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The goal of this dissertation is to explore the effects of structural deformations on
high speed, high current density, sliding electrical contacts. The specific technolo-
gies studied in this body of work are the the homopolar motor and electromagnetic
launcher, with an emphasis towards the latter.

The coupled motion of the guide rails and armature of an electromagnetic
launcher are modeled by a Timoshenko beam on an elastic foundation. Using
reduced order finite element simulations, it is found that elastic waves are generated
in the guide rails. These waves are radiated from the armature when it passes
through a characteristic wave speed of the rails called the critical velocity. The
critical velocity depends on the stiffness of the foundation and is below the bar
and shear wave speeds. It is found that as the armature accelerates beyond the
critical velocity, the magnitude of the stress in the rails can reach values beyond the
yield stress of the rail material. It is also shown that the contact pressure between
the armature and guide rails is changed dramatically by the presence of the stress
waves in the guide rails. The changes in the contact pressure are significant enough
to cause interruption of the electric current and potentially damage the rails or
armature.

Experiments show that the reduced order computational model captures much
of the dynamics of the rails during launch. The presence of elastic waves and

the phenomena associated with a critical wave speed are verified experimentally



using a fiber optic strain system that is insensitive to electromagnetic interference.
Many of the wave effects seen in the simulations are seen in these experiments.
This includes the transition from quasi-static deformation states to wave radiation
states at the critical velocity. Other effects shown in the experiments are wave
reflections, strain amplification and jerk effect waves. There is also experimental
and theoretical evidence for a lateral instability of the armature as it rides along
the guide rails.

For electrical contacts in homopolar motors, it is found that structural deforma-
tions of the brush fibers can affect the ability of the brushes to conduct electricity
by changing the resistance of the contacts. This can affect the performance of
the motor and may contribute to the wear of the brushes. Large variations in the
structural properties of different commercial brushes are found and it is conjec-
tured that the electromechanical measurements in this dissertation could be used
as a quality control test for the large number of brushes necessary for the full-scale
motor.

A statistical model for these brush deformations is also developed and compared
to the experimental data. It is found that the model can be made to fit the
experimental data, but more brush samples and a controlled atmosphere would be

needed to verify this model.
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Introduction and Background



Chapter 1

Introduction

This dissertation explores the structural deformations associated with electrical
contacts in two high power electric machines; the electromagnetic launcher and the
superconducting homopolar motor. With high current densities and high sliding
contact speed, these technologies are pushing the limits of present understanding
of electrical contact interfaces. This chapter will give a general overview of the
work in this dissertation as well as a basic technical description of the electromag-
netic launcher, homopolar motor, present day challenges with implementing these
technologies and their histories. Both of these technologies are part of a Navy
program to build an all electric ship. There are also studies in both the United
States and Europe to use electromagnetic launchers for suborbital micro-sattelites.

Each of these technologies can be classified as an extreme contact but for
slightly different reasons. The reason for this is shown in Figure 1.1. The plots in
this figure show the current density and contact pressure versus the relative slid-
ing velocity of the electrical contacts in some actual electromagnetic launchers and
homopolar motors/generators. Two electromagnetic launchers are shown in this
plot, the Medium Caliber Launcher at the institute for Advanced Technology [76]
and the launcher at the Georgia Institute of Technology. Various homopolar mo-
tors/generators are also plotted. Most of this data came from a review paper on
homopolar generators written by lan McNab [63]. The remaining data is from the
General Atomics homopolar motor [96] that is directly related to the research in
this dissertation.

The extreme nature of the electromagnetic rail launcher is relatively obvious
from the plots in Figure 1.1. Typical launchers have sliding velocities in the range

of 1 —3km/s, current densities in the range of 0.1 M A/ecm? and contact pressures
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in the range of 100 M Pa. The combination of these three all happening at once
pushes modern understanding of the electrical, thermal and mechanical properties
of the contact interface to its limit.

The superconducting homopolar motor associated with the research in this
dissertation is extreme in a different way. The General Atomics motor operates
at much smaller contact pressures than the others. This is because this motor
uses metal fiber brushes instead of the more standard monolithic carbon brushes
typically used in these devices. The primary problem with these metal fiber brushes
is wear during use. Asymmetric wear is seen between the positive and negative

brushes and the exact source of this is not well understood.

1.1 Electromagnetic Launcher

The contact interface of an electromagnetic launcher is subject to current den-
sities in the range of 0.1 MA/em? and contact pressures in the range of 10 to
500 M Pa [95]. This occurs while the relative velocity between the two surfaces
increases from zero to the speed of sound in the rail material (1 — 3 km/s) in a
few milliseconds. These current densities, pressures and relative sliding velocities
occurring simultaneously at a contact interface is essentially unheard of in any
other technology.

One of the primary technical challenges associated with this technology is the
extension of the lifetime of the rails. Moderate velocity shots (1-2 km/s) suffer a
phenomenon called armature transitioning; where the armature loses contact with
the rails during launch [7]. High velocity (> 2 km/s) shots suffer a phenomenon
called gouging [60]. These two mechanisms cause micro and macro-scale wear and
damage to the rails during launch and, as such, the rails typically only last for a

few shots. While electromagnetic and thermal sources of wear have been explored



extensively in the literature (e.g. [8],[4], [78] and [84]),there is only a small amount
of published work on the structural dynamics of these devices.

The work in this dissertation begins from a theoretical perspective by exploring
the wave character of the rails in electromagnetic launchers. This is done by
exploring the classic problem of a beam on an elastic foundation. A number of
characteristic wave speeds exist in the rails. These include the critical velocity,
shear velocity and bar velocity. These speeds represent the lower and upper wave
speed limits in a beam on an elastic foundation and they are all near the typical
sliding velocity of an electromagnetic launcher. This introduces the possibility of
these waves interfering with the contact interface.

Finite element simulations are then used to explore how these waves interfere
with the contact interface. It is found that several phenomenon occur at the char-
acteristic wave speeds of the rails. The rails change from a quasi-static strain state
to a transient wave radiation state at the critical velocity. When this transition
occurs, dramatic spatial shifts and changes in the amplitude of the contact pres-
sure also occur. After the shear velocity is reached, the contact interface begins to
skip over the waves in the rails. The pressures that occur at this point are large
enough to case severe damage to the rails.

To verify the computational model, stress waves generated during launch were
measured using a fiber optic strain measurement device. These experiments were
carried out on a moderate size electromagnetic launcher at the Georgia Institute
of Technology. These measurements give a picture of the strains present during
launch and confirm the wave radiation phenomenon seen in the simulations. Other
wave phenomena are also seen, these include wave reflections, strain amplification
and jerk effect waves.

In addition to the work on structural dynamics, a small scale electromagnetic



launcher was also constructed and a low-cost technique for measuring the velocity
of the projectile was developed and tested. This was done to help expand the

number of sensors available for researchers in this field.

1.1.1 Brief History of Research

The scientific study of electromagnetic launchers dates back to 1901 to a Norwegian
Professor at the University of Oslo named Kristian Birkeland. Two good historical
reviews of his work have been written by Alv Egeland [24],[23]. His electromagnetic
launcher was of the coil gun variety. It used a homopolar generator to propel 10
kg iron projectiles to velocities nearly 100 m/s [87]. His vision was to construct
a launcher that would fire projectiles very long distances (100-1000 km). His
research was ultimately limited by the fact that there were no pulsed power supplies
available to achieve the high launch velocities necessary for these long distance
launches.

The next major attempt at an electromagnetic launcher was made by a french-
man named Fauchon-Villeplee in 1917. His launcher was similar to a modern day
rail launcher except that it used external static magnetic fields to propel the pro-
jectile. It was powered by a bank of batteries. A thorough review of his work
can be found in the literature [66]. Fauchon-Villeplee also designed a large-scale
launcher that would have been theoretically capable of launching a 100 kg projec-
tile to 1600 m/s. This launcher was never built and would have required a power
supply significantly larger than any that have been built to date.

During World War II the Germans explored electromagnetic launchers as a
potential weapon with applications as anti-aircraft guns or long range artillery.
This research was spearheaded by Dr. Joachim Hansler and an in-depth review of

it can be found in the literature [66]. The electromagnetic launchers built during



this period fired small (= 10g) projectiles at speeds in excess of 1 km/s. The work
in Germany was stopped at the end of the war.

Modern study of electromagnetic launchers began at the Australian National
University in Canberra [58] in the early 1970’s. This launcher was powered by
a 500 MJ homopolar generator and used plasma armatures to propel small 3
gram LEXAN cubes to nearly 6 km/s. Studies continued on plasma armature
launchers for the next 15-20 years (e.g. [13], [41], [86], [77], [97], [62],[38]). While
plasma armatures can push projectiles to very high velocities, they generate very
high temperatures at the rail surface and this can cause significant damage to the
rails. They are also very inefficient because of the high resistance across the ar-
mature [59]. It is for these reasons that present day studies have focused on solid
armature launchers.

The recent study of electromagnetic launchers has been reviewed very well in
a series of papers by Dr. Harry D. Fair of the Institute for Advanced Technol-
ogy [27], [28], [29], [30]. These papers cover the major advances for the last 10
years. The primary advances that have been made involve the development and
use of coupled-field finite element simulations. These simulations have led to better
armature designs and a better understanding of the thermal and electric aspects of
electromagnetic launcher design. In addition to scientific advancements, a good re-
view of patents in electromagnetic rail launchers has been put together by Chadee
Persad [79].

The major shift in the field in recent years has been the involvement of the U.S.
Navy. The Navy is pursuing electromagnetic launchers as a long-range weapon
on their all-electric ship concept. These vessels will have enough space and the
power capabilities to house a pulsed power supply capable of firing a large-scale

electromagnetic launcher (see [68]). This change has shifted the research focus



from the power supply to the barrel of the launcher. The primary goals of this
research have been to understand the wear and damage phenomena that are seen
in laboratory launchers. Lifetime of the rails is now considered the major technical
hurdle to jump to get a tactically useful weapon.

The major phenomena associated with bore lifetime can be split into two dif-
ferent groups; high velocity and low velocity. The primary low velocity damage
mechanism is referred to as startup damage. This occurs at the beginning of the
launch because the current in the low velocity regions is very high and the current
is transmitted from the same point on the rail for a relatively long time. This
causes heat to build up and melting can occur. High velocity damage mechanisms
include transitioning and gouging. Many thermal and electric effects have been
studied with respect to these phenomena, but the source of these mechanisms is
still not well understood (see [7], [8] [60], [78], [93]).

This dissertation explores the structural dynamics of the rails as a possible
contributor to the high velocity damage mechanisms. Previous work in this aspect
of electromagnetic launchers has approached it from a design point of view. A
number of papers have been written that model the cross-section of the launcher
containment under static and dynamic loads [20],[95]. Three dimensional simula-
tions of the structural deformations have also been developed [104]. This research
has focused on the deformations of the containment and the relative deformations
of the individual components inside the containment. Some work has also been
done that focuses in on the vibrations of the armature during launch [105].

Application of the Bernoulli-Euler beam model to a rail launcher was first con-
sidered by Jerome T. Tzeng [100],[101]. While not a dynamic simulation, Tzeng’s
work first introduced the possibility of resonant railway dynamics in rail launch-

ers. Some of Tzeng’s colleagues have also looked at the beam dynamics using



three dimensional simulations of a nominal bore geometry [55]. The work in this
dissertation continues the application of basic beam theory by exploring how the
vibrations in the rails are generated and how they interact with the armature dur-
ing launch. This gives an indication of the impact that these waves can have on

the contact interface between the armature and the rails.

1.1.2 Applications

Electromagnetic launchers offer many advantages over conventional propulsion
techniques and so they have a wide array of potential applications. The major
advantage is the ability to generate very high accelerations. Some of these ap-
plications include weapons, fusion research, space launch and impact/materials
research.

Some of the military applications of electromagnetic launchers that have been
considered include missile defense systems, anti-aircraft, anit-armor and extended-
range artillery [26]. The velocities that can be obtained with these devices could
extend Naval ship bombardment ranges to 300 km [68]. They also allow for dra-
matic increases in penetration ability for anti-armor applications [46].

Space launch is another interesting application for this technology. Electromag-
netic launchers could be used to fire micro/nano-satellites from the ground [54] or
from on-board an aircraft [67]. The technical challenge associated with earth-to-
space launch is heating of the satellite as it passes through the atmosphere [12].
These devices have even been considered for use on a lunar base for firing mined
materials back to the earth [87]. One other possibility could be to put a launcher in
orbit for firing micro-satellites out of the earth’s gravitational pull. The limitation
for this application would be the energy density of the power supply.

Finally, electromagnetic launchers could be used in fusion research. They have



been presented as a potential method for temperature control and refueling of
Tokomak fusion reactors [81],[43]. It has also been proposed that they could offer
a potential method for attaining impact fusion [52]. This particular application is
a bit more far-fetched though because it would require very high velocity launches
in the range of 130 km/s. Velocities this high have never been obtained with an

electromagnetic launcher.

1.1.3 Principle of Operation and Equations of Motion

Electromagnetic launchers are devices that use electromagnetic forces to accelerate
mass to high velocities. The main types of launcher are coil launchers, rail launch-
ers and linear induction motors. Rail launchers are the focus of this dissertation,
so the basic principles behind this technology will be discussed in this section.
Information on all of these technologies can be found in the proceedings of the
biennial Electromagnetic Launch Symposium in the IEEE Transactions on Mag-
netics. Information specific to coil/induction launchers can be found in a number
of different papers and books (e.g. [72] and [22]).

The basic geometry of a rail launcher is shown in Figure 1.2. The major
components are the rails, armature, insulators and containment. The rails are
typically made of a copper alloy. The insulators are made of a fiberglass material
called G-10 (also known as garolite) and the containment is made out of laminated
steel plates. The lamination is necessary to reduce losses due to eddy currents [9].
The armature in modern launchers is made out of a solid metal, usually aluminum,
but plasma armatures have also been used to propel non-conducting projectiles.

A pulsed current power supply is attached to the breech of the launcher. This
power supply usually consists of a large capacitor bank, but any power supply

capable of generating a large enough current pulse will also work. Examples of
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Figure 1.2: Rail Launcher Geometry
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Figure 1.3: Electromechanical model (top) and magnetic field (bottom) of an elec-
tromagnetic rail launcher.
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alternatives are homopolar generators, batteries, inductive storage and flux com-
pressors [65]. Capacitors are the most common of these technologies and are used
in laboratory launchers primarily because of their reliability and flexibility. Typical
peak currents for electromagnetic launchers range from 100 kA to 5 MA depending
on the size of the launcher.

As the current flows, a magnetic field is generated behind the armature (See
Figure 1.1.3) and this pushes the armature down the length of the launcher. The
electromagnetic force on the armature is generated by the J x B force where J
is the current density in the armature and B is the magnetic field generated by
the rails as shown in Figure 1.1.3. In typical rail launchers these forces produce
launch accelerations that can range anywhere from 10 kGee up to 1 MGee. These
accelerations allow for launch velocities in the range of 1-3 km/s in a very short
distance.

The fundamental equations of motion for a capacitor driven electromagnetic
launcher can be derived using an electromechanical Lagrangian. This is accom-
plished by treating the launcher barrel as a variable inductor whose inductance
depends on the position of the armature. This system can drawn as a simple cir-
cuit, which is pictured in Figure 1.1.3. This circuit consists of a capacitor with a
capacitance of Cy, an inductor with an inductance of Ly and an overall resistance
Ry. The armature is described by its mass m and position x. A model which
assumes that the inductance of the barrel is just a linear function of the position

of the armature agrees well with experiments.
L(z) = L'z where L' = constant (1.1)

Where L' is referred to as the inductance gradient of the launcher. The equations
for calculating an approximate value of L' can be found in a text by Frederick

Grover [37]. An example calculation of L’ for a rail launcher with rectangular rails
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can also be found in Chapter 6 of this dissertation. With this assumption, it is
possible to write down the electromechanical Lagrangian £ for a capacitor driven

rail launcher as shown in Figure 1.1.3 [73].

c=tmiz @ L e (1.2)
= gmd a0, gl x .

