Im








ẍ

θ̈



 +




β1,1 β1,2

β2,1 β2,2








x3

θ3



 + (5.12)




4k 4kε

4k(ε + µd) 4k(a2 + ε2 + µε(d + ∆) + ∆µρ) + aymρ








x

θ



 = 0

Where the coefficients β1,1 and β2,2 define the magnitude of the nonlinear terms.

The of diagonal terms would take into account nonlinear coupling between the two
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Figure 5.12: Flutter Solution: Top - Displacement of Center of Mass vs. Time.
Bottom - Velocity vs. Displacement
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Figure 5.13: Flutter Solution: Top - Rotation about Center of Mass vs. Time.
Bottom - Angular Velocity vs. Angle
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degrees of freedom. For the sake of simplicity these two terms will be set equal to

zero for the following discussion.

Now that nonlinearities have been considered, it is possible to re-run the diver-

gent and flutter solutions shown in the previous section. At the present, values for

the β parameters are unknown and would be best determined experimentally. For

the sake of this discussion, values were chosen so that the maximum displacement

of the armature was limited to 0.5 mm and the maximum rotation was limited to

0.1 radians (≈ 5.7◦). Different values of β1,1 and β2,2 were tried until these require-

ments were met. There is a wide range of values that will meet the criteria, but the

simulation results are all comparable so a representative set was chosen. For the

following simulations, β1,1 and β2,2 were both set equal to 105. Again, these values

are essentially arbitrary and are just being used for the sake of discussion. These

values were used to repeat the unstable analyses given in the previous section. All

of the parameters were the same except for the addition of the β matrix.

The result of the divergent simulation is shown in Figures 5.14 and 5.15. These

simulations show some interesting behavior in both degrees of freedom. Instead of

the deflection and rotation blowing up to infinity they appear to oscillate between

two maxima in a chaotic fashion. There are a few places where the armature leans

towards one side for multiple cycles as well (e.g. at approximately 2 ms). This

indicates that it is possible for the armature to lean towards one side of the bore

or to oscillate between the different sides of the bore (balloting).

It is important to end this chapter by stating that the model used here is

highly simplified and that the parameters used in the Duffing model are unknown.

Whether these effects actually occur in the bore of an experimental launcher re-

mains to be seen. Strain measurements were conducted in the Georgia Tech.

launcher that show an asymmetry in the strain in the rails (see Chapter 4). This
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Figure 5.14: Divergent Solution for Duffing Model: Top - Displacement of Center
of Mass vs. Time. Bottom - Velocity vs. Displacement
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Figure 5.15: Divergent Solution for Duffing Model: Top - Rotation about Center
of Mass vs. Time. Bottom - Angular Velocity vs. Angle
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asymmetry could have been caused by the armature leaning to one side, but the

results do not conclusively show this. Another set of experiments dedicated to

detecting this phenomena using these strain gages might be able to confirm this,

but the experimental evidence as it stands is somewhat inconclusive.
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Chapter 6

Cornell Launcher Experiments and

Calculations
Electromagnetic launchers have been studied extensively since the early 1970’s.

Even with this long history of experimental work, there is a surprisingly small

number of sensors available for measurements during launch. This is primarily

because of the electromagnetic fields generated during launch. To help understand

and rectify this problem, a small-scale electromagnetic launcher was constructed at

Cornell. This small-scale system allows for testing of different sensors and sensor

systems in a short amount of time. This section will discuss this launcher and the

sensor tests that were conducted.

6.1 Description of Launcher

First it is necessary to give a basic description of the launcher. The basic electrical

components, mechanical components, and operation of the launcher will be covered

in this section.

6.1.1 Power Supply and Electrical Characteristics

The power supply for the small-scale electromagnetic launch is capacitor based. A

picture and a circuit diagram of the power supply is shown in Figure 6.1. It consists

of twelve 6700 µF electrolytic capacitors (donated by Cornell-Dubiler) hooked up

in parallel giving a total capacitance of 0.0804F . An inductor is added to the

power supply to stretch out the length of the current pulse (L = 11.7 µH). The

firing switch is a high power silicon-controlled rectifier (SCR) with a pulse current

rating of 14.4 kA for 10 ms. The capacitors are electrolytic so a crowbar diode
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(a) Capacitor bank diagram

(b) Picture of capacitor bank components

Figure 6.1: Capacitor Bank for Millimeter Scale Electromagnetic Launcher
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is also located across the poles of the capacitor bank to keep the voltage from

reversing during a shot. The capacitors can be charged to a maximum of 400 V .

This gives a potential energy storage level of 6.4 kJ , but due to the limitations

of the switch, the bank has never been charged above 222 V (about 2 kJ). Also

shown in Figure 6.1(a) is the dump resistor. This is used to clear any excess energy

in the bank after firing a shot or in the event that a test shot must be aborted.

In addition to the electrical characteristics of the power supply it is important

to mention the characteristics of the launcher itself. The important parameter to

understand is the inductance gradient (see Equation 1.7). An approximate value of

this quantity can be calculated or measured. For this launcher, both of these have

been done. The calculation is based on equations given in a book by Frederick

Grover [37]. Grover calculates the inductance of an infinite pair of rectangular

conductors running parallel to one another The equation for this geometry is as

follows.

L′ =
µ0

π
(Log

(
d

B + C

)
+ 1.5 + ∆k −∆e)) (6.1)

Where d is the distance between the centers of the rails, B and C represent their

cross-sectional dimensions (C being the smaller of the two) and the ∆’s are tab-

ulated in Grover’s book. For the Cornell launcher ∆k = 0.389 and ∆e = .00249.

This gives a value of L′ = 0.273 µH/m. Grover’s equation assumes that the length

of the rails is infinite and that the current is evenly distributed throughout so this

number is only a rough approximation of the inductance gradient of this launcher.

A value for the inductance gradient was also measured using a precision LCR

meter. The launcher was loaded and assembled and the inductance was measured

at a frequency of 1 kHz. The launcher was then taken apart, the armature was

moved down the length of the launcher and the inductance was measured again.

This process was repeated to give the data plotted in Figure 6.2. The final exper-
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Figure 6.2: Inductance Gradient Measurement

imental value of the inductance gradient is L′ = 0.291 µH/m. The experimental

number is about 6% higher than the calculated number from Equation 6.1.

It is important to note the values of L′ presented in this section are only ap-

proximate. While they are good enough to use in an approximate model, in an

actual launch, the value of this parameter will vary as the current diffuses from

the outside of the rails into the interior [35].

6.1.2 Mechanical Components

The main mechanical component of the electromagnetic launcher is the contain-

ment. A drawing of this containment is shown in Figure 6.3 along with a picture.

The containment was made of 1/2′′× 2′′ polycarbonate. This material was chosen

because of its resistance to impact, transparency, machinability and its resistive
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(a) Drawing of containment

(b) Picture of containment

Figure 6.3: Millimeter Scale Launcher Containment
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(a) Armature sketch

(b) Armatures being machined

Figure 6.4: Millimeter Scale Armature
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properties. The rails of the launcher are made from 1/16′′× 1/2′′ copper bars.The

design of the containment also includes a 1/2′′× 1/2′′ space behind the rails. This

space was left so that the foundation stiffness could be modified by filling it with

different materials. It is also intended as space for sensors on the back surface of

the rails. This space is filled with rubber in the picture in Figure 6.3.

Figure 6.4 shows a picture of the armatures being machined along with a di-

mensioned sketch of the armature. The sharp corners shown in Figure 6.4 are

rounded off with a file before the armature is loaded into the launcher. The launch

mass of one of these armatures is approximately 0.08 g.

6.2 Rail Launcher Diagnostics

Since the purpose of the Cornell launcher is to test sensor systems, this section

will cover the diagnostics built for this launcher. Typical measurements made on a

rail launcher include current, velocity and muzzle/breech voltage. The techniques

involved in the first two of these will be covered in this section. The current

is measured using rogowski coils, which is the classic method, but the velocity

measurement was done using a new technique that was developed on this launcher.

This new technique allows for a higher resolution velocity measurement while using

less data acquisition resources.

6.2.1 Current Measurement

The primary technique for measuring the current involves the use of Rogowski

coils. This device is a coil of wire that is wrapped around the component that

is carrying current. A picture of one of the Rogowski coils built for the Cornell

launcher is pictured in Figure 6.5 along with a sketch of how it works. A Rogowski
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(a) Rogowski Coil sketch

(b) Rogowski Coil Picture

Figure 6.5: Rogowski coil for current measurements

coil measures the change in the magnetic field along its length. The integral of

the output of the gives the current flowing through the conductor according to the

following equation.

I(t) = γ

∫ t

0

Vcoil(τ)dτ (6.2)

Where γ is a calibration constant. For the Rogowski coils on the Cornell launcher,

the calibration constant was measured by pulsing a current through a calibrated

shunt with a known resistance. The constant for these coils was found to be equal

to 10.63× 106 A/V s. For the experiments in this section, the voltage is measured

using a computer data acquisition card and the integration is carried out using
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software. A typical voltage trace from a launch is shown in Figure 6.6. In this plot

the current flowing through the rails and the current flowing through the crowbar

diode are measured. For this launcher, it is necessary to monitor both of these

currents because the SCR switch and crowbar diode are operating near their design

limits.