Where x and @) are the generalized coordinates for the position of the armature
and the stored charge on the capacitor bank. It is important to point out that this
formulation assumes that the mass of the armature is constant. This assumption
is often violated in actual rail launchers. Energy dissipation terms such as resis-
tance and friction can be taken into account by considering a Rayleigh dissipation
function R [72]. .

sign(t)uNz  RoQ?

5 +—5 (1.3)

R =
This simple model assumes a constant resistance and a constant friction force. The
Lagrangian and Rayleigh dissipation functions satisfy Lagrange’s equation.

d(@ﬁ) oL  OR _ 14

J— J— R + p—
dt \ 0q dq  0q
Plugging £ and R into Lagrange’s equation and simplifying gives the equation of

motion for an armature in a capacitor driven electromagnetic rail launcher.

mi = %Q2L’ — sign(z)uN (1.5)
(Lo + L'v)Q + (Ro + L'#)Q + CQ =0 (1.6)
0

One of the most useful things about this equation is that it gives a quantitative

measure of the propulsion force in an electromagnetic launcher.

L'1?
Fprop — T (17)

This means that the propulsion force is simply proportional to the square of the

current 1. A typical value of L’ for a laboratory launcher is approximately 0.5 x
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10~"H/m. This simple approximation works surprisingly well when compared
to experimental data. Equations 1.6 and 1.7 will be referred to throughout this

dissertation.

1.2 Superconducting DC Homopolar Motor

The second electrical contact technology explored in this dissertation is the super-
conducting DC homopolar motor. The contact interfaces in the homopolar motor
are not subject to conditions as extreme as the electromagnetic launcher but they
can still be classified as extreme because of the electrical transfer brushes that they
use. The homopolar motor studied in this dissertation uses metal fiber brushes
to transfer current. This is in contrast to the monolithic carbon or metal carbon
brushes that are used in conventional electric motors. Current densities for brushes
in a homopolar motor are in the range of 200 — 600 A/cm? and sliding velocities
can range from 25m/s to above 300m/s [63]. Monolithic carbon brushes can only
be run efficiently up to about 25m/s [85]. Above this limit, large contact pressures
must be used to maintain contact. This increases friction and wear and decreases
electrical and mechanical efficiency.

The technical challenges associated with using metal fiber brushes include at-
mospheric control and tight control of the contact pressure (see Chapter 20 of [85]).
These are necessary to minimize corrosion and wear. These complications in im-
plementation are offset by a large (potentially 10-fold [85]) increase in efficiency
over conventional brushes. This comes from the fact that fiber brushes offer more
contact spots at lower contact pressures. This increases the electrical efficiency
while reducing the amount of loss due to friction.

It is interesting to note that in addition to sharing technological challenges

with the electromagnetic launcher, homopolar generators have been used as power
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supplies for rail launchers [58],[64].

1.2.1 Principle of Operation

The specific device associated with this body of research is being constructed by
General Atomics for the United States Navy for the their future all-electric ship
concept [96]. This device is intended to be a drive motor, but many have also
been designed to operate as generators [6], [61]. A detailed description of the
actual motor associated with this research and comparison of it with other motor
technologies can be found in the literature [96]. Just some of the basic technical

details of this motor will be presented here.

Armature

urrent Radial Magnetic Field B
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O *’ 4‘ &

Brushes

Axial i
Current
Flowl /  |[77°°°
\——
¥y v
Superconducting k f
Field Coils Current Collection Brushes

Figure 1.4: Basic Geometry of the Superconducting DC Homopolar Motor

The basic geometry of this motor is pictured in Figure 1.4. The General Atom-
ics homopolar motor uses superconducting electromagnets with current flowing in

opposite directions to generate a magnetic field that is perpendicular to the axis of
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rotation. This field penetrates a copper cylinder, called the armature, which has
current flowing through it along the axis of rotation. The average magnitude of the
field at the armature is nearly 2 Tesla [96]. The current flow perpendicular to the
magnetic field gives a torque that rotates the armature. The current is collected
from sliding electrical brushes on either side of the armature. The General Atomics
motor has 1600 metal fiber brushes that carry a current density of 155 A/cm? at
a sliding velocity in the range of 25m/s. This motor is a 1/4 scale prototype with
a power output of 3.7 MW (5000 horsepower). As one can imagine, the number
of brushes necessary for the full scale motor will be very large and uniformity of
mechanical and electrical characteristics between the individual brushes should be

maintained.

1.2.2 Brief History and Literature Review

While the motor associated with this dissertation is intended for propulsion of a
naval ship, most modern homopolar motor research has focused on their use as high
power generators for pulsed power applications. These applications have varied
from fusion research [103] to power supplies for electromagnetic launchers [58]. In
all of these applications, the mechanical and electrical performance of the electric
brushes has been a concern.

The use of metal fiber brushes dates back to Thomas A. Edison [2]. These
brushes fell out of favor in the early 1900’s because of cost and wear issues. Inter-
est has been revitalized because of the dramatic increases in efficiency that these
brushes offer, but wear is still a problem. Increased wear is seen when current
is flowing and asymmetric wear has been seen between the positive and negative
brushes. Much of the modern research has focused on atmospheric conditions [85].

The deflections of the fibers have been considered in the design of metal fiber
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brushes form the point of view of surface tracking [85]. The research in this dis-
sertation explores how these fiber deflections affect the compliance of the brush as
well as its contact resistance under load in static conditions. It has been found
that the individual fibers buckle easily. This leads to nonlinear compliance of the
brush as a whole. This nonlinear nature also extends to the electrical resistance
of the contact and should be considered in the analysis/design of a system using

these brushes.
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Part 11

Elastic Waves in Electromagnetic

Launchers
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Chapter 2

Elastic Beam Dynamics

The electrical contact problems explored in this dissertation involve the contact
between an elastic object and another elastic structure. In the electromagnetic
rail launcher, one of the main structural elements is a simple beam on an elastic
foundation. Understanding the dynamics of these systems requires a foray into the
theory of elastic beam deflections. This chapter will cover the basics of Bernoulli-
Euler and Timoshenko beam theory and their application to dynamic problems.
This will establish the theoretical background necessary to understand the impli-
cations of the computational and experimental work described in later chapters of

this dissertation.

2.1 Brief History and Literature Review

The specific problems encountered in this dissertation are closely related to the
problem of a moving load on a beam on an elastic foundation. The classical
problem of a structure supporting a moving load has been studied extensively
since the 1850’s. Much of the early research grew out of the railroad industry
and was related to the analysis of bridges. The review in this section does not
cover the history of the study of this problem in great detail, instead the primary
sources that relate directly to the studies in this dissertation are presented. For a
more thorough summary of the history of this research, the reader is referred to
the books by Ladislav Fryba [34] and Stephen Timoshenko [99].

Some of the research in the 1930’s and 1940’s was dedicated to the study of
beam deflections as a function of load velocity [57]. For the case of a constant

velocity load moving on a Bernoulli-Euler beam on an elastic foundation, theoreti-
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cal calculations show that the deflection of the beam diverges at a certain velocity
called the critical velocity [51]. Much of this research was affiliated with the design
of high-speed rocket test tracks. In the 1960’s these studies were extended to the
case of the Timoshenko beam on an elastic foundation [33], [90],[91],[92] and [1].
Finite element techniques for modeling Timoshenko beams were also developed in
this period [50],[21].

More recent studies have focused on computational research, but some the-
oretical work is still being conducted. Of particular interest to the studies of
electromagnetic launchers is the case of a moving step load [31],[32]. This particu-
lar problem is interesting because of its similarity to the electromagnetic repulsion
force between the rails of an electromagnetic launcher.

In contrast to earlier work on moving loads on elastic beams, in this dissertation
the moving load is calculated in response to a given displacement acceleration of a
slider on contact with the beam. This research focuses on transient accelerations
of the slider from rest to velocities beyond the critical and shear velocities of the
beam. The impact of resonant phenomena of the beam on the contact between
the slider and the beam are explored computationally and the wave dynamics of

the beam are explored experimentally on an electromagnetic launcher.

2.2 Equations of Motion

The first step in understanding the dynamics of an elastic beam is to present the
model and the equation of motion. A general theory would involve applying the
continuum theory of elasticity to both the elastic guide way and its supporting
structure. Such detailed studies are important at the armature interface but often
miss the overall wave dynamics of the entire system. Instead, reduced order models

using Bernoulli-Euler and Timoshenko beam models are used to describe three-
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dimensional beams using a one-dimensional continuum. The relevant coordinate
system for this description is pictured in Figure 2.1. The deflection w(z,t) of
the beam is represented by the deflection of the neutral axis, which is shown as
a dotted line in Figure 2.1. There are a number of beam models, but the two of
interest for this dissertation are the Bernoulli-Euler model and Timoshenko model.
The equations representing both will be presented here. Just some of the basic

assumptions behind these models will be presented here but full derivations of

these equations are also included in Appendix A for the sake of completeness.

P(x,1t)

A Y Y Y Y Y Y Y YN NN NN N N N N N N NN

Figure 2.1: Beam on Elastic Foundation Under Load

Figure 2.2(a) shows an element of a Bernoulli-Euler beam under bending. The
dotted line in this figure represents the neutral axis, and the lines perpendicular
to it are called the shear planes. In the Bernouilli-Euler model, the shear planes
are assumed to remain perpendicular to the neutral axis of the beam. In the
Timoshenko model, this restriction is lifted and the result is an additional degree
of freedom 1 (x,t), pictured in 2.2(b). This additional degree of freedom gives
the Timoshenko model a more realistic response at higher frequencies. For the
problems discussed in this body of work, this improvement in the model is vital.

The deflection of the beam can be described using a partial differential equa-
tion which can be derived using Newton-Euler or Lagrangian methods [39],[98].

The Newton-Euler derivations of the Bernoulli-Euler and Timoshenko models are
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Figure 2.2: Beam Equation Degrees of Freedom

included in Appendix A. For the Bernoulli-Euler beam on an elastic foundation

this partial differential equation is as follows.

0w (w,t)
Ox*

0*w(x,t)

EJ BRI

+ pA + koBw(x,t) = P(z,t) (2.1)

Where the description of the parameters of this equation are outlined in Table 2.1.
This model assumes that the shear planes remain perpendicular to the neutral axis

and it neglects rotary inertia and nonlinear geometric effects. These assumptions
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Table 2.1: Beam Equation Parameters

Symbol Description Units
E Elastic Modulus for Rail Material N/m?
G Shear Modulus for Rail Material N/m?
K Timoshenko Shear Coefficient N/A
) Density of Rail Material kg/m?
J Cross-Sectional Moment of Inertia of Rail ~— m?*
A Cross-sectional Area of Rail m?
h Height of Rail m
B Width of Rail m
ko Areal Stiffness of Foundation Material N/m3

are outlined in the derivation in Appendix A. As one can see, the dynamics of the

beam have been reduced to the dynamics of the neutral axis through w(z,t).
The differential equation for the Timoshenko model can be written in two dif-

ferent ways. The first representation includes both the deflection w(z,t) and cross-

sectional rotation due to shear deformation v (z,t) degrees of freedom [39],[98].

o (8¢($,t) B 62w(x,t)) F @D et = Pt (22)

ox 0%x ot?
dw(z, 1) P, t) (i)

These equations can then be simplified in to one higher-order differential equation

for the deflection of the beam.

OMw(w,t) E\ 0'w(z,t) 0*w(x,t)
S (1 * E) 02012 PA 5
2 7 94
p?J 0*w(x,t) B
+_/-@G o koBw(x,t) = P(z,t) (2.4

This model allows shear deformation and does not neglect rotary inertia, but it
does still neglect geometric nonlinearities (see Appendix A). In both of these
reduced order models the transverse strains in the beam are not treated and the
wave and vibration motions of the foundation are neglected. As with the Bernoulli-

Euler model, the end result is a major simplification of a full three dimensional
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continuum model. When these simplified models are used in a finite element
simulation they can considerably reduce the number of elements and computation

time necessary as compared to a three-dimensional model of the same system.

2.3 Wave Dispersion and Wave Velocities of Beam Models

2.3.1 Derivation

The relationship needed for understanding the wave nature of a problem is the
dispersion relationship. The dispersion relationship relates the wave number & to
the angular frequency w of a wave (k = 1/\ where A is the wavelength of the
wave!). The dispersion relationship can be used to describe the velocity of waves
in a medium described by a linear mathematical model. In wave propagation
problems there are two important velocities; the phase velocity and the group
velocity [36]. The phase velocity represents the speed at which individual wave
components travel. In other words, each wave with a particular wavelength travels
at a particular velocity and this velocity is given by the phase velocity. The
mathematical definition of the phase velocity is as follows:

w
Uph = E (25)

The group velocity represents the speed at which modulations in the amplitude of
the wave travel. This is the speed at which energy and information can travel in
a medium. The mathematical definition of the group velocity is as follows.

_dw

Vgr = % (26)

Since the dispersion relationship relates w to k it can be used to calculate the

group and phase velocities for a particular wave problem. For the Bernoulli-Euler

1See [25] or [36] for in-depth description of basic wave theory
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and Timoshenko beam models, it is possible to derive the dispersion relationship
by simply ignoring the loading terms in Equations 2.1 and 2.4 and assuming a
wave solution of the form w(x,t) = Sin(kxr — wt). Plugging this solution into
Equation 2.1 gives the following dispersion relationship for the Bernoulli-Euler

Beam.

EJk* — pAw? + kB =0 (2.7)

Analysis of this equation can be simplified by non-dimensionalization. This can

be accomplished by using the following substitutions.

. Aw? _ kB
W=kt o=l — and ko= - (2.8)

Substituting Equation 2.8 into Equation 2.7 gives the non-dimesnional form of the

dispersion relationship for the Bernoulli-Euler Beam.
E*— &% 4+ k=0 (2.9)

The ko term introduces a cut-off frequency below which no pure waves can prop-
agate. This cut-off frequency comes from the foundation supporting the rail and
is discussed in detail in the next section. The process for calculating the disper-
sion relationship for the Timoshenko beam is the same and it gives the following

relationship.

E 2
EJE* — pJ (1 + E) k2w? — pAw® + %”4 + kB =0 (2.10)

Non-dimensionalization is accomplished by the following additional substitutions.

J E
2= and ©?

A2 e

=

(2.11)

Substituting Equation 2.8 and Equation 2.11 into Equation 2.10 gives the non-

dimesnional form of the dispersion relationship for the Timoshenko beam.
E*—@% — (1 + 07k + 0*F w0 + kg =0 (2.12)
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These dispersion relationships capture the wave character of beams quite well
even up to very high frequency vibrations. This will be discussed in the following

sections using plots of the dispersion relationships and phase and group velocities.

2.3.2 Bernoulli-Euler Beam Wave Velocities

It is a bit easier to understand the Bernoulli-Euler dispersion relationship so that

is where this analysis will begin. Solving Equation 2.9 for w gives the following.
w(k) = £VE* + ko (2.13)

Where one solution is for positive frequencies and the other is for negative frequen-
cies. The negative solution is just a reflection of the positive solution. Plotting
the positive equation as a function of £ gives the plot in Figure 2.3 for the free
beam (ko = 0, thin line in Figure 2.3) and for the beam on an elastic foundation
(ko = 1, thick line in Figure 2.3). These plots were generated by assuming that @
is real and solving for complex values of k.

For the free beam there is no imaginary part of k& . This means that unattenu-
ated waves can exist for any frequency. In contrast to this, the beam on an elastic
foundation does have imaginary parts. This indicates that both attenuated and
unattenuated waves can exist when an elastic foundation is present. This obser-
vation has very serious implications for the electromagnetic launcher and will be
returned to repeatedly throughout this dissertation.

One other important observation is the high frequency behavior. Both the
free beam and the beam on and elastic foundation approach a quadratic in high
frequency regions. This has very important consequences for the wave velocities.