Figure 6.6: Example Rogowski Coil Measurement
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6.2.2 Velocity Measurements

One of the primary measurements made in any electromagnetic launcher is the

velocity of the projectile. In this harsh environment, even this measurement can

be surprisingly difficult. Typically it is conducted by using a series of inductive

coils placed at intervals along the length of the launcher. When the armature

passes by these coils, a small voltage pulse is generated. This is process is pictured

in Figure 6.7. The voltage trace seen in Figure 6.7 is typical for rail launchers. The

signal consists of a high frequency, high amplitude pulse followed by a low frequency

pulse of opposite polarity. The high frequency component is generated by the

electromagnetic field in front of the armature and the low frequency component is

generated by the relatively slowly changing magnetic field behind the armature.

This type of sensor is referred to as a B-dot [69]. By using multiple B-dots and

comparing the time between the pulses, a measure of the velocity of the projectile

can be obtained.

While the B-dot is quite robust, it does have shortcomings. The primary lim-

V

Magnetic 

Field

Current

Inductive Coil

  

! 

d
v 
B 

dt

In front of armature

  

! 

d
v 
B 

dt
Behind armature

Figure 6.7: B-dot Signal for Measuring Armature Velocity
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itation of this technique is its resolution. The spatial resolution is limited by the

number of B-dots available. In addition to this, conventional techniques require

one data acquisition channel per B-dot. This can cause the cost of measuring

the velocity to become large very quickly. The combination of these two limita-

tions typically limits the number of velocity data points during launch to below 20

points. This low resolution makes it very difficult to verify the basic dynamics of

the armature during launch. A higher resolution system could allow for a better

model of the launch dynamics to be developed (e.g. dynamic friction and wear).

Other techniques such as Doppler-radar [83] and laser-Doppler [5] have been tried,

but the standard technique is still to use a series of B-dots.

The velocity measurement technique presented in this section is a modified

version of the conventional technique. To illustrate the difference between the two,

an experiment was performed on the Cornell launcher where both techniques were

applied at the same time. The results of that experiment will be presented next.

One technique to reduce the number of channels is to add up the signals from

different B-dots to get one signal with a number of peaks. This idea can work

under some circumstances, but typically the combination of positive and negative

voltages gives a distorted signal that is difficult to interpret. One way to get around

this problem is to insert a precision half-wave rectifier before adding the signals

together. A diagram of the circuit used is shown in Figure 6.8. This gets rid of

the distortion introduced by the low frequency negative troughs in the individual

B-dot signals.

One other type of distortion must be considered before the system will work

and that is interference between adjacent peaks. If two positive peaks are too close

together in time then the peaks will be distorted when the two signals are added

together. Fortunately, there is a simple solution to this problem as well; adding
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Figure 6.8: Precision Half-Wave Rectifier

together alternating B-dots separates the signals. A diagram of this technique

is shown in Figure 6.9. This diagram illustrates how the resolution can always

be increased by simply sampling on more channels. The nice thing about this

technique is that it is possible to calculate the spatial resolution. It is dependent

on the frequency of the pulse in front of the armature which can be calculated very

roughly in the following way.

fpulse ≈
varm

βLarm
(6.3)

Where varm is the velocity of the armature as it passes the B-dot, Larm is the

length of the armature. The quantity β requires a bit more explanation. As stated

before, the high frequency pulse in the B-dot signal represents the change in the

magnetic field in front of the armature. The quantity βLarm represents how far this

field extends in front of the armature. This means that β represents the number of

armature lengths that the magnetic field occupies in front of the armature. This

means that it would have to be measured/simulated for any launcher which uses

this technique. For the case of the Cornell launcher, a rough value for βLarm

is 8 cm. This value was found experimentally through the tests outlined in this

section by measuring the frequency of the pulse and the velocity of the armature.
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With the frequency of the pulse calculated it is possible to write down the

equation for the maximum spatial resolution for one channel.

wmin ≈
varm

2fpulse
=

βLarm

2
(6.4)

The extra factor of two comes from the fact that only half of the pulse is seen. The

interesting thing about this technique is that Equation 6.4 represents the maximum

spatial resolution for one channel. The resolution can always be increased by

adding more channels. For an evenly spaced array of B-dots separated into N

channels, the maximum resolution for this technique is given by the following

equation:

wmin ≈
βLarm

2N
(6.5)

This assumes of course that the peaks between channels are actually distinguish-

able. In a real system, the practical limitation of this technique would be space

for the sensors and cables.

Next, an experiment was put together to test this technique. This involved a

series of ten B-dots added together over two different channels. A picture of these

B-dots is shown in Figure 6.10. The spacing between adjacent B-dots is 4 cm, this

is equal to the resolution as calculated from Equation 6.4. The b-dots pictured are

just simple coils of 32 gage magnet wire with 75 turns each. They are embedded

in a piece of polyethelene on top of which the launcher sits. For this test, the

capacitor bank was charged to 222 V . As shown in Figure 6.8, the output of each

sensor is sent through a voltage buffer and a precision rectifier. Alternating B-dot

signals are then added together to give the final signal shown in Figure 6.11. This

test used two channels, but probably would have also worked on a single channel.

Also included are the signals from four of the individual B-dots for comparison.

This is done to show that the rectifier circuit doesn’t introduce a noticeable amount

of distortion into the positive portion of the b-dot signal (phase shift or amplitude
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Figure 6.10: Picture of B-dot array used on Cornell launcher

variation). The precision rectifiers built for this experiment were found to operate

without noticable distortion up to about 100kHz. The operational amplifiers used

in this circuit have a gain bandwidth product of 100 MHz. Amplifiers with a gain

bandwidth product of 4 Mhz were found to give about 4 kHz of bandwidth. This

indicates that the nonlinear nature of the circuit pictured in Figure 6.8 tends to

reduce the bandwidth by roughly a factor of 1000. Taking this into account, this

set-up on the Cornell launcher should be capable of measuring velocities up to

about 8 km/s. Unfortunately, this launcher is not capable of launch velocities this

high so this cannot be tested.

Now that the B-dot signal has been obtained, it is possible to plot the velocity

as a function of time. This is done by taking the spacing ∆x between the different

B-dots and dividing it by the time ∆t between the signal peaks. For this test, ∆x

was 4 cm and the armature was started 1.8 cm from the first B-dot. This gives the

velocities plotted in Figure 6.12. The time for each data point is assumed to occur

half way between the two peaks (i.e. plotted time is first peak time plus ∆t/2).

The curves plotted with the experimental data in Figure 6.12 are calculated

by integrating the acceleration of the armature throughout the launch. Neglecting

friction and mass loss effects, the acceleration is given by the following relationship.

Fprop =
L′I2

2
−→ a =

L′I2

2m
(6.6)

Since the current was measured for the launch, it can be squared and integrated
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Figure 6.11: B-dot signals from composite circuit with ten B-dots(top) and signals
from four of the individual B-dots (bottom).
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(a) Armature Position

(b) Armature Velocity

Figure 6.12: Armature Velocity Measurement
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to give an idea of the velocity of the launch. For the curve in Figure 6.12 the

scaling constants of this curve, L′ and m, were set equal to 0.273 µH/m and 0.08 g

(from Section 6.1). As one can see, the model fits the data pretty well using these

parameters. This is actually somewhat surprising because approximately 2/3 of

the armature melted during this launch. This means that the mass-loss term

should not have been neglected. This highlights the need for a high resolution

measurement system. If higher resolution techniques were available then it might

be possible to measure quantities such as dynamic friction and wear (i.e. mass-

loss). Unfortunately, this is not possible with the system described here, but a

Doppler sensor may be capable of making these measurements. The next section

will address the requirements for this type of system.

6.3 Parameter Estimation Techniques for Friction and

Wear Measurements

High resolution measurement techniques using the Doppler effect do exist for in-

bore measurement of armature velocity (See [5] and [83]). Unfortunately these

techniques are not used widely in experiments. This section will illustrate how

parameter estimation techniques could be used with these systems to measure

more than just the velocity of the armature. Specifically this section will cover

the use of parameter estimation for the measurement of in bore armature wear

and friction. As stated in the previous section, the B-dot system used in most

launchers is not capable of making these measurements. Therefore, one of the

goals of this section will be to outline the basic requirements for a system to make

these measurements. This will be accomplished by modeling a rail launcher with

an assumed physical model and then attempting to calculate various parameters
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of that model using parameter estimation. The specific parameters that will be

used in this section will be similar to the Cornell launcher, but the basic model is

general enough to be applied to other launchers.

6.3.1 Basics of Parameter Estimation

This section will outline the basic principles of parameter estimation. Only the

basic equations necessary for the calculations in this dissertation will be presented.

A more complete explanation can be found in a number of books (e.g. see [107], [89]

or [75]).

Figure 6.13: Flow Diagram for Basic Parameter Estimation Routine

In essence, parameter estimation uses fitting routines to fit a system, usually

defined by a differential equation, to a set of data. The basic principle behind this

is shown in Figure 6.13. An estimate of the parameters p̄est is given and then a

simulation of the system using p̄est is generated. The output of that simulation is

compared to experimental data and a new value of p̄est is generated. The whole

process is repeated and when this is done in a systematic way it is possible to
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converge on a set of parameters p̄est that are close to the real system p̄exp.

The first step in putting together a parameter estimation scheme is to develop

a model for the physical system. This step is specific to the system being looked at

and will be covered in detail in the next section. Once the model is developed, an

estimation scheme must be chosen. As indicated in Figure 6.13 the calculations in

this thesis will use the least squares method. This method starts by calculating the

error ē (also called the residual) in the solution generated by the computational

model as shown in Figure 6.13.

ē = ȳexp − ȳest (6.7)

The residual is then formed into the loss function Φ(p̄) which can be written as

follows.

Φ(p̄) =
1

N
ēT ē (6.8)

Where N is the number of data samples. The loss function gives a measure of how

close the model is to the experimental system. The next step is to minimize the loss

function with respect to the parameters. This minimization can be accomplished

using many different techniques. For the problems in this dissertation, Newton’s

method is used (see [75] for an in-depth discussion of this method). Newton’s

method involves modifying p̄ by an amount ∆p̄ given by the following relationship.

∆p̄ = H−1∂Φ(p̄)

∂p̄
(6.9)

Where H is the Hessian matrix given by the following relationship.

Hij =
∂2Φ(p̄)

∂p̄i∂p̄j
(6.10)

The parameter estimate is changed to p̄est−∆p̄ and the whole process is repeated

until p̄est approaches p̄exp. For this to occur, the model must be a reasonable

approximation to the physical system and the initial value of p̄est must be close to

the experimental value.
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In addition to calculating the parameters, the theory offers a structure for

calculating the uncertainty in those parameters. This is done by looking at the

diagonal elements of the covariance matrix.

cov{p̄} = σ2H−1 (6.11)

Where σ is the noise variance in the signal (assumed to be gaussian). If σ is

unknown then it can be approximated by the following relationship.

σ2 =
ēT ē

N − n
(6.12)

Where N represents the number of data points and n represents the number of

parameters. Using these relationships it is possible to write the value of the pa-

rameter vector including uncertainty.

p̄± σ
√

Diagonal{H−1} (6.13)

This gives a measure of the accuracy of the model and the parameter estimates. It

is important to note that these uncertainty calculations assume a random noise and

a correct model structure. Both of these assumptions are valid for the calculations

that will be presented in this chapter. In general, however, they will not be valid.

This means that these uncertainties should be treated carefully.

This gives the basic foundation to carry out some parameter estimation calcu-

lations. This section was only intended to give a very basic introduction to the

concept of parameter estimation. The reader is referred to the literature for a more

in depth discussion of the subtleties of this process (See [107], [89] or [75].

6.3.2 Static Friction Model

This section will outline the basics of measuring a constant friction force. The

first step in this process will be to model an ideal electromagnetic launcher with a
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known friction force. The armature velocity will be extracted from this model and

noise will be added to simulate the noise of a sensor. The computational model

will then be run again using a value for the friction force that differs by 40%. This

represents the initial guess of the parameter p̄est in Figure 6.13. The velocity of the

armature will then be compared to the noisy data and the friction parameter will be

modified using the least-squares technique described in the previous section. This

process is then repeated multiple times to give the final estimate of the parameter.

This will be done for different levels of sensor noise to give an idea of what the

requirements on the sensor system for measuring this parameter would be.

The launcher will be simulated using the electromechanical rail launcher model

described in Section 1.1.3. For the case of a constant friction force Fµ, the equation

of motion is as follows.

mẍ =
1

2
Q̇2L′ − sign(ẋ)Fµ (6.14)

(L0 + L′x)Q̈ + (R0 + L′ẋ)Q̇ +
Q

C0
= 0 (6.15)

Where Q is the charge on the capacitor bank and x is the position of the armature.

A description and value for the other parameters is outlined in Table 6.1. It is

interesting to note that the resistance in this model is assumed to be constant. In

reality, the resistance of the contact between the armature and the rail will change

during the launch. Parameter estimation could be used to quantify this change

if it were coupled with the proper model. The values given in this table are the

assumed values for the known model. In this section, all of them will be assumed

to be known except the friction force Fµ. This is done for the sake of simplicity but

multiple parameters can be included in the estimation without too much difficulty.

It should be also noted that the resistance value in Table 6.1 was chosen so that

the current would be of the same order of magnitude as the experiments in the

previous sections. Also listed in Table 6.1 is the assumed value for the initial
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voltage on the capacitor bank V0. This is needed as an initial condition for solving

the system.

Table 6.1: Assumed Model Parameters
Symbol Description Assumed Value

L′ Inductance Gradient of Launcher 0.273 µH/m
L0 Added Inductance of Launcher 11.7 µH
C0 Capacitance of Power Supply 0.0804 F
R0 Resistance of Launcher 0.015 Ω
m Mass of Armature 0.08 g
Fµ Constant Friction Force 1 N
V0 Constant Friction Force 220 V

To give an example, the parameters in Table 6.1 were modeled and the velocity

of the armature was calculated. For this example the velocity was sampled at a

rate of 100 kHz and random noise with a magnitude of 20 m/s was added to the

velocity signal. This signal is plotted in Figure 6.14 labeled simulated experiment.

The simulation was run again using Fµ = 0.6 as a guess for the friction force;

this is also plotted in Figure 6.14 labeled guess. This guess was put through

the least squares fit and iterated 20 times and the final result of this iteration

process is also plotted in Figure 6.14 labeled fit. The calculated fit value of the

friction force was found to be Fµ = 0.99 ± 0.04(Fµ = .9867 without rounding).

This means that if this were a real experiment and the model presented here was

a good approximation for that experiment it would be possible to measure the

friction force to within about 4% with this sensor. Since the ’experimental’ data

was simulated, the actual accuracy is also known and it is roughly 1.3%. For this

type of calculation the actual accuracy and the calculated uncertainty will depend

on the noise level of the signal, and the sampling rate of the velocity sensor. In

a real experiment, only the calculated uncertainty will be known and it will also

depend on the accuracy of the model being used in the fitting program.

Requirements for sensing can be looked at by doing this calculation many times
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Figure 6.14: Example Friction Calculation

for different values of sampling rate or noise level. This was done for the case of

different sensor noise levels. This case is pictured in Figure 6.15, the sampling rate

was fixed at 100 kHz and the noise level was varied between 5 m/s and 75 m/s. In

this plot, the actual percent error is plotted along with the calculated uncertainty

from the least squares fit. Each data point in this plot was calculated 30 different

times using a different random noise each time. This was done because each

solution uses different random noise and gives a slightly different value for the

uncertainty. These 30 different values are where the error bars in Figure 6.15 came

from. They illustrate the spread in the accuracy that one might expect when

attempting this type of measurement. Figure 6.15 was generated by running the

parameter estimation program 450 times. Because there are 20 iterations, each

time this routine is executed this amounts to numerically solving Equation 6.14

approximately 9000 times.
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Figure 6.15: Friction Uncertainty for Varying Noise Level

For the plot pictured in Figure 6.15 the calculated uncertainty shows a strong

dependence on the noise amplitude while the actual accuracy does not. This is

probably an artifact of the fact that the model being used here is exactly correct. If

the noise level is pushed close to the total signal level then this actual accuracy will

grow substantially. It will also grow if the sampling rate is reduced. It is important

to remember that this number will be unknown in a real experiment and is of very

little practical use. It is only shown in Figure 6.15 for the sake of reference. The

calculated uncertainty on the other hand will be known. Figure 6.15 indicates that

if one wanted to make a measurement of the friction with an uncertainty of 10%

the noise level of the sensor would have to be smaller than approximately 40 m/s if

the sampling rate were 100 kHz. This requirement is well beyond the capabilities

of a reasonable B-dot based system. This highlights the need for better velocity

measurement techniques in electromagnetic launcher experiments.
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Part III

Superconducting Homopolar

Motor Brushes
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Chapter 7

Homopolar Motor Brush Calculations
As described in Section 1.2, the homopolar motor associated with the research

in this dissertation uses metal fiber brushes for current transfer (see Figure 1.4).

These brushes operate under different conditions than conventional brushes (see

Figure 1.1). Specifically, they they operate under considerably smaller contact

pressures for a given current. This chapter introduces the properties of these

homopolar motor brushes. Then an introduction to the basics of electrical contact

theory is given and this is used to develop a statistical model for the compliance

of straight fiber brushes. The intent of this model is to predict the load-deflection

and resistance deflection curves of the brush fiber. An attempt is also made to

develop an idealized model for the interaction of the fibers under compression.

7.1 Homopolar Motor Brushes

Before getting into the calculations it is necessary to discuss the characteristics of

these brushes in a qualitative sense. There have been many iterations of the brushes

in this motor and so it is necessary to discuss the qualitative differences between the

different brushes. Pictures of some of the brushes are shown in Figure 7.1. These

brushes were manufactured by SSI and Hipercon and they have very different

constructions. The Hipercon brush is made of a tangled mesh of irregular copper

fibers and the SSI brush is constructed from straight round fibers. Each of the

brushes is wrapped with copper wire. The SSI brush uses a mesh and the Hipercon

brush is wrapped with individial wires. The differences in the construction of these

brushes gives them very different mechanical properties.