This can be studied by calculating the group and phase velocities. The equations
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Figure 2.3: Dispersion Relationship w(k) for the Bernoulli-Euler beam for the
foundation-free beam (thin lines) and beam with a foundation (heavy lines).
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Figure 2.4: Phase velocity for the Bernoulli-Euler beam for the foundation-free
beam (thin lines) and beam with a foundation (heavy lines).
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Figure 2.5: Group velocity for the Bernoulli-Euler beam for the foundation-free
beam (thin lines) and beam with a foundation (heavy lines).

30



for the wave velocities for the Bernoulli-Euler beam are as follows:

2k3
(Tl S — (2.14)

o VE + ko
_BE jE\/l?:4_+ ko

Uy, = 7 (2.15)
The group and phase velocities for the Bernoulli-Euler beam are plotted in Fig-
ures 2.4-2.5. The plot is shown for both a free beam and a beam on an elastic
foundation. In the free case, the phase and group velocities extend over the full
range of possible velocities (i.e. from zero to infinity). In the case of the beam on
an elastic foundation, the phase velocity has a minimum. This minimum is gener-
ated because of the offset seen in the real solutions in Figure 2.3 and it is referred
to as the critical velocity [51]. This velocity is vital to the computational research
in this dissertation and as such will be discussed in detail in Section 2.4. For now,
it is sufficient to point out that it represents the minimum possible unattenuated
wave velocity. It is a lower limit on the speed of waves in a beam on an elastic
foundation.

Another important thing to point out in Figures 2.4-2.5 is that for the Bernoulli-
Euler beam, the phase and group velocities extend out to infinity. This means
that, at least theoretically, waves could travel on a Bernoulli-Euler beam at in-
finite speed. This violates the laws of relativity and points out the fundamental
limitation of this model. For very high frequency problems, the Bernoulli-Euler
model is inaccurate. This is the primary justification for using the Timoshenko

model.

2.3.3 Timoshenko Beam Wave Velocities

As already stated, the Timoshenko dispersion relationship is a bit more difficult

to interpret. The major reason for this is because the dispersion relationship in
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Equation 2.12 is fourth order. This gives rise to four solutions.

2.16
2292 (2.16)

(k) = i\/1 + 7h2(1 + 92) £ /(1 + 7k2(1 + 02))2 — 47202 (k* + ko)

The positive solutions are displayed in Figure 2.6 for the free beam and the
beam on an elastic foundation. These plots were made with the parameters set to
7 = 0.5 and 7 = 0.5 for the two cases k = 0 and k = 1. As with the Bernoulli-
Euler beam, Figure 2.6 was generated by assuming a real value of w and solving for
complex values of k. In this case, the free beam only has imaginary parts when the
real part is zero. This is reflected in the ellipse in Figure 2.6. The pure real parts
of the free beam dispersion consist of two different modes. One mode represents
bending waves and the other represents shear waves.

As with the Bernoulli-Euler beam, the Timoshenko beam on an elastic founda-
tion allows the possibility of both attenuated and unattenuated waves. This has
implications for the wave velocities that can be studied by looking at plots of the

group and phase velocities. The equations for these velocities for the Timoshenko

beam are as follows

1+ 0%+ B 1l el
E;Fr _ 4 , ( \/(1+Fk2(11—172))2—4(k:4+k0)F2172_ : (2.17)
V20(1+FR2(1+52) £ /(T + 7R (1 + 02))? — 40 + Fo)?)
T 1+ 7h2(1 + 92) £ /(1 + 7k2(1 + 92))2 — 47202 (k* + ko)
Upn = % 272252 (2.18)

Plots of the phase and group velocity for the Timoshenko beam are shown in
Figures 2.7-2.8. As with the Bernoulli-Euler model, the free beam has only real
solutions and the beam on an elastic foundation has complex and pure real so-
lutions. The point where these complex and pure real modes join represents the
critical velocity for the Timoshenko beam on an elastic foundation. The equation

for this velocity will be shown in Section 2.4
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Figure 2.6: Dispersion Relationship w(k) for the Timoshenko beam for the
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Probably the most important difference between the Timoshenko and Bernoulli-
Euler models is the high-frequency behavior. In the high frequency limits, the two
pure real modes of the Timoshenko beam asymptotically approach two different
velocities, these are referred to as the shear and bar velocities and their expressions

are as follows.

E
Vpar = 4[| — 2.19
bar = |/ p (2.19)
kG
Vgh, = | — 2.20
h ; (2.20)

The bar velocity represents the highest possible wave speed for a traveling wave in
a beam. This is the speed of a compressional wave. The shear speed represents the
upper limit for a bending wave. These two velocities are characterized primarily
by the material properties of the rail. It should be noted that the shear coefficient
k is dependent on the shape of the cross-section of the rail, but is usually near
its value for a rectangular beam (x ~ 5/6) [70],[45]. These upper speed limits are
the reason for choosing this model over the Bernoulli-Euler model. The Bernoulli-
Euler model allows for unattenuated wave solutions with velocities extending out
to infinity(see Figures 2.4-2.5). The Timoshenko model limits the waves to more
realistic propagation velocities. It is important to note that in the three dimen-
sional theory of elasticity for isotropic materials there are two non-dispersive elastic
waves associated with compression (dilatation) and shear [25], [36]. The speed of
these waves are close to, but slightly different from the Timoshenko beam waves

Vpgr aNd Vgp,.

2.4 Critical Velocities

As shown in the previous sections, the free beam dispersion relationships and wave

velocities change considerably when one adds in an elastic foundation. The primary
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difference is in an offset in the point where the dispersion relationship crosses the
vertical axis. This offset spawns a branch of complex wave numbers that pushes
the minimum phase velocity from zero up to a finite number.

The minimum in the phase velocity curve corresponds to the critical velocity.
As stated in the previous section, the critical velocity represents the minimum
possible unattenuated wave speed. The equation for the critical velocity for a

Bernoulli-Euler beam on an elastic foundation is [51]:

4BkoEJ\'*
Ver = (—pip ) (2.21)

The equation for the critical velocity of a Timoshenko Beam is a bit more

complicated. It is defined by the following relationship (see [15] for the derivation).

2 _
- \/ Vry —Anrs T2 (2.92)
27”1

27‘1

Where the parameters are defined as follows.

koBJ\?
.= (pA _ HAG) (2.23)
B koBJ\ EJkoB
T2_2(pA_/1AG) PYYe + 4koBJ (2.24)
EJkyB\?>
g = ( e ) — 4E.JkoB (2.25)

While the equation for the Timoshenko critical velocity is different, the interpre-
tation is the same. It represents the point where the branch for unattenuated
modes joins the branch for attenuated modes in k-space. For the parameter values
for a typical electromagnetic launcher (see Chapter 3, Table 3.1) the two critical
velocities given by Equations 2.21-2.22 only differ by 6%. It is because of this
small difference that throughout the remainder of this dissertation, when the crit-
ical velocity is calculated or referred to, Equation 2.21 will be used for the sake of

simplicity.
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2.4.1 Foundation Mass Effects

One effect that is not taken into account in the models presented so far is the mass
and inertia of the foundation. In an electromagnetic launcher, the containment is
typically made of steel laminates and fiberglass and it is very heavy. For a better
model the dynamics of the launcher the kinetic energy of this foundation should
be taken into account. The translational kinetic energy in a length L of the beam

can be written in the following way.
L 2
Kegan =5 [ n (W} dx (2.26)
Where 7, = pA is the mass per unit length of the rail. The mass of the foundation
can also be considered using a similar relationship which will be demonstrated in
this section. It should be noted that one could potentially include rotational effects
as well, but these will not be considered in this section.

Figure 2.9 shows the geometry of the foundation and the rail for this calculation.
The foundation is assumed to have a width B that is equal to the width of the rail,
and a height of hy. It is also assumed to have a density of py that translates to
a mass per unit length of ny = pyBh;. The foundation is pictured as connecting
the rail to an immovable surface and it has a stiffness per unit area of ky. Also
pictured in Figure 2.9 is the deflection of the mass in the foundation wy(y, x,t) at

a distance y from the immovable surface. The translational kinetic energy of the

foundation can be written in terms of this deflection in the following way.

1 L h ) ¢ 2
weg =3 ([ (2220 Yo o

For this calculation, the velocity of the foundation at y is assumed to be equal to
the velocity of the rail on the side that connects to the rail at y = h and equal to

zero on the opposite side at y = 0. It is assumed to be linear in between. This
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means that the velocity of the foundation can be written in terms of the velocity

of the rail in the following way.

dwy(x,y,t) _ y dw(z,t)
ot ~ hy Ot

(2.28)

This assumption allows one to rewrite the translational kinetic energy of the foun-

dation in terms of the deflection of the rail.

1 [t h y Ow(z, 1)\’
K Efound — —/ / B=—"22) dy|d 2.2
Trans 2 0 < 0 pf hf at Yy T ( 9)

Carrying out the integration over y gives the following.

1 [t >
KErfimd =5 /O % (—ang’ )) dz (2.30)

Where the substitution ny = pyBhy has been used. Adding this to the translational

kinetic energy of the beam in Equation 2.26 gives the total translational kinetic

Beam

Elastic
Foundation

A

w(x,t)

w(x,y,1)

V\ Fixed Plane

Figure 2.9: Effective Mass of Foundation

39



energy.

Tot _E/L ﬁ 8w(x,t) 2
KBfh. =5 | (n+ ) (57 ) da (2.31)

This means that when the translational kinetic energy of the foundation is consid-
ered, the effective mass per unit length of the rail is increased. This effective mass

per unit length is as follows.

77
Tegs =+ (2.32)

This can be taken a step further by observing that the translational kinetic energy
is the only place that the mass per unit length appears in the derivation of the
equation of motion for the Bernoulli-Euler beam (e.g. see [39]). This allows one to

write, without loss of generality, the modified Bernoulli-Euler equation of motion.

dtw(x,t) O*w(x,t)

EJ e
ot g

+ koBw(z,t) = P(x,t) (2.33)

The corresponding critical velocity for this system can then be written as follows.
1Br,ET\ "
Ver = <2—°> (2.34)
Mlets
This indicates that the critical velocity of a beam on an elastic foundation can be
affected by the mass of the foundation. A heavy foundation will effectively lower
the critical velocity. Evidence of this lowering of the critical velocity is seen in the

experimental analysis done in Chapter 4.
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Chapter 3

Rail Launcher Dynamics

3.1 The Model

Electromagnetic launchers offer difficult challenges for simulation using finite ele-
ments. Their coupled nature and large aspect ratios cause the number of necessary
nodes to become large very quickly. In addition to this, the high frequency nature
of the electromagnetic fields and structural vibrations make the necessary time
steps very small. The combination of these two requirements makes fully-coupled
three-dimensional simulations intractable in a reasonable amount of time. In this
section, the basic geometry and the simplifications that have been employed to
simulate the electromagnetic launcher will be presented.

The first simplification is to model the launcher in two dimensions. This reduces
the number of nodes so that the problem can become solvable in a reasonable
amount of time. The major consequence of modeling this system in two dimensions
is that it is not possible to properly model the electromagnetic field. This means
that the mechanical effects of the field have to be approximated in a self consistent
way. The rails of the electromagnetic launcher repel each other just like two current
carrying wires. The force per unit length between the two rails is proportional to
the square of the flowing current I and inversely proportional to the distance r

between the two [72].
Fmag o MOIQ
L 27

(3.1)

The propulsion force on the armature is also proportional to the square of the
current (see Equation 1.7). This means that the repulsive pressure on the rails
and the acceleration of the armature will be linearly proportional to each other.

Fmag
— 3.2
a o< 7 (3.2)
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In some of the simulations in this dissertation, the armature was moved by applied
displacements and repulsive pressures were applied to the rails. In these simula-
tions, Equation 3.2 was followed so that the repulsive forces on the rails would be
consistent with the acceleration of the armature.

The source of the mechanical forces is the interaction of the magnetic field
with the flowing current. The magnetic pressure on a current carrying surface is
proportional to the square of the magnetic field [72].

BZ

o (3.3)

Pmag:

This equation comes from the the Maxwell stress tensor. For the problems in this
chapter, it is simply used to give a rough approximation and scaling law.

The second major simplification is to model the rails using one-dimensional
beam elements. This is done by using Timoshenko beam elements. The justifica-
tion for this simplification of the model is covered in detail in Chapter 2.

Finally, some of the research in this chapter has been previously published in the
IEEE Transactions on Magnetics. These portions are reprinted, with permission,
from [48] ©2006 IEEE and [49] ©2007 IEEE. Permission of the IEEE does not
in any way imply IEEE endorsement of Cornell University’s products or services.
Internal or personal use of this material is permitted. However, permission to
reprint /republish this material for advertising, promotional purposes, creating new

collective works for resale or redistribution must be obtained from the IEEE.

3.2 Classification of Foundation

The first step in modeling the rails of an electromagnetic launcher as a Timoshenko
beam on an elastic foundation is to put together reasonable estimates of all of the

parameters in Equation 2.4. The majority of these parameters are simply defined
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by the materials being used for the rails. The stiffness, ky of the foundation is more
difficult to obtain. It was found by using a simplified static two-dimensional model
of the containment. This calculation will be shown for two different laboratory

launchers.

3.2.1 Institute for Advanced Technology Launcher

The Medium Caliber Launcher (MCL) at the Institute for Advanced Technology
(IAT) is arguably the most studied rail launcher in the world. It is for this reason
that this launcher was modeled. A drawing of the approximate cross-section of the
launcher is shown in Figure 3.1(a). The firing capabilities of this launcher can be

found in the literature [76].

Table 3.1: Medium Caliber Launcher Parameters

Symbol Description Value
E Elastic Modulus for Rail Material 120 GPa
G Shear Modulus for Rail Material 47 GPa
K Timoshenko Shear Coefficient 0.833
p Density of Rail Material 8320 kg/m?
J Cross-Sectional Moment of Inertia of Rail 2.5 x 1079 m?*
A Cross-sectional Area of Rail 3 x 107* m?
h Height of Rail 0.01 m
B Width of Rail 0.03m
ko Areal Stiffness of Foundation Material ~ 8.44 x 10! N/m?
Ver Bernoulli-Euler Critical Velocity 1486 m/s
Vsh Shear Velocity 2170 m/s
Vgr Bar Velocity 3797 m/s

For this simulation, the rails were removed and a pressure was applied to the
insulation material behind the rail and the deflection was calculated for various
static pressures. The boundary conditions and applied pressures are shown in
Figure 3.1(b). The final result of this calculation is shown in Table 3.1. The

stiffness shown in this table is calculated at the point of maximum deflection of
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the insulator surface directly behind the center of the rail. The maximum deflection
was taken to give a 'worst case’ number for the stiffness (i.e. the softest value for
the stiffness). In addition to the stiffness, the important material and geometric
parameters for the MCL are summarized in Table 3.1. These numbers are not
intended to be the exact values for the MCL specifically. They are only meant to

capture the basic parameters of a laboratory launcher of that scale.

3.2.2 Georgia Institute of Technology Launcher

The Georgia Institute of Technology launcher was constructed under an Office
of Naval Research Multidisciplinary University Research Initiative (ONR-MURI)
grant. This launcher was designed for studies of friction and wear in the bore of
the launcher. The majority of the research in this dissertation was funded under
this grant, much of it is related to this launcher so it is necessary to present the
stiffness calculation for it as well.

Before describing the stiffness calculation, this is an appropriate place to intro-
duce the capabilities of this launcher. The Georgia Tech. launcher is relatively
small by laboratory launcher standards. It is 1.5 m in length and fires armatures
that weigh approximately 10 g to velocities in excess of 2 km/s. The capacitor
power supply stores 200 kJ of energy distributed over six different banks. Each
bank can be fired individually and the delay between each bank is programmable.
Pictures of the launcher are shown in Figure 3.2. The containment is made of elec-
trically isolated stainless steel laminates. These laminates are also isolated from
the rails with G-10 insulators. The launcher is housed in an acoustic chamber and
fires into an evacuated catch chamber to reduce noise.