The fibers in the Hipercon brushes are irregular in nature. To illustrate, SEM
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(a) SSI Brush

(b) Hipercon Brush

Figure 7.1: Different Copper Fiber Brushes

pictures were taken of some of these fibers. These pictures are shown in Figures 7.2-

7.31. These pictures clearly show that the fibers are very irregular in cross section

and that the diameters of these fibers appear to vary from 20 µm to 200 µm,

but typical fibers are between 50 and 70 µm. The irregularity of the shape of

these fibers means the brush is more of a tangled mesh of fibers than a series of

parallel fibers. This irregular construction is not seen in the later versions of the

SSI brush pictured in Figure 7.1; where round, straight fibers were used (≈ 60

µm in diameter). It is not clear from the analysis done here whether one of these

constructions is better than the other.
1Pictures courtesy of Alex Holiat of the Cornell Materials Science Department
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(a) Typical Fiber

(b) Typical Fiber Cross-Section

Figure 7.2: Typical Homopolar Motor Brush Fiber SEM Pictures
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(a) Atypical Split Fiber

(b) Atypical Fiber Cross-Section

Figure 7.3: Atypical Homopolar Motor Brush Fiber SEM Pictures
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7.2 Statistical Treatment of Electrical Contacts

On the micro scale, all electrical contacts are rough, as shown in Figure 7.4. The

classic method for the treatment of electrical contacts is to use some form of

statistical analysis to model the surface roughness. The basic principle of this

method is outlined in most tribology texts [10]. Basically, rough surfaces are

modeled as a series of bumps whose heights are defined by a distribution fucntion

φ(z) which is usually taken to be a Gaussian. The points of contact are typically

treated as spherical bumps and in this section, one of the surfaces will be treated

as being nominally flat. For this case, it is possible to characterize both the

mechanical and electrical behavior of the contact interface.

Figure 7.4: Rough Contact Surfaces

For the mechanical characterization, all that is needed is a force deflection curve

for the individual contact points. Then it is possible to calculate the total force

statistically. When the problem is treated with a continuous distribution of heights

this calculation is carried out as follows.

F (z) =

∫ ∞

z

Fs(s− z)φ(s)ds (7.1)

Where Fs(s− z) is the load deflection curve for a single contact asperity and z is
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the approach of the average of the two surfaces as shown in Figure 7.4. To treat

this case discretely, the force deflection curve is a sum over the individual forces

Fs(z − zi).

F (z) =
z>zi∑

i

Fs(z − zi) (7.2)

Where the summation is only taken over the contacts with heights greater than the

distance between the mean of the two surfaces (i.e. z > zi). Electrical character-

ization consists of defining the resistance of each individual contact. This can be

accomplished with a load-resistance curve or resistance-deflection curve. Since the

resistances of each contact will add in parallel, the total resistance for a continuous

model can be integrated as follows.

R(z) =
1∫ ∞

z
1

Rs(z−s)φ(s)ds
(7.3)

The discrete version is as follows.

R(z) =
1∑z>zi

i
1

Rz(z−zi)

(7.4)

These equations outline the essential calculations that can be carried out in a

multi-point electrical contact problem where the asperity heights are statistically

distributed.

7.2.1 Mechanical and Electrical Characterization of the

Contact

Typically, the individual bumps on a surface are treated as small hemispheres as

shown in Figure 7.5. Mechanically, the contact between a spherical bump and a

nominally flat surface can be described using the Hertz contact model [10]. The

load-deflection curve of a Hertz contact is given by the following relationship.

F (ω) =
4E∗
√

R

3
ω3/2 (7.5)
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Figure 7.5: The Hertz Contact

Where the quantities R and ω are the radius and deflection of the spherical bump

as shown in Figure 7.5. The parameter E∗ is the composite modulus of the two

materials2. For the case of similar materials, which is what will be considered

in this thesis, E∗ = E. The contact radius for a particular load is given by the

following relationship.

rc(Fc) =

(
3FcR

4E∗

)1/3

(7.6)

Combining this equation with the force-displacement relationship gives a radius-

deflection relationship [72].

rc(ω) =
√

Rω (7.7)

These equations give the basic mechanical relationships of individual electrical con-

tacts under small loads. For larger loads, the individual contacts deform plastically

and the load deflection curve must be modified [47]. The small load situations seen

in the homopolar motor only require the elastic model. The intent of using fiber

brushes is specifically to stay below the plastic limit. This is because when one

goes above this limit, increased wear can occur.

It is important to note that the Hertz contact model does not take into account

2See Bhushan [10] Table 4.2.1
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the fiber structural stiffness. This is because this theory is typically applied to solid

bodies which will not buckle under the applied loads The fibers in the homopolar

motor brushes are very thin and will buckle under the applied loads and so the

structural stiffness must be taken into account in the load-deflection model.

The operating load of the brushes in the homopolar motor is in the range of 2

Newtons. This is very roughly equivalent to the combined critical buckling load of

about 1000 of the individual fibers. This highlights the fact that the load deflection

curve must be modified to take this buckling into account. In general, the load-

deflection curve of a post-buckled fiber is non-linear but for small deflections it can

be approximated by a line. The equation for this line is as follows.

Fs(z) = kbz + Fcr (7.8)

Where kb is the approximate buckled stiffness and Fcr is the critical load which is

given by the following relationship.

Fc =
π2EJ

L2
(7.9)

Where E is the elastic modulus of the fiber, J is the cross-sectional moment of in-

ertia and L is the length. Equation 7.8 assumes that the pre-buckled fiber stiffness

is much greater than the post buckled stiffness. For the fibers in the hompolar

motor, the difference between these stiffnesses is on the order of 105 so this is a

reasonable assumption. Another way to state this assumption is that as soon as a

fiber comes into contact, it is buckled.

Since the structural stiffness of the fibers is significantly smaller than the ef-

fective stiffness of a Hertz contact then the contact equations will be dominated

by the buckled fiber load deflection curve (Equation 7.8). This will affect how

the contact radius is calculated. For this case, the contact radius is calculated as
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follows.

rc(z) =

(
3R(kbz + Fcr)

4E∗

)1/3

(7.10)

Where the deflection of the Hertz contact has been neglected. The relationships for

the contact resistance are dependent on this radius so it is important to calculate

it as a function of the dominate load-deflection curve. This equation allows for the

full statistical load-deflection relationship to be written. This relationship for the

full brush is calculated as follows.

F (z) =
z>zi∑

i

(kb(z − zi) + Fcr) (7.11)

Where, again, the structural stiffness of the fiber kb has been assumed to be con-

siderably smaller than the effective stiffness of a Hertz contact (see Equation 7.5).

In addition to the mechanical characterization, it is necessary to present the

electrical model. The basic quantity to model is the resistance of the contact. In

electrical contact theory, each of these contacts is referred to as an a-spot [42]. The

total resistance across an a-spot is given by three main components.

Rtot = Rb + Rc + Rf (7.12)

The first qantuty, Rb, represents the bulk resistance of the material away from the

contact. In the case of brush fibers, if there is one contact per fiber, this resistance

is given by the following.

Rb =
ρA

L
(7.13)

Where ρ is the resistivity of the fiber material, A is the cross-sectional area of the

fiber and L is its length.

The second component, Rf , represents the film resistance. It is the resistance

of any material layers between the two contact surfaces (oxides, contaminants,

etc.). A basic relationship that can be used to approximate this resistance is as
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follows [42].

Rf =
ρf t

Ac
(7.14)

Where ρf is the resistivity of the film, t is the thickness and Ac = πr2
c is the area

of the contact. This component of the resistance is very difficult to approximate in

most situations because the composition of the film is typically unknown. In addi-

tion to this, the method of current transport can be either ordinary conduction or

tunneling. This means that ρf can be highly dependent on the film thickness [85].

For copper contacts, an approximate value of ρf t is 1.5 × 10−12 Ωm2 [3]. The

actual value will depend heavily on the atmosphere that the copper is kept in so

this is only a rough scale parameter.

The final component represents the constriction resistance. As the name im-

plies, this term comes from the fact that the current is constricted as it passes

through the small contact points. For the case of circular contact points, this

component of the resistance is given by the Holm constriction resistance [42].

Rc =
ρ

2rc
(7.15)

These equations can be combined statistically as indicated in the previous section

to give the overall resistance of the brush. This resistance is calculated as follows.

1

R(z)
=

z>zi∑

i

1

Rb(z − zi) + Rc(z − zi) + Rf (z − zi)
(7.16)

=
z>zi∑

i

1
ρπ(rc(z−zi))2

L + ρ
2rc(z−zi)

+ ρf t
π(rc(z−zi))2

Where rc(z− zi) is given by Equation 7.10. Using these relationships it is possible

to estimate the load-deflection and resistance-deflection curves for a metal fiber

brush. This will be done in Chapter 8.
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7.3 Fiber Interaction Effects

The fibers in the brush are not completely independent of each other. They are

close enough to one another to interact. One way to consider this interaction is

to look at buckling of the fibers. The idea behind this is that if two fibers are in

contact with one another, they will tend to buckle differently than if they were

isolated. The contact between fibers act like discrete supports transverse to the

fiber axis. If these supports were rigid and evenly distributed along the length of

the fiber, then the fiber will buckle with multiple zero deflection nodes. A few of

these different buckling modes are pictured in Figure 7.6. This concept is of course

highly idealized, but if enough is known about the brush construction then this

model could give insight into the amount of inter-fiber interaction under load.

Figure 7.6: Buckled Fiber Mode Shapes

With this conceptual model, a statistical distribution of fiber lengths, and

Equations 7.11 and 7.16. it is possible to make a plot of the load-deflection and

resistance-deflection curves for a fiber brush with interacting fibers. First, a sta-

tistical distribution of fiber lengths is generated, this is plotted in Figure 7.7. This

distribution was generated using a gaussian with a standard deviation of 50 µm,

and it is plotted about the average fiber length. The total number of fibers for
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Figure 7.7: Assumed Fiber Length Distribution About Average Length

this distribution is 11, 000. To use equations 7.11 and 7.16 it is necessary to pick

values for the fiber geometry and material as well as the stiffness of the fibers. For

the sake of putting together an example, values of these parameters were chosen.

For the plots in this section the fibers were assumed to be 1 cm in length and have

a radius of 70 µm. The material was assumed to be copper so the density was

8320 kg/m3 and the elastic modulus was 120 GPa. The results of this calculation

are plotted in Figure 7.8 for various values of kb including kb = 0.

For this model the low-deflection loads are essentially independent of the buck-

led fiber stiffness. The stiffness seen in this region is primarily from the Fcr term

in Equation 7.11. The increases in the force in this region are due to the fact that

additional fibers are being brought into contact and then buckled as the brush is

compressed. In the large load region, differences are visible between the curves.
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(a) Load Deflection Curve

(b) Resistance Deflection Curve

Figure 7.8: Statistical Model With Different Fiber Stiffnesses
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The additional stiffness in this region is due to the kb term in Equation 7.11.

The resistance curve does not show strong dependence on the value of kb either.

It does, however, show strong nonlinearities in the low load region. This indicates

that while the structural deformations do affect the overall contact resistance, the

resistance curve will not be highly dependent on the specific fiber stiffness.

These observations mean that if this fiber interaction model is correct, it can

only be tested for very large loads. Measurements of the load deflection curve for

the homopolar motor brushes were taken, but unfortunately, these brushes could

not be pushed this hard without being damaged. Only one sample of each brush

was available so destructive testing was not an option. The experiments that were

attempted will be presented in the next chapter.
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Chapter 8

Homopolar Motor Brush Experiments
This chapter presents the experimental measurements that were taken with the

metal fiber brushes. These consist of both static measurements of the entire brush

structure as well as dynamic tests of the individual fibers.

From the static tests it is found that the static mechanical properties of the

brush as a whole can vary significantly between different brushes of the same con-

struction. This difference could be due to the differing wear rates of the brushes

or uncertainties in the construction process. Either way, the compliance test pre-

sented in this section could be used as a quality control test to ensure uniformity

of the brushes. Most of the brushes could be characterized by a zero stiffness offset

and a linear stiffness constant that essentially constitutes a bilinear spring.

The dynamic tests were performed to see if the fibers of the tangled brush act

in any way similar to simple straight fibers. Acoustic emission measurements of

the brushes have been taken by researchers at the University of California at San

Diego (UCSD) [53] and very high frequency vibrations were measured (> 100 kHz).

This section explores the vibrations of a single fiber to characterize the natural

frequencies for the fibers in the homopolar motor brushes.

8.1 Static Measurements

A device was constructed to measure the stiffness of the electrical brushes. This

device consists of a 250 g load cell placed between two different translation stages.

The brush is attached to the load cell and then pushed against a flat copper

surface. The change in distance between the two stages is measured using a linear

variable differential transformer (LVDT). A picture of the device with a brush
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Figure 8.1: Brush Compliance Measurement Device

mounted to it is shown in Figure 8.1. Also included is a sketch of the device to

help in illustrating its operation. The copper plate and brush are also attached to

a precision inductance-capacitance-resistance (or LCR) meter (HP model number

4284A). This allows for electrical characteristics to be measured along with the

mechanical.

Four different brushes were put through this experiment and the results are

shown in Figure 8.2. The SSI brushes shown in these plots were new brushes and

the hipercon brushes had been used in the General Atomics homopolar motor.

Before the test, the copper plate was sanded and cleaned and the brush was very

lightly sanded. This was done to try to reduce the effect of surface films on the

measurement.

As one can see, the brushes exhibit drastically different load-deflection curves.

From these plots it is possible to define an effective gap for each brush. This

can be found by drawing a line parallel to the load deflection curve in the large

deflection limit and following it down to the deflection axis. The point where it

meets the deflection axis is the effective gap. An example of this effective gap is

shown for one of the brushes in Figure 8.2. This gap qualitatively represents the

width of the distribution of fiber lengths. What is interesting about this data is the
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(a) Measured Load Deflection Curve

(b) Measured Resistance Deflection Curve

Figure 8.2: Axial Compression Measurement
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drastic difference in the effective gaps for each brush. The two Hipercon brushes

were made using the same technique and they exhibit drastically different load

deflection curves. The only known difference between these two brushes is that

one of them was on the positive voltage side of the motor and the other was on

the negative side. It is possible that the effective gap difference was caused by the

different wear rates on either side of the motor, but since no other brushes were

available for testing we were unable to confirm this observation. Even if this is not

the case, this measurement could work as a quality control test for the brushes as

they are made. The wear rate of each fiber depends on the pressure between the

fiber and motor pickup surface so uniformity of the mechanical behavior of the

brushes would increase the predictability of the system as well as the repeatability

of experiments carried out with the motor.

8.1.1 Comparison to Statistical Model

While it is not possible to test the fiber interaction model developed in Section 7.3,

it is still useful to try to fit the model to the data for the straight fiber brush. The

straight fiber brush is the one labeled SSI Brush 1 in Figure 8.2. This brush

has straight, round fibers in contrast to the other brushes which had irregular

shaped fibers such as those shown in Figures 7.2-7.3. For this brush, the average

fiber length is 17.8 mm and the average fiber diameter is approximately 60 µm.

The spread in the fiber length distribution σ was measured under a microscope.

This was done by looking at the tips of the fibers from the side and scanning

over the surface of the brush. The maximum and minimum fiber length could

then be roughly gaged. This process gave value for σ of approximately 30 µm.

Since the brush was not pushed hard enough to measure the deflections due to the

post-buckled stiffness, the parameter kb was set to zero for the comparison. These
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(a) Load Deflection curve

(b) Resistance Deflection Curve

Figure 8.3: Comparison of Theory and Experiment for SSI Brush 1
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parameters were plugged into Equation 7.11 and the result is plotted in Figure 8.3.

As one can see, the structural model appears to fit pretty well.

The resistance comparison is more difficult to make. This is because two of the

parameters are unknown. The parameters that must be approximated include the

film resistivity and thickness ρt and the contact radius R. For the film parameters,

the value of ρt = 1.5× 10−12 Ωm2 from the literature is used [3]. There is no real

method for approximating the contact radius R. For the plot in Figure 8.3 a value

of 1/10th of the fiber radius was found to make the data line up roughly. If the

state of the surface films was known then this model could be used to measure

the contact radius or vice-versa. The model fits the slope of the experiments at

first, but the resistance is higher in the brush at larger deflections. A potential

source for this discrepancy is that the shorter fibers could have thicker oxidation

films at their tips This could easily happen because when the brushes were sanded,

they were only very lightly pressed. Experiments in a controlled atmosphere and

a reliable mechanism for cleaning the fibers are needed to make this comparison

more quantitative.

8.2 Single Fiber Vibration Experiments

Acoustic emission experiments by researchers at the University of California at

San Diego found high frequency noise from the brushes in sliding motion opera-

tion [53]. It was thought that this vibration motion along with steady sliding might

contribute to wear. The purpose of the experiments presented in this section is

to measure the natural frequencies of the fibers in the homopolar motor brush.

This was done by rigidly clamping one end of the fiber and exciting it using a

burst of air. The deflections of the fiber were measured using a non-contacting op-

tical follower camera (Opteron model 5600 Electro-Optical Biaxial Displacement
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Follower). A sketch of the set-up is shown in Figure 8.4

The optical device can track vibrations up to 20kHz. Requirements on the scale

of the target depend on the optics being used, but it was found that the follower

camera could track a copper fiber as small as 30 µm in diameter and approximately

1 mm in length. Fibers much smaller than this were very difficult to track. This

section will go through the set of experiments performed with this set-up.

Figure 8.4: Brush Vibration Measurement Setup

8.2.1 Individual Fibers

The first step was to measure the vibrations of various fibers taken from one of

the copper brushes. These fibers were extracted by cutting the brush in half and

then folding the fibers over so that undamaged fibers could be found. Four fibers

were pulled out and mounted to tabs of paper. The paper was used to make the

small fibers easier to handle, and to make sure that they could be put in a clamp.