A drawing of the cross-section of the foundation used in the simulation is shown

in Figure 3.3 (see Figure 3.2(d) for a photograph). The real launcher is held
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Figure 3.2: Georgia Institute of Technology Launcher
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together by a series of bolts and in the simulation these bolts are approximated by
the blocks shown in Figure 3.3(b). As with the MCL, a pressure was applied to the
insulation material behind the rail and the deflection was calculated for various
static pressures. The boundary conditions and applied pressures are shown in
Figure 3.3. The final result of this calculation is shown in Table 3.2. As before,
the stiffness shown in this table is at the point of maximum deflection of the
foundation. In addition to the stiffness, a summary of the necessary parameters

for modeling this launcher are shown in Table 3.2.

Table 3.2: Georgia Institute of Technology Launcher Parameters

Symbol Description Value

E Elastic Modulus for Rail Material 120 GPa

G Shear Modulus for Rail Material 47 GPa

K Timoshenko Shear Coefficient 0.833

p Density of Rail Material 8320 kg/m?

J Cross-Sectional Moment of Inertia of Rail  1.372 x 1072 m?
A Cross-sectional Area of Rail 1.815 x 107* m?
h Height of Rail 0.0096 m

B Width of Rail 0.0189 m

ko Areal Stiffness of Foundation Material ~ 5.45 x 10! N/m?
Ver Bernoulli-Euler Critical Velocity 1314 m/s
Vsh Shear Velocity 2170 m/s

Vgr Bar Velocity 3797 m/s

3.3 Modeling the Beam on an Elastic Foundation

The basic principle of the finite element method is to discretize the dynamics of the
system by representing the components using nodes and interpolation functions.

The basic equation being solved in a finite element analysis is as follows.

(M6 + [C)0 + [K]6 = F (3.4)
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Where 0 represents the deflection of the nodes, [M] is called the mass matrix, [C] is
the damping matrix, [K] is the stiffness matrix and F' represents the forces at the
nodes [44], [71]. The mass, stiffness and damping matrices are derived based on the
physics that the elements are intended to model. This section will briefly discuss
the Timoshenko beam elements used in ANSYS. The purpose of discussing these
elements in terms of their stiffness matrices is to point out their limitations, and
introduce an alternative method for simulating a beam on an elastic foundation
that allows more complexity of the model. Finally, the verification solution for

these elements will be shown.

3.3.1 Rail Element Formulation

The beam elements used in the simulations in this dissertation are the BEAMb54
elements in ANSYS. They are two node elements derived from the Timoshenko
beam theory [106], [82]. The interesting thing about the BEAM54 elements is that
they include the stiffness of the foundation into the element mass and stiffness
matrices. This representation reduces the number of elements necessary to model
an elastic foundation but it limits the flexibility of these elements in a number of
ways.

First, damping cannot be taken into account in the foundation itself. A damp-
ing matrix made of weighted versions of the mass and stiffness matrix can be added

into the model in the following manner.

(€] = a[M] + BIK] (3.5)

This is the standard method for adding damping into a system in ANSYS and it
is referred to as Rayleigh damping. The problem with this type of damping is that

the damping coefficients do not necessarily correspond with a damping coefficient
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that one might measure in a laboratory experiment. This complication will not be
studied in this dissertation but it is worth mentioning because damping is seen in
the experimental data in Chapter 4 and should be taken into account in the design
of an actual launcher.

The other major limitation with this type of construction is that only a linear
stiffness is available. The devices being modeled in this dissertation have inherently
non-linear foundations and so a more adaptable formulation is necessary. This
flexibility can be gained back in a surprisingly simple way. This is done by setting
the foundation stiffness equal to zero in the beam element formulation and adding
spring-damper elements at either end of the beam element. This modification
increases the number of nodes necessary, but it widens the number of problems that
can be explored. The simulations in this dissertation use both of these formulations
so it is necessary to run verification simulations for both of these situations. This

is the topic of the next section.

3.3.2 Verification of the Elements

The first step in any finite element analysis is verification of the elements. This
is done by solving a problem using both the elements and an analytic model.
For the problems explored in this dissertation, an appropriate element verification
can be made using the problem of a load moving at a constant velocity on and
infinitely long beam. This specific case is solved in great detail by Fryba [34] and
the analytic solutions of interest for this dissertation are included in Appendix B
for convenience.

For these simulations, the beam is made long enough for there to be no wave
reflections from the ends of the beam. This is necessary to approximate the infinite

beam. This simulation is performed for four different velocities and the results are
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shown in Figures 3.4-3.7. In these figures, Method 1 refers to the formulation in
the previous section that includes the foundation stiffness in the mass and stiffness
matrix of the BEAM54 element and Method 2 refers to the formulation where
spring elements were added to the ends of each beam element.

These results are shown for the beam properties listed in Table 3.1. Both of
these finite element models match the analytic results very well over all of the
velocity ranges up to and beyond the bar velocity. The plots in Figures 3.4-3.7
were simulations of a 20m long beam with 10,000 befam elements where the load
traversed the first 10 meters of the beam. The velocity of the load is indicated in
each plot along with the velocity range which each solution represents.

Fortunately, in this problem there is also some intuition to be gained by look-
ing at these quasi-static solutions. One interesting thing to be pointed out in
Figures 3.4-3.7 is the motion of the load relative to the point of maximum deflec-
tion. In the first case, Figure 3.4, the load lies directly at the point of maximum
deflection. This is similar to the deflection when the load is stationary. In the sec-
ond case, Figure 3.5, the load has moved up to the point of zero deflection. At this
point, the load is moving fast enough to climb out of the deflection well generated
by the load. In the third case, Figure 3.6, the load has moved to the top of the
deflection well. The load is moving at a constant velocity in these equations but
when the load is accelerating, it can transition between these quasi-static states.

Another interesting thing to point out in these analytic solutions is the fact
that the case pictured in Figure 3.5 shows no attenuation on the waves in front of
or behind the moving load. In Figure 3.4 there are no waves, and the solutions
in Figures 3.6-3.7 show no waves in front of the armature. This means that the
velocities between the critical and shear velocities can be thought of as a radiation

zone where the load is capable of sending out waves in both directions. This wave
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radiation will have dramatic consequences for an electromagnetic launcher [48],[49].

3.4 Rectangular Armature

With the stiffness of the launcher calculated and the rail elements verified, it is
possible to model the dynamics of the launcher using the finite element model
described in section 3.1. This simulation will be presented in this section. The
results of this simulation have been previously published [48].

First, a symmetric rectangular armature is modeled to exclude the complexities
of a more realistic geometry. This simplification will be removed in later sections.
The basic geometry of the finite element mesh is shown in Figure 3.8. In this
picture, two rails are shown, this is just for display purposes. In the actual simula-
tion, symmetry was assumed and only one half of the armature and one rail were
actually simulated. The launcher was modeled as being 1.5 meters long and the
armature was 7 cm long. The material parameters and geometry of this system

are based on the Medium Caliber Launcher presented in Section 3.2.1.

Armature Velocity Direction

Y ebvey
Applied Pressure

25.2 mm Aluminum
Armature

Figure 3.8: Square Armature Finite Element Mesh ((©2006, IEEE. Reprinted, with
permission from Johnson and Moon, 2006)

The armature shown in Figure 3.8 is slightly wider than the distance between

the rails. This extra width is what causes the initial static pre-stress between the
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Figure 3.9: Acceleration and Pressure as a Function of Time

rails and armature (pictured later in Figure 3.12). This is done in experimental
launchers so that electrical contact is maintained throughout the launch.

The boundary conditions and forces are also pictured in Figure 3.8. The contact
between the armature and the rails was modeled using sliding contact elements with
no friction that were capable of contact separation. The lack of friction makes it
necessary to accelerate the armature by applied displacements. A pressure was
applied to the rails behind the center of the armature to approximate the effects
of the magnetic field. The pressure and the acceleration are ramped on at the
beginning of the launch following the function plotted in Figure 3.9. This function
assumes a gradual turn-on of the acceleration and pressure up to a constant value
that is then maintained through out the launch. This is essentially the same as

assuming an ideal power supply. The gradual turn-on is necessary to get rid of
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jerk-effects (i.e. abrupt changes in the acceleration, see Section 3.5). When the
acceleration is ramped on too fast, waves are radiated from the armature. The
acceleration and applied pressure were scaled so that they are consistent with each
other according to Equation 3.2. The final result of all of this is a simulation of
an armature accelerating from zero up to approximately 3 km/s as it exits the rail
guide way in about 1.2 ms. This is accomplished by solving approximately 13, 000
transient load steps.

As a final note it should be also stated that the materials used in this simulation
have been assumed to have a linearly elastic response throughout the launch. Large
enough stresses to cause plastic deformations were encountered but studying these

higher order effects is not the purpose of this simulation.

3.4.1 Railway Dynamics

The first thing to discuss is the dynamics of the rails during this launch. This is
done by plotting a few snapshots of the rail deflection at different times. These
plots are shown in Figure 3.10 The purpose of this figure is to illustrate the fact
that waves propagate out in front of the armature after it passes through the
critical velocity. This plot can be made more enlightening by taking many of
these ‘snapshots’ in time and generating a surface plot of the entire time history
of the beam. A gradient plot of this surface is shown in Figure 3.11. In this
plot, there are two vertical lines that show when the armature passes through the
critical velocity and the shear velocity. In addition to this, there are dotted lines
showing the position of the front and rear of the armature. When the critical
velocity is reached, waves propagate out in front of and behind the armature.
In this particular simulation, the armature accelerates past these waves. This

phenomenon has serious implications for the contact pressure between the armature
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Figure 3.10: Snapshots of Rail Deflections Throughout Launch ((©2006, IEEE.
Reprinted, with permission from Johnson and Moon, 2006)

and the rails.

After passing through the critical velocity the armature is no longer centered in
the minimum of the deflection curve. This is analogous to the constant load situ-
ation where the load starts to climb out of the ‘deflection well” (see Section 3.3.2).
The armature eventually accelerates past the shear velocity. When this occurs, the
armature is now traveling faster than the waves it radiated at the critical velocity.
This means that it catches up to them and passes over them. This can be seen
in the zoomed in plot in Figure 3.11. This causes serious interference effects that

drastically change the contact pressure which will be shown in the next section.
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Figure 3.11: Deflection of the Rails as a Function of Time for Square Armature
(©2006, IEEE. Reprinted, with permission from Johnson and Moon, 2006)
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3.4.2 Contact Pressure

The dynamics of the rails illustrated in the previous section strongly influence the
contact pressure between the armature and rails. Figure 3.12(a) shows the normal
static contact pressure between the rails and armature before the magnetic pressure
is applied to the rails. The normal contact pressure can be made into a surface
plot in a similar fashion as the rail deflection in the previous section. This plot can
be used to visualize the contact pressure dynamically as the armature accelerates
down the rails. This surface plot and its corresponding contour gradient plot are
shown in Figure 3.12. The time history had to be split into three different plots;
this is because it jumps in magnitude twice, making parts of the time history
difficult to see on the same scale. These figures also include straight lines showing
the critical and shear velocities. The x-axis on these plots represents the distance
along the armature; measured from the rear of the armature (i.e. the pressure is
being displayed in the frame of reference of the armature). Example snapshots of
each region are also shown in Figure 3.12.

Figure 3.12(b) shows the region when the armature passes through the critical
velocity. As one can see, the contact pressure shifts towards the front of the
armature. This is caused by the fact that the armature is beginning to pass over
the wave front that it has been traveling with. This is the same effect seen with
the constant load when it climbed up the side of the ‘deflection well’” at velocities
higher than the critical velocity (see Figures 3.4-3.7). This effect causes both the
position and magnitude of the contact pressure to change.

Figure 3.12(d) shows the region when the armature passes through the shear
velocity. The change in this diagram is not as severe as the critical velocity, but
as one can see, the magnitude does start to increase after the shear velocity is

reached. This is also consistent with the verification solutions. There exists no
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analytic solution for the quasi-static case (see Equation B.1) at the critical velocity,
but there is an analytic solution at the shear velocity. It is for this reason that
one would expect something more dramatic to occur at the critical velocity than
at the shear velocity.

A short time after the shear velocity, the contact area of the armature moves
to the rear and disappears, concurrently another contact area develops towards
the front of the armature and moves towards the rear. This cycle repeats itself,
and corresponds to the armature skipping over the waves on the rails. This effect
is seen in Figure 3.12(f). The slash pattern represents points of pressure that are
moving backward relative to the armature; this is reflected in the negative slope
of these slashes. This shows that the armature is actually skipping over the top of
these elastic waves. In a real electromagnetic launcher the current flow would be
interrupted at the onset of this skipping phase and an arc could form. The relative
velocity between the armature and waves is about 400 m/s and the maximum
contact pressure is far beyond the shear strength of the copper rails (approx. 0.2
GPa). The contact pressure is also very sharply peaked. As one can imagine, this
could cause the gouges seen in hypervelocity electromagnetic launchers [60]. The
model being explored in this dissertation is not sophisticated enough to offer an
outright explanation for gouging, but it does show a potential avenue for explaining
for the onset of rail gouging. The presently accepted model for gouging is an
empirical model that explores the interaction between two sliding interfaces based
on collected data [93]. This empirical model assumes that the pressure between
the rails and armature increases to a certain threshold where gouging will begin
to occur. This gouging threshold is a function of the material properties of the
two sliding bodies. What this simulation shows is how the pressure increases. The

waves in the rails cause the rails to essentially pinch the armature as it pushes to
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higher velocities. This model is not quite sophisticated enough to give an accurate
representation of the gouging threshold because the rail is only being modeled in
one dimension and the materials are being modeled as linear elastic. It is possible
though, that a three-dimensional or even a two-dimensional model of the rail might

be able to correlate better with the data collected on rail gouging.

3.5 ‘Jerk Effect’ Waves

In the previous section, the simulations were carefully constructed so that the ac-
celeration did not change abruptly (See Figure 3.9). The acceleration was ramped
on over a period of time (roughly equal to 200 us). This was done because when
the acceleration is ramped on more quickly, waves are seen to radiate at the begin-
ning of the launch. When this phenomenon was first seen it was thought to simply
be a consequence of a poorly formulated acceleration curve, but these waves have
been observed on the Georgia Institute of Technology launcher (See Section 4.2.2).
It is for this reason that this section will explore this phenomena computationally.
Throughout this dissertation, this phenomena is referred to as ‘jerk effect’ wave
radiation because it occurs when there is a sharp change in the acceleration which
is referred to as jerk.

To explore these ‘jerk effect’” waves, a simulation was constructed that would
show them. For the sake of comparison, this simulation used the exact same
geometry and material parameters as the simulation in the previous section. The
only difference was that the acceleration was ramped on in approximately 20us.
This is shown in the plot in Figure 3.13. This acceleration is still ramped on
continuously, but it is ramped on ten times faster. It is important to note that this
does make the exit velocity of the armature slightly different than the simulations

in the previous section, but the difference is only a few percent.
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Figure 3.13: Acceleration and Pressure as a Function of Time for Jerk Effect
Simulation

3.5.1 ‘Jerk Effect’ Railway Dynamics

As before, the first thing to look at is the dynamic deflection of the rails. This
is plotted in Figure 3.14. The major difference between this plot and Figure 3.11
is that the wave radiation begins almost as soon as the armature starts to move.
The amplitude of these waves will be a function of the amount of jerk that there
is but in general they will be smaller in amplitude than the waves seen after the
critical velocity. It is important to stress that this wave radiation effect is distinct

from the critical velocity wave radiation and should be treated as such.
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Figure 3.14: Dynamic Rail Deflection With Jerk Effect Waves

3.5.2 ‘Jerk Effect’ Contact Pressure

Even though the jerk effect waves are smaller in amplitude than the critical velocity
waves, they can still have a dramatic impact on the contact pressure between the
armature and the rail. This is shown in Figure 3.15. The first thing to note is
that the contact pressure shifts abruptly to the front of the armature when the
acceleration is ramped on (near 300 us in Figure 3.15). This is in contrast to the
the more continuous change that is seen in Figure 3.12. After the acceleration is
ramped on, the contact pressure is seen to oscillate back and forth. This oscillation
appears to be caused by vibrations of the armature itself. This is reflected in the
constant frequency of these oscillations in the reference frame of the armature (see
Figure 3.15(a)). If they were caused by the armature passing over waves in the rail

then the frequency would increase dramatically as the armature accelerated. In a

64



Pressure (GPa)

Time (msec)
o o o
S (o] ©

o
N

Pressure (GPa)

2IODist 30 40 50 60
ance Along Armaty 70

re (mm)

cr

1 : : ; |
20 30 40 50 60 70
Distance Along Armature (mm
T
L a
*01 @)

0.15

Contact Pfessure (GPa)

——
< 12t e ———
2 ————
T S —
g /7 '
T (S
= Vsh
0.9}
1 J
0 10 20 30 40 50 60 70
Distance Along Armature (mm
T
; * (b)
0.2 0.4 0.6 0.8 1 12

Contact Pressure (GPa)

Figure 3.15: Dynamic Contact Pressure With Jerk Effect Waves

65



real launcher, this jerk is believed to occur when the armature breaks free of the
static friction between it and the rail. This oscillation of the contact pressure is
an interesting side effect that could be detrimental to the overall performance and
integrity of the armature to rail contact. Measurement of these waves could offer
a technique for comparing different armature designs and material combinations
(see Section 4.2.2).

As before, when the armature passes through the critical velocity, the contact
pressure shifts forward and increases in amplitude. This effect is a bit harder to
see in this simulation but it is visible in Figure 3.15(a). Finally, in the region above
the shear velocity, the armature is skipping over the waves in the rail, just as it

did in the simulation in the previous section.

3.6 ‘C’ Shaped Armature

The next step in making this simulation less idealized is to model a more realistic
armature shape. Typical armatures are shaped with trailing arms as shown in
Figure 3.16. This type of armature is referred to as a ‘C’ shaped armature [40].
The idea behind this armature design is to take advantage of the electromagnetic
field to keep the armature in contact with the rails. The trailing arms carry
currents traveling in opposite directions, these currents repel each other and push
the armature legs against the rails. The removed section in the middle of the
armature also reduces the parasitic mass for the launch.

The overall method for simulating the ‘C’-shaped armature is very similar to
the square armature in the previous section. A pressure is applied to the rails
behind the armature and the armature is moved by an applied displacement. The
pressure and acceleration are then scaled in the same way indicated in the previous

section. The major difference is that a repulsive pressure must also be applied to

66



Applied Pressure
A

Applied
Displacement

YEVYYYYY Vb Yb YR YYLYYYy Aluminum

Applied Pressure Armature

Figure 3.16: ‘C’-Shaped Armature Finite Element Mesh ((©2007, IEEE. Reprinted,
with permission from Johnson and Moon, 2007)

the trailing arms of the armature. This was done, and to keep things simple the
pressure was assumed to be 32% larger than the pressure applied to the rails. This
increase in pressure is justified because of the increased magnetic field behind the
armature. The percentage used corresponds to a 15% increase in the magnetic field
directly behind the armature as compared to the field between the rails far behind
the armature. This is a conservative number for the increase in the magnetic field,
but other values have been simulated and the general observations that will be
made about this simulation do not change with this percentage. The magnitudes
of the pressures change, but the dynamic effects discussed in this section are still
present.

As with the square armature, the final result of this simulation is an armature
accelerated from zero to 3 km/s on 1.5 meter long rails in 13,000 load steps. The
material parameters and geometry of this system are also based on the Medium

Caliber Launcher parameters presented in Section 3.2.1.
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3.6.1 Railway Dynamics with a ‘C’ Shaped Armature

As before, the first thing to plot is the dynamics of the rails. Figure 3.17 shows
the surface plot of the railway dynamics. The railway dynamics are very similar to
those of the square armature. Wave radiation occurs at the critical velocity in the
same way it does in Figure 3.11. The only major difference is that the maximum
deflections are slightly larger. This is just because of the larger interference fit of
the C-Shaped armature versus the square armature pictured in Figure 3.8, and the

transverse load applied to the trailing arms.

3.6.2 Contact Pressure with a ‘C’ Shaped Armature

The contact pressure can also be plotted for this simulation. This plot is shown
in Figure 3.18. The surface plot had to be split into two different plots because of
the large increases in the contact pressure.

In this simulation, the armature begins with a small portion at the front in
contact with the rails. The rear of the armature is then brought into contact as
the repulsion force between the trailing arms increases. The contact pressure is
relatively evenly distributed over the contact interface until the armature reaches
the critical velocity. At this point the contact pressure again moves forward and
increases in amplitude. In contrast to the square armature, the rear maintains
contact through this transition. This is because of the repulsion forces between
the trailing arms.

As with the square armature, a short time after the shear velocity the contact
pressure moves towards the rear of the armature and disappears. The front of the
armature comes back into contact with the rails and moves towards the rear of

the armature. This process repeats just as it did with the square armature. This
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indicates that the ‘C’ shaped armature will skip over the stress waves as well.
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Figure 3.18: Dynamic Contact Pressure for ‘C’-Shaped Armature ((©2007, IEEE.
Reprinted, with permission from Johnson and Moon, 2007)

The major difference between this situation and the square armature is that
the repulsion force on the trailing arms keeps the rear of the armature in contact
with the rails for a slightly longer period of time. As one can see though, the shift
forward at the critical velocity and the skipping phase after the shear velocity still

occur with the C-shaped armature.
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3.7 Nonlinear Foundation

The simulations up to this point have assumed that the foundation is perfectly
linear. For a real launcher, this is not the case. The containment is typically soft
for small loads and becomes more stiff for larger loads. This results in a nonlinear
load-deflection curve. This curve has actually been measured for the Georgia Tech.
launcher. A hydraulic device was constructed by Dr. Scott Bair of Georgia Tech.
for just this purpose. This device fits inside the bore of the assembled launcher
and applies a symmetric load to both rails while measuring the displacement. A

typical curve from one of these measurements is shown in Figure 3.19'. As one
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Figure 3.19: Measured Load-Deflection Curve for Georgia Tech. Launcher

can see, the real launcher is very soft at first and then becomes stiffer as the

!Data in Figure 3.19 courtesy of Dr. Scott Bair of Georgia Tech.
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load increases. This is most likely because of small gaps in the system when the
launcher is clamped together. Using the elements of the spring-damper formulation
discussed in Section 3.3 it is possible to put together a simulation with a nonlinear
foundation.

This simulation was done using data from the Georgia Tech. launcher. A
current curve was taken from an experiment on the launcher. The square of this
current was integrated to get the acceleration and then the acceleration was scaled
to fit the velocity information from the same launch. The experimental current
and integrated armature displacement curves are shown in Figure 3.20. These
two were used as inputs for the displacement of the armature and the pressure
applied to the rails. The boundary conditions for this launch were the same as
those shown in Figure 3.16 except that the bore was only assumed to be 12.7
mm(the armature was scaled accordingly). The rail parameters were taken from
Table 3.2 and the load-deflection curve from Figure 3.19 was used for the nonlinear
foundation springs.

A surface plot of the dynamic deflection for this simulation is shown in Fig-
ure 3.21. The interesting thing about this plot is that waves are now being gen-
erated well before the armature reaches the critical velocity. In this particular
simulation, wave radiation begins at roughly 0.7 ms. This point in time corre-
sponds to an armature velocity of just under 1100 m/s. The expected critical
velocity for a linear foundation is 1314 m/s as shown in Table 3.2. This means
that a nonlinear foundation will effectively lower the velocity at which waves are
generated. This is a reasonable result since the critical velocity depends on the
stiffness of the foundation. Having a nonlinear load-deflection curve of the form
shown in Figure 3.19 lowers the effective stiffness of the foundation. This reduction

of the onset of wave radiation will also be seen in the experimental data presented
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Figure 3.21: Dynamic Deflection of Rails During Launch

later in this dissertation. In fact, this particular simulation is compared directly
to experimental data in Section 4.2.1.

In addition to nonlinear foundation effects, this particular launch shows the
phenomenon of wave reflection. Waves are reflected from the end of the rail before
the armature leaves the bore of the launcher. This effect occurs when the armature
is traveling fast enough to radiate waves, but too slowly to pass over those waves.

This effect is seen in experimental measurements in Section 4.2.1
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Chapter 4
Stress Wave Measurements on the
Georgia Institute of Technology

Launcher

One of the primary purposes of the Georgia Tech. launcher is to help develop
diagnostic and sensor techniques to advance the study of wear in electromagnetic
launchers. Since the simulations in Chapter 3 indicate that elastic waves may
contribute to the damage of the rails, an effort was made to measure the stress
waves in the rails of the Georgia Tech. launcher. To conduct these measurements,
a device had to be constructed that was capable of measuring high frequency, large
magnitude strains in a pulsed electromagnetic field.

The requirements for this device were defined with the help of the wave simula-
tion results in Chapter 3 and a device was constructed by researchers at the Georgia
Tech. Research Institiute (GTRI) and Micron Optics. Experiments were then con-
ducted by the author and researchers from the Georgia Institute of Technology and

GTRI. The results of these experiments will be presented in the following sections.

4.1 Fiber Optic Sensor System

To construct a device for measuring the stress waves in the rails of the Georgia Tech.
launcher it was first necessary to define the requirements of the measurement sys-
tem. This was done using the simulation results in Section 3.7. These results show
that the magnitudes of the strain maxima are on the order of 5000 — 10000 pm/m.
The frequencies involved require the strain measurement device to be capable of
sampling rates greater than 200 kH z. It was decided that the device should be ca-

pable of a measurement range of 5000 m/m and a minimum sampling frequency
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of 200 kHz. The simulations actually show strains larger than this range, but a
trade-off between resolution and maximum range had to be considered. This range
turned out to be sufficient because the armature wears during each shot and this
causes the strain maxima to be below the predictions of the simulations (which do
not model wear).

Before the results are presented a brief explanation of how fiber Bragg grating
strain sensors work is necessary. This will be just a simple explanation of how

strains are measured using fiber Bragg grating sensors.

Broadband FBG sensor spacing
Amp. source depends on strain
A FBG sensor

~ J///
Reflected <~ S

Amp. spectrum

Peak reflected
wavelength depends

A on FBG spacing

(a) Fiber Bragg Grating Measurement Concept

(b) Fiber Bragg Grating Sensor Attached to Rail

Figure 4.1: Fiber Bragg Grating Strain Measurement
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The sensor itself is a short Bragg grating near the end of an optical fiber. The
Bragg grating portion of the sensor is attached to the specimen using a special
adhesive. A picture of one of these sensors attached to a copper rail from the
Georgia Tech. launcher is shown in Figure 4.1 along with a sketch of the basic
mechanism by which they operate.

The basic principle of operation of one of these sensors is relatively simple. First
a broadband light source is transmitted down the fiber. When the light reaches
the sensor the majority of light passes through unimpeded, but a small band of
light is reflected back down the fiber and back to the measurement device. This
process is pictured in Figure 4.1. The wavelength A of this reflected signal depends

on the spacing of the grating in the following way [19].
\ = 2nD (4.1)

Where D is the period of the grating and n is the refractive index of the fiber
material. For the case of a fiber Bragg grating attached to a specimen, when the
specimen is strained, so is the fiber. This translates to a change in the reflected
wavelength. The wavelength of the reflected signal is measured and this gives a

measure of the strain according to the following equation.
e =nA\ (4.2)

Where € is the strain, A\ is the change in the peak reflected wavelength and 7 is
a calibration constant. For the sensors used in the experiments in this chapter the
typical change in wavelength was 1.2 pm per microstrain. The difficult part of this
type of measurement is to detect these very small changes in the peak reflected
wavelength. This is typically accomplished using a wavelength tunable filter. These
systems are typically limited to frequencies below 2 kHz so they would not work
for our application. To solve this problem, Micron Optics developed a Fabry-

Perot tunable filter based system that meets our high frequency requirements.
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The details of this specific device are proprietary, but a description of Fabry-Perot
tunable filters in general can be found in a book by M. Vaughan [102]. Essentially,
a Fabry-Perot filter uses interference of light between two parallel planes that
only allows transmission of a small bandwidth of light. A tunable Fabry-Perot
filter changes the spacing of the parallel planes to change the peak transmission
wavelength. This is used to scan over the output of the fiber Bragg grating to give
a measure of the peak wavelength reflected from the sensor (which leads to the

measurement of strain).

4.2 Measurements

Channels for
strain gages

Figure 4.2: Modified Georgia Tech. Launcher Cross-Section

Various strain measurements were made during the launch of the projectile.
The intention of these measurements was to test the validity of the finite element
simulations of Chapter 3. This was done by measuring the strain at various po-
sitions along the length of the launcher for various different launch energies. To

accommodate the strain gages, a minor modification to the insulators behind the
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rails had to be made. A 0.1875” diameter ball end mill was used to cut a small
channel down the length of these insulators to accommodate the strain gages (ap-
proximate depth = .07”). A drawing of the modified containment is pictured in

Figure 4.2.

4.2.1 Single Rail Experiment

Gage 2: 04 m
Gage 1: 0.3 m—l

Gage 4: 1.3m

Gage 3: 1.Im _l

Armature Start
Position 0.0 m

Figure 4.3: Gage Positions for Single Rail Experiments

The first set of tests conducted involved instrumenting just one of the rails.
For this test, strain gages were placed at 0.3 m, 0.4 m, 1.1 m and 1.3 m from
the start position of the armature as pictured in Figure 4.3. The launcher was
then fired at launch velocities ranging from 0.9 km/s to 1.9 km/s and the dynamic
strain was recorded on all four channels. The data for these launches is shown
in Figures 4.4-4.7 along with the current pulses. The data from these launches
shows that the strain can reach values of 5000 pum/m as the armature passes by.
This observation is well in line with the predictions of the simulation. It should
be noted that a large dip in the strain was seen in Figure 4.7 on the fourth sensor.
This anomaly is believed to be a problem with the data acquisition card used in

the strain measurement device.
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A definite transition from no wave radiation to wave radiation is visible. This
transition is indicative of passing through a critical velocity. This is seen in all
of the launches in Figures 4.4-4.7. Interestingly enough, wave radiation is visible
even in the 800m/s launch. This is well below the predicted value for a linear
foundation and shows that either the nonlinearity in the load deflection curve of
the foundation (see Section 3.7) and/or the inertia effects of the foundation (see
Section 2.4.1) cause wave radiation to occur below the critical velocity predicted
by the simple linear theory (Section 2.4). At this point it is difficult to say which
of these effects is the most prominent.

Another phenomenon that is seen in these plots is wave reflection. This is
most visible in Figure 4.5 where the first wave reflection is seen at approximately
1500 ps on the fourth sensor. The wave can then be followed all the way back
to the first sensor where it has decreased in amplitude. In this particular shot,
the armature left the end of the launcher at approximately the same time that
this wave reflection is seen(/ 1600 ps). This means that the wave had to have
reflected from the end of the beam before the armature left the launcher. The end
result of this is that the armature had to have passed over this wave. This sort of
interaction is also seen in the simulations of Chapter 3.