The free length of the fiber was measured using a dial caliper and the diameter
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Table 8.1: Fiber Dimensions

Fiber Length Diameter

I 6.27 mm 73 µm
II 6.58 mm 70 µm
III 5.92 mm 31 µm
IV 6.48 mm 38 µm

was measured under an optical microscope using an objective micrometer. The

dimensions of each fiber are shown in Table 8.1. These values are used in the

comparisons of the data with the theoretical model from Appendix C.

A small aerosol can of compressed air was then used to excite the fibers and

their vibrations were measured. An example of the output of the displacement

follower and its Fourier transform is shown in Figure 8.5. The output of the

displacement follower was not calibrated since the frequency was all that was of

interest. This process was performed for each of the four fibers and the results are

shown in Figure 8.6. Also included in these plots are lines from the theoretical

model in Appendix C. As one can see, the data from these experiments fits the

model very well. This implies that even though these fibers are irregular in nature,

their characteristic frequencies can still be approximately calculated as though

they were straight, round fibers.

8.2.2 Chopped Fiber

The next step in this analysis is to test the frequency response as a function of the

length of the fiber. This is done by taking a long fiber and putting it through the

same tests as the previous section except that in between each test a small portion

of the fiber is cut off and the new length is measured. This gives the frequency

response as a function of the length of the fiber.

This experiment was performed both with a fiber from one of the brushes (Fiber
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Figure 8.5: Example displacement follower output for fiber II (top) and Fourier
transform of signal(bottom).
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(a) Fiber I (b) Fiber II

(c) Fiber III (d) Fiber IV

Figure 8.6: Characteristic Frequencies of Different Copper Fibers
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Figure 8.7: Chopped Fiber Vibration

II from the previous section) and with a piece of 40 AWG (diameter ≈ 79µm)

uncoated copper wire. The uncoated copper wire was used because it was easier

to measure over a wide range of lengths. The results of both of these experiments

are shown in Figure 8.7. Also included are plots of modes of the fixed-free beam

model in Appendix C. For this comparison, the elastic modulus and density were

assumed to have values of E = 120GPa and ρ = 8320kg/m3, and the radius

was chosen to match the 40 gage uncoated wire. It is important to state that the

theoretical comparison in Figure 8.7 assumes a round fiber cross-section; while this

is approximately true, many of the fibers exhibit irregular cross-sectional shapes

(see Figure 7.3).

As one can see, they both fit the theoretical model relatively well. The irregular

fiber shows a lot more variation and a slight offset. The variation is due to the

varying cross section of the brush fiber and the offset is likely due to different

material/geometric properties between the fibers and the assumed values for the
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model. The important thing to note is that the dependence on the length of the

fiber appears to be the same as it is in the theoretical model. This has been

verified this down to the 1 mm length scale. This trend should continue until the

length of the fiber becomes comparable to it’s diameter. This means that the very

high frequency vibrations seen in the research from UCSD [53] could be coming

from the individual fibers, but only if the effective vibrating length of the fiber is

considerably smaller than 1 mm.
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Part IV

Conclusions and Future Work
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Chapter 9

Conclusions and Future Work

9.1 Electromagnetic Launcher Conclusions and Future

Work

This dissertation explored the dynamics of the rails during the launch of an elec-

tromagnetic launcher. These dynamics were explored with respect to the contact

between the armature and the rails. This interaction can affect friction, wear and

the ability to transfer current. It was found that elastic waves and wave radiation

can occur at characteristic speeds of the rails of an electromagnetic launcher.

Simulations indicate that the interference of the armature and the elastic waves

can cause very large pressures to be generated. These pressures are directly related

to the friction during launch and they could potentially affect the wear. In addition

to affecting wear and friction, these pressures are large enough to cause macro-scale

damage to the rails of the launcher.

A fiber optic strain device was constructed to measure these waves. The exper-

iments conducted with this device show that the velocity and wear of the armature

will affect the magnitude of these waves. The shape and magnitude of the mea-

sured strains are comparable to the simulations. This means that the reduced

order model used in this dissertation is capable of capturing the basic dynamics of

the rails during launch.

In addition to the dynamics of the guide way, a simple model for armature

stability was presented. Typical launchers use the armature to push the payload

down the rails. This puts the center of pressure behind the center of mass and sets

up an unstable situation. An unstable armature can vibrate during launch and

these vibrations could affect wear and cause damage to the bore of the launcher.
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A system for the measurement of in-bore armature velocity was also discussed.

This system increases the resolution while decreasing the resources necessary for

measuring velocities. While this is an interesting technique, it does not have enough

resolution to measure parameters such as friction and mass loss. For these mea-

surements to be taken, more accurate measurements of the armature need to be

made during launch.

The essential conclusion one can draw from all of this is that for a launcher

design to be successful, it will be necessary to take into account the structural

dynamics of the rails as well as the armature. In addition to this, a better under-

standing of friction and wear of the system is necessary. Further study is necessary

on both of these fronts and it is likely that the generation of a successful multi-shot

launcher will be highly dependent on both the development of better sensors and

simulations.

9.2 Homopolar Motor Conclusions and Future Work

In terms of mechanical parameters, the brushes tested in this dissertation show

a large variation in compliance. It is unknown if this is a consequence of the

asymmetric wear or inconsistency in the brush construction process. Either way,

the mechanical tests presented in this dissertation could be used as a quality control

test on the uniformity of the brushes.

A statistical model is also considered for the structural and electrical response

of these brushes when they are stationary. This model could be used to quantify

the amount of fiber to fiber interaction there is as a function of the applied load,

but this would require applied loads much greater than the operating loads of the

brushes. A lot more could be learned from these tests if they were conducted in a

controlled atmosphere and if more brush samples were available.
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APPENDIX A

This appendix presents the full derivations for the differential equations for the

Bernoulli-Euler and Timoshenko beam models. These derivations can be found in

many sources but they are included here for the sake of completeness

A.1 Bernoulli-Euler Model

The Bernoulli-Euler beam equation of motion can be derived using both Newton-

Euler and Lagrangian methods. A good example of the Lagrangian derivation

can be found in the literature [39]. The Newton-Euler derivation, which will be

presented here, can also be found in elementary texts on structural dynamics (e.g.

see [98]).

Figure A.1: Differential Element of a Beam on an Elastic Foundation

The first step in deriving the equation of motion is to draw a free body diagram.

Figure A.1 shows the free body diagram of a differential element of the beam of

length dx. The neutral axis of the beam is indicated with a dotted line and the
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effective internal moment M and shear V are pictured next to the shear planes.

One of the primary assumptions of the Bernoulli-Euler model is that the shear

planes remain perpendicular to the neutral axis as shown in Figure A.1. The beam

has a density of ρ and a cross-sectional area of A. The cross-sectional moment of

inertia is represented by the symbol J . The loading on the beam element is shown

as P (x, t) and the foundation is shown as springs with stiffness per unit area of

k0. This means that the stiffness per unit length is k0B where B is the width of

the beam. The moments and forces must be summed over to get the equations of

motion. Summing over the forces on the gives the following equation.

∑
Fi = ρAdx

∂2w(x, t)

∂t2
= V − V − ∂V

∂x
dx + k0Bw(x, t)dx− P (x, t)dx (A.1)

Which simplifies to the following.

ρA
∂2w(x, t)

∂t2
+

∂V

∂x
+ k0Bw(x, t) = P (x, t) (A.2)

Summing over the moments and neglecting rotary inertia in the beam and moments

generated by the applied load gives the following equation.

∑
Mi = (M +

∂M

∂x
dx)−M − V

2
dx− (

V

2
+

1

2

∂V

∂x
dx)dx = 0 (A.3)

Simplifying and neglecting higher order terms in dx gives the following.

V =
∂M

∂x
(A.4)

Equations A.2 and A.4 can then be combined to give the following partial differ-

ential equation.

∂2M

∂x2
+ ρA

∂2w(x, t)

∂t2
+ k0Bw(x, t) = P (x, t) (A.5)

All that is needed to get the final form is to relate the moment M to the deflection

w(x, t). This can be accomplished by studying Figure A.2. For the Bernoulli-Euler
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Figure A.2: Stress in a Differential Element of a Beam

beam, the stress normal to the shear plane σxx is assumed to vary linearly across

the cross section of the beam. It is also assumed to be zero at the neutral axis of

the beam. To calculate the total moment, the stress must be integrated over the

beam cross-section.

M = −
∫

yσxxdA (A.6)

Re-writing the stress in terms of the strain using the elastic modulus E gives the

following.

M = −E

∫
yεxxdA (A.7)

The strain can be re-written by looking at the radius of curvature of the beam

element as pictured in Figure A.2. If the differential beam element has a radius

of curvature of R and spans an angle of φ then the unstressed length of the beam

at y is equal to Rφ and the stressed length is (R + y)φ. The fractional change in

length, or strain, of the beam at y can be written in the following way.