One phenomena visible in these tests that is not in the simulations is the
reduction of strain along the length of the rails. For example, in Figure 4.6 the
maximum strain on the first and second gages is nearly 5000 pm/m, while on the
third and fourth gages it has dropped by nearly a factor of five. The simulations
in Chapter 3 predict that this strain should increase farther down the rails. This
discrepancy can be explained by the fact that the simulation does not take into
account the wear of the armature during launch. For these high velocity launches,

the contact surface of the armature is melted during the launch. This decreases the
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800 m/s 1000 m/s 1200 m/s 1500 m/s 1700 m/s

Figure 4.8: Armatures Fired at Various Velocities

interference fit and would cause a decrease in the strain seen at the muzzle end of
the launcher. A picture of some armatures fired on the Georgia Tech. launcher at
velocities similar to those in these launches is shown in Figure 4.8. These are not
the actual armatures fired on the shots in Figures 4.4-4.7, but they do illustrate
the typical wear patterns seen during launch. In low velocity shots, the surfaces
of the armature melt and wear down and the trailing arms melt off in very high
velocity shots. The damage to the front of the armatures in Figure 4.8 is due to
them hitting the end of the catch chamber.

Another interesting plot to make is the maxima of the strain signals as a func-
tion of the instantaneous velocity for each of the sensors. The instantaneous ve-
locity can be calculated by integrating the square of the current and then using a
least squares program to scale it to the information from the b-dots. This instan-
taneous velocity can then be interpolated at the position of the armature. This
plot is shown in Figure 4.9. Both the maximum tensile and compressive strains
are shown for each of the sensors for all of the shots in Figures 4.4-4.7. In this plot
it is seen that the strain increases dramatically after approximately 1 km/s. This

is expected when the armature passes into a wave radiation state. This transition
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can also be seen in the actual strain data in Figures 4.4-4.7. It is interesting that
the gages at the muzzle end of the launcher are essentially flat until approximately
1600 m/s, where a small increase is visible. This increase in the strain in this
shot could be due to the fact that the armature is approaching the shear speed of
the beam. This statement is only a conjecture of course, but this launch reached
the highest velocity that has been attained on the Georgia Institute of Technology
launcher and so no data is available beyond this point. This is definitely a question

for future research.

4.2.2 ’Jerk Effect’ Wave Analysis

For the plots shown in Figures 4.4-4.7, there is consistently a small wave that is
traveling in front of the armature. This wave is believed to be generated when
the armature breaks free from the static friction between the armature and guide
rails. When this occurs, there is a discontinuity in the acceleration of the armature.
This wave radiation can be called ’jerk effect’ wave radiation. This effect has been
seen computationally (see Section 3.5) and this section will look at it a little more

closely for the experimental data from the launches in the previous section.

Table 4.1: Jerk Effect Analysis Parameters
Shot Velocity Wave Offset Time Wave Velocity Armature Release Current

900m/s o8 s 1720m/s 0.095M A
1200m/s 58 s 1720m/s 0.180M A
1600m/s 57 s 1750m/s 0.153M A
1900m/s 60 s 1670m/s 0.138M A

This analysis will focus on first two gages from the low velocity shot. Fig-
ure 4.10 shows zoomed in versions of these waves. If the second signal is offset
then these two signals can be plotted on top of each other.  This is also shown

in Figure 4.10. The offset necessary to make this work for this particular launch
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is 58 us. Since the gages were offset from one another by 0.1 m then this wave is
traveling at approximately 1720m/s. If this velocity is propagated back to the
start position of the armature then one finds that the wave was radiated 18 us
after the capacitor banks were fired. This point is indicated in the fourth plot
of Figure 4.10 with a vertical line. This indicates that the armature broke free
at approximately 0.095 M A of current. Since the force on the armature can be
related to the current, through Equation 1.7, this is essentially a measure of the
frictional force between the armature and the rails. The corresponding values from
this analysis for all four shots are shown in Table 4.1.

This analysis could be used as a comparative test for different armature designs
and material parameters. For example, two similarly shaped armatures could
be coated with different materials to see how coatings effect the initial contact
friction. Tests of this sort have not been conducted yet, but with this jerk effect
measurement, a quantitative comparison could be made. It should be noted that
these shots were fired on the same set of rails and that each shot lays down a layer
of material on the rails so if frictional tests are conducted then new rails should be
used. Of course all of this is heavily dependent on whether the jerk effect waves are
visible. In the tests in the next section, they are not. These tests were performed
after the launcher containment was modified. Between these two test series, the
laminates of the launcher containment were found to slip apart. The containment
was fixed, and a large aluminum plate was added to the top. With the addition
of this plate the jerk effect waves are no longer visible. The exact mechanism that
caused this is unknown, but is probably because of the extra bending rigidity that
the aluminum plate offers over the laminated structure. This would be another

interesting phenomenon to study in future tests.
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4.2.3 Computational Comparison

The data in Figure 4.5 shows some of the same phenomena seen in Chapter 3
such as wave reflection and ‘jerk effect” waves (see Sections 3.4 and 3.5). It is for
this reason that this launch was simulated for a comparison. The results of this
comparison will be shown in this section. The launch simulated in Section 3.7 was
actually based on the experimental data from the launch in Figure 4.5. The final
results of this simulation are plotted in Figure 4.14. The computational results have
been offset just so that the results can be more easily compared. This simulation
illustrates both the strengths and weaknesses of this simulation technique.

First of all, the signals do not correspond exactly in time because of the lack of
experimental information about the armature position during launch. The strain
at the breech end of the launcher is similar in shape between the two. The mag-
nitude is off because the armature simulated in this launch is different than the
armatures actually used in the launcher (compare Figures 4.8 and 3.16). The ar-
mature appears to radiate waves before the simulation. This is reflected in the
width of the wave group at the muzzle end and the wave generation seen in the
second sensor (Figure 4.14(b)). The experimental data shows more wave peaks
than the simulated data. This early wave radiation could be caused by extra slack
in the foundation or inertial effects from the mass of the foundation. The simplified
model being explored here is capable of exploring the extra slack, but the inertial
effects would have to be taken into account using mass elements attached to the
foundation springs.

Another difference is that the strain in the simulation is higher at the muzzle
end of the launch. This discrepancy is primarily because the simulation does not
model the wear of the armature during launch. To get a better representation of

the magnitude of the strain, the wear of the armature must be modeled in a future

93



= 6000 ; ; ! ! ! ! ! !
~ Computational Results:
£ 40001 ——J—Experimental Results l
2000 : N 1 (a)
. < Armature Waves
® 0 A A | < o o ]
—-2000 I I i I I i i i
0 02 04 06 08 1 12 14 16
= 6000 ; ; ! ! ! ! ! !
~ ) . . ) ) )
£ 4000
=
= 2000
= oF
N
~2000
0
= 6000 . . ! ! !
~ . . . .
g 4000 e :
= TR (0
2000 + S ST AR ¢ 1 (c
= Armature Waves<S .
— )
_2000 1 1 ] ] ] ] ] ]
0 02 04 06 08 1 12 14 16
= 6000 . . ! ! !
~ . . . . .
£ 4000t :
3 . . , . 'A
2000 - Armature Waves=— 2 |
-§ : : T T
o 0rF TN : :
a—; .
—-2000 1 1 I i i I I I
0 02 04 06 08 1 12 14 16

Time (msec)

Figure 4.14: Comparison of Simulated System and Experimental Measurements.
(a) Strain at 0.3 m, (b) Strain at 0.4 m, (c¢) Strain at 1.1 m, (d) Strain at 1.3 m

94



version of this simulation.

Finally, wave reflection is seen in both the simulation and experiment. This
reflected signal occurs in this shot because the armature was traveling just fast
enough to radiate waves, but not fast enough to pass over them. The magnitude
and temporal width of these reflected waves are similar in the experiment and

simulation (See Figures 4.14(c) and (d))

4.2.4 Two-Rail Experiments

Gage 1: 0.4 m Gage 3: 1.2m

Armature Start
Position 0.0 m

Gage 2: 0.4 m
Gage 4: 1.2m

Figure 4.15: Gage Positions for Two Rail Experiments

The next set of tests on the Georgia Tech. launcher consisted of instrumenting
both of the rails during the launch. This was done according to the diagram in
Figure 4.15. This time the launcher was fired at five different velocities and the
results are shown in Figures 4.16-4.20.  This data shows some interesting char-
acteristics. First of all, the signals from the breech sensors are roughly equivalent
for each launch (in most cases), while the signals from the muzzle sensors are very
different. The muzzle data shows a bias towards more strain in the top rail. This
indicates that the armature has worn down to a loose fit between the rails and has

probably lost stability. The reason for the bias towards the top is unknown, but
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it could be that the armature has moved into a divergent state of stability (see
Chapter 5).

The next observation can be made by comparing data from subsequent shots
from the breech end sensors. For example, if one compares the strain in the breech
sensors between Figures 4.18, 4.19 and 4.20 it is easy to see that the number
of oscillations of the strain increases. In lower velocity shots, the strain looks
essentially the same as it does in Figure 4.19 (in shape, not magnitude). What
this shows is that as the armature velocity increases, the magnitude of the waves
increases and the number of waves also increases. This is representative of a
transition to a wave radiation state as seen in the simulations in Chapter 3.

Another way to demonstrate this transition is to plot the maximum strain in
each rail as a function of the instantaneous velocity of the armature. This plot is
shown in Figure 4.21. Asin Section 4.2.1, the velocity in this plot is an approximate
value for the instantaneous velocity as the armature passes the strain gage. The
strain is seen to increase at about 800 m/s in this case. This data set also shows
roughly flat strain at the muzzle end of the launcher. Again, this is most likely
due to the wear of the armature.

It should also be noted that an attempt was made to compare data between
the tests in this section, Section 4.2.1 and other tests that were performed (See
Appendix E for the data from these tests). It was found that large discrepancies
exist between tests on different builds of the launcher. In other words, if tests
are performed and then the launcher is taken apart, put back together then the
strain maxima will be different. This indicates that there is some repeatability
issues associated with the assembly of the launcher. The source of this uncertainty
is unknown, but it does need to be studied because it will probably affect non-

mechanical measurements as well.
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Chapter 5
Armature Stability

The stability of the armature in the bore of the launcher is an important phe-
nomena to understand for all of the possible applications of an electromagnetic
launcher. In the design of any launching system it is vital to understand the angu-
lar motion of the projectile as it is being accelerated and after it exits the launcher.
In classical weapons design, in-bore angular motion of the projectile relative to the
axis of the bore is referred to as balloting [17]. Balloting can cause damage and
wear to the bore and the payload of the projectile. As the projectile exits the
bore it will rotate, this is referred to as tip-off. These phenomena directly effect
the accuracy of the launcher. In the case of a Naval rail launcher with a range
of 300 km, even a small tip-off could be problematic. It should be noted that
the present vision of a Naval launcher includes guided projectiles, but any tip-off
will directly effect the amount of payload mass that is dedicated to the guidance
system, reducing the overall efficiency /effectiveness of the system.

Much of the literature associated with balloting is directed towards conven-
tional weapons(e.g. see [80] and [88]). The issue of balloting in electromagnetic
launchers specifically has been explored in the literature to some extent as well.
Balloting has been looked at as a function of the stiffness of the armature and
bore rider [17] and the straightness of the rails [14]. The work in this dissertation
also looks at the effect of the stiffness of the armature and bore-rider, but explores
the problem from the perspective of stability. In the previous chapters of this dis-
sertation, the armature was constrained to follow the axis of the launcher during
launch. This constraint prohibits balloting and tip-off effects. In the simulations
in this chapter this constraint was removed so that the dynamics of the armature

could be explored. Removing this constraint requires that both of the rails be sim-
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ulated. The first finite element simulation in this section does this for a geometry
similar to the Georgia Tech. launcher. Next, a mathematical model of a projectile
accelerated down the bore of a launcher is considered. This model is explored from
the perspective of the stability of the armature. It is found that the stability of
the armature could be compromised if the armature and payload are not designed
properly. The armature could go into an unstable state of divergence or flutter

depending on the relative positions of the center of pressure and center of mass.

5.1 Two Rail Simulation

To explore the stability of the armature, a simulation of the Georgia Tech. launcher
including both rails was developed. For the lateral dynamics of the armature to
be visible, it is necessary for the armature to have more than just one degree of
freedom. This means that the armature must be pushed by an external pressure
instead of an applied displacement. This complication is considerably more difficult
than it appears. The main problem is associated with the friction between the
armature and the rails. This has to be included for the armature to be constrained
in the simulation. Since no experimental friction models exist for a rail launcher,
an approximate friction had to be used. For the simulations in this section, the
friction was assumed to drop exponentially with the velocity of the armature. A
plot of this friction coefficient is shown in Figure 5.1. The static friction was
assumed to be approximately 0.25 and this dropped to one fifth of its original
value at high velocities. Since no experimental model of friction exists for these
systems, this friction model is essentially a guess.

The boundary conditions for this simulation are pictured in Figure 5.2. In
this case, both rails were actually simulated and the foundation was assumed to

be nonlinear as pictured in Figure 3.19 in Section 3.7. The armature was shaped
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Figure 5.1: Assumed Friction Model

like the Georgia Tech. launcher armature and an offset in the center of mass
was introduced. This offset was introduced by offsetting the middle region of
the armature as shown in Figure 5.2. This offset was introduced to break the
symmetry in order to test whether any instabilities might be present. The front of
the armature in Figure 5.2 has what is referred to as a bore rider. In the simulation
in this section this bore rider is assumed to be more narrow than the space between
the rails by approximately 0.25 mm on each side. In experiments, this space is filled
by wrapping non-conductive tape around the end of the armature. It is possible for
this tape to be pushed off of the tip of the armature during loading or launch and
it will be ignored in this simulation to look at a worst case scenario for the stability

of the armature. For this simulation, the applied pressure was scaled according
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to the current in Figure 3.20. The pressure in the throat of the armature was
multiplied by 50% to attain a higher launch velocity. In these simulations, this
gave the armature a final velocity of approximately 1400 m/s.

This simulation was run for various offsets of the center of mass, and the results
are shown in Figure 5.3. This plot shows the off-axis deflection of the tip of the
armature as a function of time. As one can see, the front of the armature tips to
one side and oscillates for the entire launch. This is very similar to the results in
the literature [17],[18]. From the perspective of stability analysis, this pitching of
the armature to one side is indicative of an unstable system that is in a state of
divergence. This interpretation will be discussed in detail using a mathematical

model in the next section.

5.2 Mathematical Model

A relatively simple model can be constructed to study the basic lateral dynamics
of the launcher during launch. The basic geometry and a free-body diagram of the
armature for this model are shown in Figures 5.4 and 5.5. This is a model of a
projectile with spring-loaded sliding contacts and two degrees of freedom z and ¢
which represent the deflection of the center of mass and rotation about the center
of mass away from the centerline of the guide way. The sliders are constrained to
slide in between two guides which are analogous to the rails of an electromagnetic
launcher. The only difference is that in this section, the rails are assumed to be
stationary. A model very similar to this was explored by Chu and Moon [16] for
the dynamics of magnetically levitated vehicles. For the electromagnetic launcher,
a modified version of their model is necessary. The major modification to the Chu
and Moon model is that the longitudinal forces are assumed to be proportional to

the lateral forces via a friction coefficient p as shown in Figure 5.5. The derivation
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of the equation of motion for this system can be found in Appendix D The equation

of motion for this system is as follows.

m 0 T
+ (5.1)
0 I, 0
4k 4ke T
=0

4k(e + pd) 4k(a® 4+ € + pe(d + A) + App) + aymp 0

For the sake of brevity, the derivation of this equation of motion is presented in
Appendix D. The distances 2a and 2d represent the length of the armature and the
width of the guide way. The distance from the geometric center of the armature
to the center of mass is represented by e and the propulsion force T is applied at
a distance p from the center of mass as shown in Figure 5.4. The propulsion force
has been assumed to give a constant acceleration a, along the y direction. This
assumption is covered in detail in Appendix D. The mass and moment of inertia
about the center of mass are represented by m and I,,,. The stiffness of the springs
is represented by k£ and the interference fit in between armature and the guide
way is A. This is a very simplified model of an armature, but the intention here
is just to get a rough idea of the requirements on stability for an armature in a
rail launcher. A key property of these equations is that the stiffness matrix is not
symmetric. This means that it is possible to have complex eigenvalues that can
lead to flutter instabilities. Similar properties are found in the Chu-Moon model

for magnetic levitation stability [16].