εxx =
Rφ− (R + y)φ

Rφ
= − y

R
(A.8)

Plugging this relationship back into the previous equation for the moment gives

the following.

M =
E

R

{∫
y2dA

}
(A.9)
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But the quantity in curly brackets is the definition of the cross-sectional moment

J and from elementary calculus it is known that for small slopes 1/R ≈ ∂2w/∂x2.

These observations reduce the moment to the following relationship.

M = EJ
∂2w(x, t)

∂x2
(A.10)

This can be plugged back into Equation A.5 to get the full differential equation

for the Bernoulli-Euler beam on an elastic foundation.

EJ
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
+ k0Bw(x, t) = P (x, t) (A.11)

A.2 Timoshenko Model

The Timoshenko beam equation of motion can also be derived using both Newton-

Euler and Lagrangian methods [98],[39]. The Newton-Euler derivation will be

shown in this section.

Figure A.3: Differential Element of a Timoshenko Beam on an Elastic Foundation

The free body diagram for the Timoshenko beam on an elastic foundation is

shown in Figure A.3. One difference between this model and the Bernoulli-Euler
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model is that the shear planes are allowed to rotate relative to their unstressed

positions. This is represented by the angle β in Figure A.3. The angle of the

neutral axis when shear is neglected can be represented by ψ. The total slope of

the neutral axis is written as the sum of these two angles.

∂w(x, t)

∂x
= ψ(x, t) + β(x, t) (A.12)

The Timoshenko model also does not neglect rotary inertia in the moment balance

equation. This rotary inertia is represented by the second temporal derivative of

the slope of the differential beam element. This means that, for the Timoshenko

beam, the moment balance equation appears as follows.

∑
Mi = (M +

∂M

∂x
dx)−M − V

2
dx− (

V

2
+

1

2

∂V

∂x
dx)dx = ρJ

∂2ψ(x, t)

∂t2
dx (A.13)

Which simplifies to the following when higher order terms in dx are neglected.

∂M

∂x
− V = ρJ

∂2ψ(x, t)

∂t2
(A.14)

The summation over the forces is the same as the Bernoulli-Euler model and re-

duces to the following.

ρA
∂2w(x, t)

∂t2
+

∂V

∂x
+ k0Bw(x, t) = P (x, t) (A.15)

This time the shear and moment need to be calculated to get to the final differential

equation. The moment is calculated in the same way as the Bernoulli-Euler beam

and is given by the following relationship.

M = EJ
∂ψ(x, t)

∂x
(A.16)

The shear is calculated by integrating over the shear stress in the shear plane.

V =

∫
τdA (A.17)
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This integral is completed by assuming that the shear stress is proportional to the

shear deformation β through the shear modulus G and a dimensionless constant

κ that is called the Timoshenko shear coefficient. The shear coefficient depends

on the cross-section of the beam but for a rectangular cross-section it is roughly

equal to 5/6 [70],[45]. Taking this assumption into account gives the equation for

the shear.

V = −κβGA = κGA

(
ψ(x, t)− ∂w(x, t)

∂x

)
(A.18)

The final differential equation can now be calculated by plugging Equations A.16

and A.18 into Equations A.14 and A.15. This gives rise to a pair of coupled

differential equations that describe the translation and shear deflection of the beam.

EJ
∂2ψ(x, t)

∂x2
− κGA

(
ψ(x, t)− ∂w(x, t)

∂x

)
= ρJ

∂2ψ(x, t)

∂t2
(A.19)

κGA

(
∂ψ(x, t)

∂x
− ∂2w(x, t)

∂x2

)
+ ρA

∂2w(x, t)

∂t2
+ k0Bw(x, t) = P (x, t)

These equations can be combined into one differential equation by eliminating ψ.

This gives the final differential equation for the Timoshenko beam.

EJ
∂4w(x, t)

∂x4
− ρJ

(
1 +

E

κG

)
∂4w(x, t)

∂x2∂t2
+ ρA

∂2w(x, t)

∂t2

+
ρ2J

κG

∂4w(x, t)

∂t4
+ k0Bw(x, t) = P (x, t) (A.20)
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APPENDIX B

The partial differential equation for the deflection of the Timoshenko beam can be

solved in closed form for the case of a load moving at a constant velocity on an

infinitely long beam. The solution to this problem will be shown in this appendix

so that they can be used to verify the beam elements used in this dissertation (see

Section 3.3.2). The solutions will be presented here without proof, for the sake of

brevity. The full derivation of these results can be found in the text by Frýba [34].

The formulation of this problem with a load moving at velocity v is as follows.

EJ
∂4w(x− vt)

∂x4
− ρJ(1 +

E

κG
)
∂4w(x− vt)

∂x2∂t2
+ ρA

∂2w(x− vt)

∂t2

+
ρ2J

κG

∂4w(x− vt)

∂t4
+ k0Bw(x− vt) = P δ(x− vt) (B.1)

Where the solution has been assumed to travel along with the load. The form of

the solution of this differential equation depends on the velocity of the load so it

is necessary to present the results for all of the different velocity ranges.

For the case of a load moving slower than the critical velocity of the beam, the

solution for the deflection is as follows.

w(s) = v0
e−b|s|

Ab

(
1 +

2m2(1− α2
1)

A

)
cos(as)

+ v0
e−b|s|

Aa

(
1− 2m2(1− α2

1)

A

)
sin(a|s|) (B.2)

And for the cross-sectional rotation.

ψ(s) = − 2v0λ

A2ab
e−b|s|sin(as) (B.3)

190



Where the constants are defined in terms of the parameters of Table 2.1 as follows.

a2 =
1

A

(
1 +

B

A

)
, b2 =

1

A

(
1− B

A

)

A2 = (1− α2
1)(1− α2

2), B2 = α2 −m2(1− α2
1)

s = λ(x− vt), α2
1 =

ρv2

E
, α2

2 =
ρv2

κG

m2 =
α2

2

α2
1

r2λ2, λ4 =

(
k

4EJ

)
, v0 =

P

8λ3EJ
(B.4)

A plot of this solution can be found in Figure 3.4. The deflection of the rail is

very similar to when the load is stationary. This means that below the critical

velocity the beam acts nearly statically. This is true in the sense that a dynamic

amplification factor does not exist in this region. The load is traveling below the

lowest possible unattenuated wave speed, the critical velocity, and so it is not

possible for it to generate any waves (in the quasi-static case).

A solution does not exist at the critical velocity. This is, in effect, the math-

ematical definition of the critical velocity. It is the velocity at which no solution

exists to Equation B.1. This represents a point in k-space where attenuated and

un-attenuated solutions meet on both sides of the load (see Figure 2.6).

The next region is between the critical velocity and the shear velocity. The

solution in this region is as follows.

w(s) = −4v0(1 + a2
1m

2(1− α2
1))

a1(A2a2
1 − 2B)

sin(a1s) for s > 0 (B.5)

w(s) =
4v0(1 + a2

2m
2(1− α2

1))

a2(A2a2
2 − 2B)

sin(a2s) for s < 0 (B.6)

And for the cross-sectional rotation.

ψ(s) = − 4v0λ

A2a2
1 − 2B

cos(a1s) for s > 0 (B.7)

ψ(s) =
4v0λ

A2a2
2 − 2B

cos(a2s) for s < 0 (B.8)
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Where the additional constants are defined as follows.

a2
1 =

2B

A2

(
1 +

√
1− A2

B2

)
, a2

2 =
2B

A2

(
1−

√
1− A2

B2

)
(B.9)

A representative plot of this solution can be found in Figure 3.5. This solution

is different from the last because it shows no attenuation of the rail deflection in

front of or behind the load. This means that the load is capable of radiating energy

off to infinity in both directions. This is only true for an infinite beam on which

the load has been traveling for an infinite time. In a more realistic situation this

simply means that the load is capable of radiating energy in both directions in this

velocity region.

The next region is above the shear velocity, where the solution is given by the

following relationship.

w(s) = −2v0(1− b2m2(1− α2
1))

b(A2b2 + 2B)
e−bs for s > 0 (B.10)

w(s) =
2v0(1− b2m2(1− α2

1))

b(A2b2 + 2B)
ebs

+
4v0(1 + a2m2(1− α2

1))

a(A2a2 − 2B)
sin(as) for s < 0 (B.11)

And for the cross-sectional rotation.

ψ(s) =
2v0λ

A2b2 + 2B
e−bs for s > 0 (B.12)

ψ(s) = − 2v0λ

A2b2 + 2B
ebs +

4v0λ

A2a2 − 2B
cos(as) for s < 0 (B.13)

Where the constants a and b are defined as follows.

a2 = −2B

A2

(
−1 +

√
1− A2

B2

)
, b2 = −2B

A2

(
1 +

√
1− A2

B2

)
(B.14)

A representative picture of this solution is shown in Figure 3.6. In this case, the

deflection is unattenuated behind the load but completely attenuated in front of

the load. This is because the load is now moving faster than the fastest possible

wave speed for transverse deflection waves (the shear velocity).
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APPENDIX C

In experiments at General Atomics the individual fibers of the brushes were seen to

vibrate during operation. In addition to this, acoustic emission and acoustic emis-

sion tests by researchers at UCSD have shown the presence of very high frequency

vibrations in the brush fibers during operation [53]. A basic vibrating beam model

appears to model the individual fiber dynamics relatively well. The basics of this

vibrating beam model are presented here so that they can be used for comparison

with measurements presented in Chapter 8.