5.3 Stability Analysis

Stability information can be extracted from Equation 5.1 by solving this system

as a generalized eigenvalue problem. This can be accomplished by first writing
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Equation 5.1 in a shorter form.
[M]G+ [Klg=0 (5.2)

Where q is the vector containing = and 6 and [M] and [K] are the mass and stiffness
iwt

matrices as shown in Equation 5.1. If one assumes a solution of the form ¢ = ge

where ¢ is a constant, then Equation 5.2 becomes the following
[M]7HK]§ = w*q (5.3)

Which is just an eigenvalue problem for the eigenvalue w?. The characteristic

equation for this problem is as follows.
det([M]'[K] — w?[I]) = 0 (5.4)

Where [I] is the identity matrix. Carrying out the determinant gives the following
equation for w.

wt—aw?+5=0 (5.5)

Where a and 3 are given by the following expressions.

o= %(aymp + 4k(a + Ap(e + ) (5.6)

g

B = (AT, + mBup+ (e + e+ pld + A)) + ma,)

g
The stability of the system is defined by the value of w. This can be understood
by looking at the assumed form of the solution and re-writing w in terms of its

real and imaginary parts w, and w;.
g x eiwt _ e(iwrfwi)t (57)

When the imaginary part of w is negative and the real part is zero the solution will
grow exponentially. This is referred to as divergence. When the imaginary part of w

is negative and the real part is non-zero the solution will oscillate with an envelope
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that diverges to infinity. This type of solution is referred to as flutter. When
the imaginary part is equal to zero, the solution will oscillate. When damping
is included, these oscillations will die down. FEither way, this represents a stable
solution to the differential equation.

In addition to looking at the frequency of the solution it is possible to describe
the stability of the system using the parameters o and (. These quantities give
the stability of the system according to the plot in Figure 5.6. See [16] or [94] for
an in-depth explanation of this plot. Because of the large number of parameters
in this problem it is helpful to generate a specific example to explore the stability

of the system. This is the purpose of the next section.
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5.3.1 Stability Parameters

Now that the stability requirements have been obtained graphically, it is useful to
develop approximate values for all of the parameters in Equation 5.1. Of course,
the actual values depend heavily on the launcher and armature being used but it
is possible to put together a reasonable set of estimates for a typical launcher. The
values for this section are shown in Table 5.1.

Table 5.1: Armature Stability Parameters Estimates
Symbol Representative Value

m 0.01 kg

I, 1.6 x 1077 kgm?

a 5 mm

d 5 mm

A 0.5 mm

1 0.25

k¢ 2.3 x 108 N/m
k, 2.3 x 10" N/m
krail 1.25 x 10° N/m
kcont 5.5 x 10" N/m
ay 0.25 x 105 m /s>

The parameters in Table 5.1 are roughly comparable to the Georgia Tech.
launcher armature pictured in Figure 5.2. The coefficient of friction is from the
work of Richard Marshall and Chadee Persad [60]. This is a rough guess at the
average friction coefficient since a dynamic value has not been measured in an
electromagnetic launcher. The mass is the actual value for the Georgia Tech.
armature and the moment of inertia is calculated from the value for a rectangular
plane of length 2a and width 2d (i.e. I,, = %((2a)* + (2d)?)). The acceleration a,
is assumed to be 0.25 x 10 m/s* which is a reasonable value for an electromagnetic
launcher. The geometric parameters a and d are also loosely based on the armature

pictured in Figure 5.2. The interference fit is assumed to be approximately 0.5 mm.
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The difficult parameter to estimate is the stiffness of the springs pictured in
Figure 5.4. These springs can be used to describe the stiffness of the armature or
they can also be used to include the stiffness of the rail and containment. To get
the total stiffness of the springs the stiffnesses of the different components must
be added together. Springs in series add reciprocally so the total stiffness can be

calculated in the following way.

1 1 1 1
+—+ (5.8)

ktot karm(ztura krail kcont

Estimates of all of these will be presented here so that their relative values can
be compared. Some of these components are under compressive loads so their

stiffnesses can be approximated by using the following equation [71].

_EA

k
L

(5.9)

Where F is the elastic modulus of the material, A is the cross-sectional area per-
pendicular to the load and L is the length of the component along the direction of
compression.

The armature actually has two different stiffnesses. It is very stiff in the front
and relatively soft in the rear. This is because the rear of the armature is primarily
under bending stresses while the front is primarily under compressive stresses. The
mathematical model presented in the previous section does not consider the two
different stiffnesses so estimates for both of the front and rear of the armature will
be presented here. These estimates are labeled k¢ and k, in Table 5.1 . It should
be noted that for the following discussion, the armature will be assumed to be in
a square bore launcher. This means that its width and height are both equal to
2d. The estimate of k; in Table 5.1 was calculated by assuming that the cross-
sectional area of the part of the armature under compression is equal to (2a/3)(2d)

(i.e. length of 2a/3 and width of 2d)and the length under compression is equal to
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2d.

Where E is the elastic modulus of the armature material (assumed to be aluminum,
E =70 GPa). Because the rear of the armature is under bending stresses, k, will
be roughly one tenth of this value. This value is also listed in Table 5.1.

The stiffness of the rail can be also be approximated by assuming it is under
compression. The rails are typically made of copper so the elastic modulus is
approximately 120 GPa. The length of the armature is equal to 2a and the width
of the armature is 2d so the effective area of the rail under compression is 4ad. The
effective length is equal to the height of the rail which is approximately 9.6 mm
for the Georgia Tech. Launcher. Plugging these numbers into Equation 5.9 give
the effective stiffness k,,; in Table 5.1.

Finally, the stiffness of the containment k..,; can be approximated using the
stiffness per unit area kg that was calculated in Table 3.2. multiplying this by the
effective cross-sectional area under compression (4ad as with the rail) gives the
value in Table 3.2.

When the stiffnesses are added together reciprocally, the smallest one domi-
nates. The smallest stiffnesses in Table 5.1 are k, and kfounqe and they are both on
the order of 107 N/m. This means that, depending on which components are con-
sidered, the effective stiffness of the springs will be between 107 N/m and 10® N/m.
In the following plots both of these values will be used.

In Figure 5.7, the stability is plotted as a function of the distance to the center
of mass p and the distance to the center of pressure e. This plot is shown for two
different stiffnesses. As one can see, with these particular parameters the armature
could be divergent, flutter or stable during launch. For flutter to occur, e would

have to be negative. If the center of pressure is to far behind the center of mass
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then the armature will be in a state of divergence. This is essentially what occurred
in the simulation in Section 5.1. The center of pressure of the applied load was
well behind the center of mass of the armature. The magnitude of the stiffness
will also affect the position of the lines dividing the stable and unstable regions.
This is important to take into consideration not only in the structural design of
armatures but also in the thermal design. As the armature heats up during launch,
it’s effective stiffness will change and this could potentially push it into an unstable
region.

Most projectile designs in the literature show the armature as pushing the pay-
load from behind while using a bore-rider at the front of the payload (e.g. see [56]).
In principle, these designs could have a negative value for € so stability calculations
should be taken into account in their design to avoid flutter. In addition to this,
since the armature is pushing the payload in most of these designs, the value of p
will most likely be negative. This could lead to divergent solutions. Either of these
problems will severely influence the overall effectiveness of any electromagnetic

launching system.

5.3.2 Simulations of Armature Stability Regions

In the interest of exploring the different regions in Figure 5.7 a MATLAB program
was written to simulate Equation 5.1. This program solves the differential equation
using a fourth order Runge-Kutta solver and the results will be presented in this
section for the three different regions. For the following simulations, the initial
displacement of the center of mass and the initial rotation of the armature were
assumed to be non-zero. The initial displacement was equal to 10~*m and the
initial angle was set to 10~* radians. This was done so that the instabilities would

be brought out. The initial velocities and accelerations were assumed to be zero.
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All of the simulations in this section are of the system described in Figure 5.7 with
a spring stiffness of 1 x 10"N/m.

An example of the stable region is shown in Figures 5.8 and 5.9. Both the
time history are shown as well as the phase plane plot of each coordinate versus
its velocity. These plots are for the case when p = 0.1 and € = 0.004. For this
case, the armature is stable. This stability is reflected in the oscillatory nature of
the solution. For this case the eigen-frequencies are pure real and since there is no
damping the oscillations do not die down. The vibrations in x and # are coupled
so if vibrations are generated in one of the degrees of freedom, they will generate
vibrations in the other.

Next, an example of the divergence region is shown in Figures 5.10 and 5.11.
As before, both the time history and the phase plane are plotted. These plots are
for the case when p = —0.2 and € = 0.004. For this case, the armature is in a state
of divergence. This is reflected in the fact that 6 and x blow up to large values. As
with the vibrations, the coupled nature of the problem causes both of the degrees of
freedom to diverge. It is important to note that the large deflections and rotations
seen in Figures 5.10 and 5.11 are so large because of the absence of any nonlinear
restoring terms in the Equation 5.1. In the physical system, nonlinearities would
take over well before the deflections/rotations would get this large.

Finally, an example of the flutter region is shown in Figures 5.12 and 5.13.
Again, both the time history and the phase plane are plotted. This plots are for
the case when p = —0.05 and € = —0.001. For this case, the armature is in a
state of flutter. This is reflected in the fact that 6 and p both blow up to large
values while oscillating. Again, the coupling between the degrees of freedom causes
flutter to be seen in both x and #. As with the divergent solution, the deflection

and rotation shown in Figures 5.12 and 5.13 will grow without bound for this
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simple linear model. This can be corrected by considering nonlinearities in the

model. This complication will be considered in the next section.

5.3.3 The Effect of Nonlinearities

As shown in the previous section the deflection and rotation of the armature can
grow without bound for the simple linear model when the armature is in a divergent
or flutter state. In a physical system, these values would be bounded by nonlinear
terms that would dominate the dynamics for large deflections. A simple model to

consider nonlinearities is the Duffing equation [74].
i+ az+ p2° = f(t) (5.11)

This equation describes the dynamics of an oscillator with a nonlinear load deflec-
tion curve given by ax + B3 that is driven by a forcing function f(¢). This version
of the Duffing equation ignores damping. An in-depth discussion of the properties
of this system including damping can be found in text books on chaos [74]. The
x® term serves to give a first order impression of the effect of nonlinearities. For
the armature model being considered in this chapter, the nonlinearity would have
to be taken into account in both degrees of freedom. This can be done in the

following way.

m 0 x Bix Big z?
s + (5.12)
0 Iy 0 Bai Ba2 6?
4k 4ke T
=0

4k(e+ pd) 4k(a® + € + pe(d + A) + Aup) + aymp 0

Where the coefficients 3,1 and (35 define the magnitude of the nonlinear terms.

The of diagonal terms would take into account nonlinear coupling between the two
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degrees of freedom. For the sake of simplicity these two terms will be set equal to
zero for the following discussion.

Now that nonlinearities have been considered, it is possible to re-run the diver-
gent and flutter solutions shown in the previous section. At the present, values for
the 3 parameters are unknown and would be best determined experimentally. For
the sake of this discussion, values were chosen so that the maximum displacement
of the armature was limited to 0.5 mm and the maximum rotation was limited to
0.1 radians (= 5.7°). Different values of 3;; and (5 were tried until these require-
ments were met. There is a wide range of values that will meet the criteria, but the
simulation results are all comparable so a representative set was chosen. For the
following simulations, ;1 and [ 5 were both set equal to 10°. Again, these values
are essentially arbitrary and are just being used for the sake of discussion. These
values were used to repeat the unstable analyses given in the previous section. All
of the parameters were the same except for the addition of the § matrix.

The result of the divergent simulation is shown in Figures 5.14 and 5.15. These
simulations show some interesting behavior in both degrees of freedom. Instead of
the deflection and rotation blowing up to infinity they appear to oscillate between
two maxima in a chaotic fashion. There are a few places where the armature leans
towards one side for multiple cycles as well (e.g. at approximately 2ms). This
indicates that it is possible for the armature to lean towards one side of the bore
or to oscillate between the different sides of the bore (balloting).

It is important to end this chapter by stating that the model used here is
highly simplified and that the parameters used in the Duffing model are unknown.
Whether these effects actually occur in the bore of an experimental launcher re-
mains to be seen. Strain measurements were conducted in the Georgia Tech.

launcher that show an asymmetry in the strain in the rails (see Chapter 4). This
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asymmetry could have been caused by the armature leaning to one side, but the
results do not conclusively show this. Another set of experiments dedicated to
detecting this phenomena using these strain gages might be able to confirm this,

but the experimental evidence as it stands is somewhat inconclusive.
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Chapter 6
Cornell Launcher Experiments and

Calculations

Electromagnetic launchers have been studied extensively since the early 1970’s.
Even with this long history of experimental work, there is a surprisingly small
number of sensors available for measurements during launch. This is primarily
because of the electromagnetic fields generated during launch. To help understand
and rectify this problem, a small-scale electromagnetic launcher was constructed at
Cornell. This small-scale system allows for testing of different sensors and sensor
systems in a short amount of time. This section will discuss this launcher and the

sensor tests that were conducted.

6.1 Description of Launcher

First it is necessary to give a basic description of the launcher. The basic electrical
components, mechanical components, and operation of the launcher will be covered

in this section.

6.1.1 Power Supply and Electrical Characteristics

The power supply for the small-scale electromagnetic launch is capacitor based. A
picture and a circuit diagram of the power supply is shown in Figure 6.1. It consists
of twelve 6700 uF" electrolytic capacitors (donated by Cornell-Dubiler) hooked up
in parallel giving a total capacitance of 0.0804F. An inductor is added to the
power supply to stretch out the length of the current pulse (L = 11.7 uH). The
firing switch is a high power silicon-controlled rectifier (SCR) with a pulse current

rating of 14.4 kA for 10ms. The capacitors are electrolytic so a crowbar diode
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Figure 6.1: Capacitor Bank for Millimeter Scale Electromagnetic Launcher
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is also located across the poles of the capacitor bank to keep the voltage from
reversing during a shot. The capacitors can be charged to a maximum of 400 V.
This gives a potential energy storage level of 6.4 kJ, but due to the limitations
of the switch, the bank has never been charged above 222V (about 2kJ). Also
shown in Figure 6.1(a) is the dump resistor. This is used to clear any excess energy
in the bank after firing a shot or in the event that a test shot must be aborted.

In addition to the electrical characteristics of the power supply it is important
to mention the characteristics of the launcher itself. The important parameter to
understand is the inductance gradient (see Equation 1.7). An approximate value of
this quantity can be calculated or measured. For this launcher, both of these have
been done. The calculation is based on equations given in a book by Frederick
Grover [37]. Grover calculates the inductance of an infinite pair of rectangular
conductors running parallel to one another The equation for this geometry is as
follows.

Ho
L'="Log ( ——
—( 09(B+C

)+1.5+Ak—Ae)) (6.1)

Where d is the distance between the centers of the rails, B and C represent their
cross-sectional dimensions (C being the smaller of the two) and the A’s are tab-
ulated in Grover’s book. For the Cornell launcher Ar = 0.389 and A, = .00249.
This gives a value of L' = 0.273 uH/m. Grover’s equation assumes that the length
of the rails is infinite and that the current is evenly distributed throughout so this
number is only a rough approximation of the inductance gradient of this launcher.

A value for the inductance gradient was also measured using a precision LCR
meter. The launcher was loaded and assembled and the inductance was measured
at a frequency of 1 kHz. The launcher was then taken apart, the armature was
moved down the length of the launcher and the inductance was measured again.

This process was repeated to give the data plotted in Figure 6.2. The final exper-
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Figure 6.2: Inductance Gradient Measurement

imental value of the inductance gradient is L' = 0.291 pH/m. The experimental
number is about 6% higher than the calculated number from Equation 6.1.

It is important to note the values of L’ presented in this section are only ap-
proximate. While they are good enough to use in an approximate model, in an
actual launch, the value of this parameter will vary as the current diffuses from

the outside of the rails into the interior [35].