Figure C.1: Vibration Modes for Cantilever Beam

The fibers in the homopolar motor brushes are soldered to a copper plate. This

construction makes them similar to a simple cantilever beam with a free end. The

shape of the first modes of a cantilever beam are shown in Figure C.1. During

operation the fibers in the brushes are in contact with a sliding surface. This

means that it is possible for both fixed-free and pinned-free modes to exist. The
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equations for both of these modes will be shown in this section. The derivation of

these equations can be found in a number of texts, the results are repeated here

for convenience [98],[11]. The basic equation for the modes pictured in Figure C.1

is as follows.

fi =
λ2

i

2πL2

√
EJ

ρA
, i = 1, 2, 3... (C.1)

Where L is the length of the beam and the other parameters are defined in Ta-

ble 2.1. The quantity λi has to be calculated numerically for each mode and

is dependent on the boundary conditions. Tabulated values for many different

boundary conditions can be found in a book by Robert D. Blevins [11]. The values

for the two mode shapes in Figure C.1 are shown in Table C.1. Experiments shown

in Section 8.2 test these modes for the fibers in the homopolar motor brushes.

Table C.1: λi for Cantilever Vibrations
Quantity Fixed-Free Modes Fixed-Pinned Modes

λ1 1.875 3.927
λ2 4.694 7.069
λ3 7.855 10.210
λ4 10.996 13.352
λ5 14.137 16.493

λi for i > 5 (2i− 1)π
2 (4i + 1)π

4
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APPENDIX D

The stability model used in Chapter 5 is similar to a model explored by Chu and

Moon for the dynamics of magnetically levitated vehicles [16]. For the analysis

in this dissertation a change of coordinate system was necessary along with minor

changes in notation. It is for this reason that the derivation of the equation of

motion for this system will be repeated here.

Figure D.1: Armature Model Geometry

The basic geometry of the armature stability model is pictured in Figure D.1.

The armature is constrained to travel within a rigid guide way of width 2d. Contact

between the armature and guide way is through four sliders on springs. These

springs have a stiffness k that is intended to represent the overall compliance of

the system. This can include the stiffness of just the armature or the containment

structure, or a combination of the two. In either case, a pre-stress of k∆, where

195



∆ is the interference fit of the armature, is assumed to exist in these springs. The

center of mass is assumed to be offset from the geometric center of the armature by

a distance ε and the propulsion force T is applied at a distance ρ from the center

of mass as shown in Figure D.1. The coordinate system describes two degrees of

freedom x and θ which are the deflection and rotation of the armature away from

the centerline of the guide way as shown in Figure D.1.

Figure D.2: Armature Free-Body Diagram

The equation of motion for the lateral dynamics of the armature can be derived

by summing over the forces and the moments in the free body diagram pictured

in Figure D.2. Summing over the forces in the x-direction gives the following

equation.
∑

Fx = mẍ = N2 −N1 + N3 −N4 (D.1)

In addition to the lateral force balance, it is important to define the dynamics

of the armature along the guide way. The force balance in the y-direction is as
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follows.
∑

Fy = mÿ = T −D1 −D2 −D3 −D4 (D.2)

For the stability analysis in this dissertation, the acceleration in the y direction

will be assumed to be constant. This sets up a balance between the propulsion

force T and the drag forces Di.

T = may + D1 + D2 + D3 + D4 (D.3)

Where ay is the constant acceleration of the armature. This expression will be

substituted into the final differential equation. The summation over the moments

gives the following relationship.

∑
M = Imθ̈ =(a− ε)(N1 −N2) + (a + ε)(N3 −N4) (D.4)

−D1(d− (a− ε)θ) + D2(d + (a− ε)θ)

+ D3(d− (a + ε)θ) + D4(d + (a + ε)θ)− Tρθ

Where the rotation has been assumed to be small enough that the small angle

approximations sin(θ) ≈ θ and cos(θ) ≈ 1 apply. The individual forces at each

corner can be written in terms of the stiffness of the springs and the overall deflec-

tion of each slider from their non-compressed positions. The lateral forces Ni are

written as follows.

N1 = k(∆ + x− (a− ε)θ) (D.5)

N2 = k(∆− x + (a− ε)θ)

N3 = k(∆− x− (a + ε)θ)

N4 = k(∆ + x + (a + ε)θ)

Where x and θ are the deflection and rotation of the armature as shown in Fig-

ure D.2 and ∆ is the interference fit between the armature and rails. As before, the
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rotation has been assumed to be small enough that the small angle approximations

sin(θ) ≈ θ and cos(θ) ≈ 1 apply. The corresponding drag terms are dependent on

the lateral forces through a friction coefficient as follows.

Di = µNi where i = 1, 2, 3, 4 (D.6)

These equations for the lateral and drag forces can then be plugged into Equa-

tion D.1 to give the following differential equation.

mẍ+4k(x + εθ) = 0 (D.7)

Equation D.4 and Equation D.3 can be combined with the drag and lateral force

equations to give the following differential equation.

Imθ̈+4k(ε + dµ)x + aymρθ + 4k(a2 + ε2 + µε(d + ∆) + ∆µρ)θ = 0 (D.8)

Equations D.7 and D.8 can be combined by writing them in matrix form.



m 0

0 Im








ẍ

θ̈



 + (D.9)




4k 4kε

4k(ε + µd) 4k(a2 + ε2 + µε(d + ∆) + ∆µρ) + aymρ








x

θ



 = 0

This is the equation that is used in Chapter 5 to give a first order approximation

to the lateral dynamics of the armature during launch.
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APPENDIX E

The purpose of this appendix is to contain data from additional strain measure-

ments that were taken on the Georgia Tech. launcher. This data is being included

in this section for the sake of posterity.

E.1 Two Gage Single Rail Test 1

The tests in this section were conducted using only two gages attached to one rail.

The position of the gages is indicated in Figure E.1. The tests in Figures E.2

and E.3 were both at 800 m/s launch velocity and the test in Figure E.4 was at

1300 m/s launch velocity.

Figure E.1: Positions for Two Gage Single Rail Experiment 1
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Figure E.2: 800 m/s launch velocity two gage single rail strain experiment 1. (a)
Drive current, (b) Strain at 1.0 m in rail, (c) Strain at 1.2 m in rail
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Figure E.3: 800 m/s launch velocity two gage single rail strain experiment 1. (a)
Drive current, (b) Strain at 1.0 m in rail, (c) Strain at 1.2 m in rail
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Figure E.4: 1300 m/s launch velocity two gage single rail strain experiment 1. (a)
Drive current, (b) Strain at 1.0 m in rail, (c) Strain at 1.2 m in rail
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E.2 Two Gage Single Rail Test 2

The tests in this section were conducted using two gages attached to one rail. The

position of the gages is indicated in Figure E.5. This series of tests included four

different shots with velocities varying from 800 m/s and 1800 m/s. The data from

these experiments is shown in Figures E.6-E.9.

Figure E.5: Positions for Two Gage Single Rail Experiment 2
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Figure E.6: 800 m/s launch velocity two gage single rail strain experiment 2. (a)
Drive current, (b) Strain at 0.4 m in rail, (c) Strain at 1.2 m in rail
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Figure E.7: 1400 m/s launch velocity two gage single rail strain experiment 2. (a)
Drive current, (b) Strain at 0.4 m in rail, (c) Strain at 1.2 m in rail
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Figure E.8: 1600 m/s launch velocity two gage single rail strain experiment 2. (a)
Drive current, (b) Strain at 0.4 m in rail, (c) Strain at 1.2 m in rail
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Figure E.9: 1800 m/s launch velocity two gage single rail strain experiment 2. (a)
Drive current, (b) Strain at 0.4 m in rail, (c) Strain at 1.2 m in rail
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E.3 Four Gage Single Rail Test

The tests in this section were conducted using four gages attached to one rail.

The position of the gages is indicated in Figure E.10. These tests range in launch

velocity from 700 m/s to 1200 m/s. The data from these experiments is shown in

Figures E.11-E.13.

Figure E.10: Positions for Two Gage Single Rail Experiments

208



Figure E.11: 700 m/s launch velocity four gage single rail strain test. (a) Drive
current, (b) Strain at 0.5 m in rail, (c) Strain at 0.6 m in rail, (c) Strain at 0.7 m
in rail, (c) Strain at 0.8 m in rail
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Figure E.12: 800 m/s launch velocity four gage single rail strain test. (a) Drive
current, (b) Strain at 0.5 m in rail, (c) Strain at 0.6 m in rail, (c) Strain at 0.7 m
in rail, (c) Strain at 0.8 m in rail
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Figure E.13: 1200 m/s launch velocity four gage single rail strain test. (a) Drive
current, (b) Strain at 0.5 m in rail, (c) Strain at 0.6 m in rail, (c) Strain at 0.7 m
in rail, (c) Strain at 0.8 m in rail
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