6.1.2 Mechanical Components

The main mechanical component of the electromagnetic launcher is the contain-
ment. A drawing of this containment is shown in Figure 6.3 along with a picture.
The containment was made of 1/2” x 2” polycarbonate. This material was chosen

because of its resistance to impact, transparency, machinability and its resistive
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properties. The rails of the launcher are made from 1/16” x 1/2” copper bars.The
design of the containment also includes a 1/2"” x 1/2” space behind the rails. This
space was left so that the foundation stiffness could be modified by filling it with
different materials. It is also intended as space for sensors on the back surface of
the rails. This space is filled with rubber in the picture in Figure 6.3.

Figure 6.4 shows a picture of the armatures being machined along with a di-
mensioned sketch of the armature. The sharp corners shown in Figure 6.4 are
rounded off with a file before the armature is loaded into the launcher. The launch

mass of one of these armatures is approximately 0.08 g.

6.2 Rail Launcher Diagnostics

Since the purpose of the Cornell launcher is to test sensor systems, this section
will cover the diagnostics built for this launcher. Typical measurements made on a
rail launcher include current, velocity and muzzle/breech voltage. The techniques
involved in the first two of these will be covered in this section. The current
is measured using rogowski coils, which is the classic method, but the velocity
measurement was done using a new technique that was developed on this launcher.
This new technique allows for a higher resolution velocity measurement while using

less data acquisition resources.

6.2.1 Current Measurement

The primary technique for measuring the current involves the use of Rogowski
coils. This device is a coil of wire that is wrapped around the component that
is carrying current. A picture of one of the Rogowski coils built for the Cornell

launcher is pictured in Figure 6.5 along with a sketch of how it works. A Rogowski
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Figure 6.5: Rogowski coil for current measurements

coil measures the change in the magnetic field along its length. The integral of
the output of the gives the current flowing through the conductor according to the
following equation.
t

1) =7 [ Vastr)ar (62)
Where 7 is a calibration constant. For the Rogowski coils on the Cornell launcher,
the calibration constant was measured by pulsing a current through a calibrated
shunt with a known resistance. The constant for these coils was found to be equal
to 10.63 x 10° A/V's. For the experiments in this section, the voltage is measured

using a computer data acquisition card and the integration is carried out using
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software. A typical voltage trace from a launch is shown in Figure 6.6. In this plot
the current flowing through the rails and the current flowing through the crowbar
diode are measured. For this launcher, it is necessary to monitor both of these

currents because the SCR switch and crowbar diode are operating near their design

limits.
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Figure 6.6: Example Rogowski Coil Measurement
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6.2.2 Velocity Measurements

One of the primary measurements made in any electromagnetic launcher is the
velocity of the projectile. In this harsh environment, even this measurement can
be surprisingly difficult. Typically it is conducted by using a series of inductive
coils placed at intervals along the length of the launcher. When the armature
passes by these coils, a small voltage pulse is generated. This is process is pictured
in Figure 6.7. The voltage trace seen in Figure 6.7 is typical for rail launchers. The
signal consists of a high frequency, high amplitude pulse followed by a low frequency
pulse of opposite polarity. The high frequency component is generated by the
electromagnetic field in front of the armature and the low frequency component is
generated by the relatively slowly changing magnetic field behind the armature.
This type of sensor is referred to as a B-dot [69]. By using multiple B-dots and
comparing the time between the pulses, a measure of the velocity of the projectile
can be obtained.

While the B-dot is quite robust, it does have shortcomings. The primary lim-

Typical B-dot Signal

Magnetic
Field ~ dB

S

In front of armature |

dB . ]
7t Behind armature |
212 2?4 2.‘6 28 f; 312 3t4 3‘.6 3.‘8 4
Time (ms)

Inductive Coil

Figure 6.7: B-dot Signal for Measuring Armature Velocity
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itation of this technique is its resolution. The spatial resolution is limited by the
number of B-dots available. In addition to this, conventional techniques require
one data acquisition channel per B-dot. This can cause the cost of measuring
the velocity to become large very quickly. The combination of these two limita-
tions typically limits the number of velocity data points during launch to below 20
points. This low resolution makes it very difficult to verify the basic dynamics of
the armature during launch. A higher resolution system could allow for a better
model of the launch dynamics to be developed (e.g. dynamic friction and wear).
Other techniques such as Doppler-radar [83] and laser-Doppler [5] have been tried,
but the standard technique is still to use a series of B-dots.

The velocity measurement technique presented in this section is a modified
version of the conventional technique. To illustrate the difference between the two,
an experiment was performed on the Cornell launcher where both techniques were
applied at the same time. The results of that experiment will be presented next.

One technique to reduce the number of channels is to add up the signals from
different B-dots to get one signal with a number of peaks. This idea can work
under some circumstances, but typically the combination of positive and negative
voltages gives a distorted signal that is difficult to interpret. One way to get around
this problem is to insert a precision half-wave rectifier before adding the signals
together. A diagram of the circuit used is shown in Figure 6.8. This gets rid of
the distortion introduced by the low frequency negative troughs in the individual
B-dot signals.

One other type of distortion must be considered before the system will work
and that is interference between adjacent peaks. If two positive peaks are too close
together in time then the peaks will be distorted when the two signals are added

together. Fortunately, there is a simple solution to this problem as well; adding
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together alternating B-dots separates the signals. A diagram of this technique
is shown in Figure 6.9. This diagram illustrates how the resolution can always
be increased by simply sampling on more channels. The nice thing about this
technique is that it is possible to calculate the spatial resolution. It is dependent
on the frequency of the pulse in front of the armature which can be calculated very

roughly in the following way.

Varm
fpulse ~ ﬁL (63)

Where v, is the velocity of the armature as it passes the B-dot, L., is the
length of the armature. The quantity 3 requires a bit more explanation. As stated
before, the high frequency pulse in the B-dot signal represents the change in the
magnetic field in front of the armature. The quantity 3L, represents how far this
field extends in front of the armature. This means that 3 represents the number of
armature lengths that the magnetic field occupies in front of the armature. This
means that it would have to be measured/simulated for any launcher which uses
this technique. For the case of the Cornell launcher, a rough value for 6L,
is 8cm. This value was found experimentally through the tests outlined in this

section by measuring the frequency of the pulse and the velocity of the armature.

140



(N.K)

(N.K-1) K

Signals
(N.D)
(N -1,K)

EEE—

(K-1)
W-LK-D p Signals
(1,2

K=1
LD Signals

N xK Sensor Signals —» N Composite Signals

N xK NxK K Voltage
I4- B-dots Rectifiers >|< Adders p |

Figure 6.9: Composite B-dot System for Measuring Armature Velocity

141



With the frequency of the pulse calculated it is possible to write down the

equation for the maximum spatial resolution for one channel.

arm Larm
2fpulse 2

The extra factor of two comes from the fact that only half of the pulse is seen. The
interesting thing about this technique is that Equation 6.4 represents the maximum
spatial resolution for one channel. The resolution can always be increased by
adding more channels. For an evenly spaced array of B-dots separated into N
channels, the maximum resolution for this technique is given by the following
equation:

BLarm

w 5N (6.5)

This assumes of course that the peaks between channels are actually distinguish-
able. In a real system, the practical limitation of this technique would be space
for the sensors and cables.

Next, an experiment was put together to test this technique. This involved a
series of ten B-dots added together over two different channels. A picture of these
B-dots is shown in Figure 6.10. The spacing between adjacent B-dots is 4 ¢m, this
is equal to the resolution as calculated from Equation 6.4. The b-dots pictured are
just simple coils of 32 gage magnet wire with 75 turns each. They are embedded
in a piece of polyethelene on top of which the launcher sits. For this test, the
capacitor bank was charged to 222 V. As shown in Figure 6.8, the output of each
sensor is sent through a voltage buffer and a precision rectifier. Alternating B-dot
signals are then added together to give the final signal shown in Figure 6.11. This
test used two channels, but probably would have also worked on a single channel.
Also included are the signals from four of the individual B-dots for comparison.
This is done to show that the rectifier circuit doesn’t introduce a noticeable amount

of distortion into the positive portion of the b-dot signal (phase shift or amplitude
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Figure 6.10: Picture of B-dot array used on Cornell launcher

variation). The precision rectifiers built for this experiment were found to operate
without noticable distortion up to about 100kHz. The operational amplifiers used
in this circuit have a gain bandwidth product of 100 MHz. Amplifiers with a gain
bandwidth product of 4 Mhz were found to give about 4 kHz of bandwidth. This
indicates that the nonlinear nature of the circuit pictured in Figure 6.8 tends to
reduce the bandwidth by roughly a factor of 1000. Taking this into account, this
set-up on the Cornell launcher should be capable of measuring velocities up to
about 8 km/s. Unfortunately, this launcher is not capable of launch velocities this
high so this cannot be tested.

Now that the B-dot signal has been obtained, it is possible to plot the velocity
as a function of time. This is done by taking the spacing Ax between the different
B-dots and dividing it by the time At between the signal peaks. For this test, Az
was 4 cm and the armature was started 1.8 cm from the first B-dot. This gives the
velocities plotted in Figure 6.12. The time for each data point is assumed to occur
half way between the two peaks (i.e. plotted time is first peak time plus At/2).

The curves plotted with the experimental data in Figure 6.12 are calculated
by integrating the acceleration of the armature throughout the launch. Neglecting

friction and mass loss effects, the acceleration is given by the following relationship.

L'r L'
E —  a=

prop — 9

(6.6)

2m

Since the current was measured for the launch, it can be squared and integrated
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to give an idea of the velocity of the launch. For the curve in Figure 6.12 the
scaling constants of this curve, L’ and m, were set equal to 0.273 uH/m and 0.08 ¢
(from Section 6.1). As one can see, the model fits the data pretty well using these
parameters. This is actually somewhat surprising because approximately 2/3 of
the armature melted during this launch. This means that the mass-loss term
should not have been neglected. This highlights the need for a high resolution
measurement system. If higher resolution techniques were available then it might
be possible to measure quantities such as dynamic friction and wear (i.e. mass-
loss). Unfortunately, this is not possible with the system described here, but a
Doppler sensor may be capable of making these measurements. The next section

will address the requirements for this type of system.

6.3 Parameter Estimation Techniques for Friction and
Wear Measurements

High resolution measurement techniques using the Doppler effect do exist for in-
bore measurement of armature velocity (See [5] and [83]). Unfortunately these
techniques are not used widely in experiments. This section will illustrate how
parameter estimation techniques could be used with these systems to measure
more than just the velocity of the armature. Specifically this section will cover
the use of parameter estimation for the measurement of in bore armature wear
and friction. As stated in the previous section, the B-dot system used in most
launchers is not capable of making these measurements. Therefore, one of the
goals of this section will be to outline the basic requirements for a system to make
these measurements. This will be accomplished by modeling a rail launcher with

an assumed physical model and then attempting to calculate various parameters

146



of that model using parameter estimation. The specific parameters that will be
used in this section will be similar to the Cornell launcher, but the basic model is

general enough to be applied to other launchers.

6.3.1 Basics of Parameter Estimation

This section will outline the basic principles of parameter estimation. Only the
basic equations necessary for the calculations in this dissertation will be presented.
A more complete explanation can be found in a number of books (e.g. see [107], [89]

or [75]).

Yexp
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Figure 6.13: Flow Diagram for Basic Parameter Estimation Routine

In essence, parameter estimation uses fitting routines to fit a system, usually
defined by a differential equation, to a set of data. The basic principle behind this
is shown in Figure 6.13. An estimate of the parameters p.s is given and then a
simulation of the system using p.s is generated. The output of that simulation is
compared to experimental data and a new value of p.s is generated. The whole

process is repeated and when this is done in a systematic way it is possible to
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converge on a set of parameters p.s; that are close to the real system pegp.

The first step in putting together a parameter estimation scheme is to develop
a model for the physical system. This step is specific to the system being looked at
and will be covered in detail in the next section. Once the model is developed, an
estimation scheme must be chosen. As indicated in Figure 6.13 the calculations in
this thesis will use the least squares method. This method starts by calculating the
error € (also called the residual) in the solution generated by the computational

model as shown in Figure 6.13.
€= gexp — Yest (67)

The residual is then formed into the loss function ®(p) which can be written as
follows.
1

d(p) = ~E € (6.8)

Where N is the number of data samples. The loss function gives a measure of how
close the model is to the experimental system. The next step is to minimize the loss
function with respect to the parameters. This minimization can be accomplished
using many different techniques. For the problems in this dissertation, Newton’s
method is used (see [75] for an in-depth discussion of this method). Newton’s

method involves modifying p by an amount Ap given by the following relationship.
Ap=H ' ——= (6.9)
P

Where H is the Hessian matrix given by the following relationship.

_ Po(p)
Op;0p;

H; (6.10)

The parameter estimate is changed to p.ss — Ap and the whole process is repeated
until p.s; approaches pe,p. For this to occur, the model must be a reasonable
approximation to the physical system and the initial value of p.s; must be close to

the experimental value.
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In addition to calculating the parameters, the theory offers a structure for
calculating the uncertainty in those parameters. This is done by looking at the

diagonal elements of the covariance matrix.
cov{p} = o?H ! (6.11)

Where o is the noise variance in the signal (assumed to be gaussian). If o is

unknown then it can be approximated by the following relationship.

7T7
o2 = Ne _en (6.12)

Where N represents the number of data points and n represents the number of
parameters. Using these relationships it is possible to write the value of the pa-

rameter vector including uncertainty.

p+ o/ Diagonal { H-1} (6.13)

This gives a measure of the accuracy of the model and the parameter estimates. It
is important to note that these uncertainty calculations assume a random noise and
a correct model structure. Both of these assumptions are valid for the calculations
that will be presented in this chapter. In general, however, they will not be valid.
This means that these uncertainties should be treated carefully.

This gives the basic foundation to carry out some parameter estimation calcu-
lations. This section was only intended to give a very basic introduction to the
concept of parameter estimation. The reader is referred to the literature for a more

in depth discussion of the subtleties of this process (See [107], [89] or [75].

6.3.2 Static Friction Model

This section will outline the basics of measuring a constant friction force. The

first step in this process will be to model an ideal electromagnetic launcher with a
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known friction force. The armature velocity will be extracted from this model and
noise will be added to simulate the noise of a sensor. The computational model
will then be run again using a value for the friction force that differs by 40%. This
represents the initial guess of the parameter p.s in Figure 6.13. The velocity of the
armature will then be compared to the noisy data and the friction parameter will be
modified using the least-squares technique described in the previous section. This
process is then repeated multiple times to give the final estimate of the parameter.
This will be done for different levels of sensor noise to give an idea of what the
requirements on the sensor system for measuring this parameter would be.

The launcher will be simulated using the electromechanical rail launcher model
described in Section 1.1.3. For the case of a constant friction force F),, the equation

of motion is as follows.

1.
mi = §Q2L’ — sign(t)F), (6.14)

(Lo + L'z)Q + (Ro + L'#)Q + CQ =0 (6.15)
0

Where () is the charge on the capacitor bank and x is the position of the armature.
A description and value for the other parameters is outlined in Table 6.1. It is
interesting to note that the resistance in this model is assumed to be constant. In
reality, the resistance of the contact between the armature and the rail will change
during the launch. Parameter estimation could be used to quantify this change
if it were coupled with the proper model. The values given in this table are the
assumed values for the known model. In this section, all of them will be assumed
to be known except the friction force F),. This is done for the sake of simplicity but
multiple parameters can be included in the estimation without too much difficulty.
It should be also noted that the resistance value in Table 6.1 was chosen so that
the current would be of the same order of magnitude as the experiments in the

previous sections. Also listed in Table 6.1 is the assumed value for the initial
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voltage on the capacitor bank Vj. This is needed as an initial condition for solving

the system.
Table 6.1: Assumed Model Parameters
Symbol Description Assumed Value
L Inductance Gradient of Launcher — 0.273 uH/m
Ly Added Inductance of Launcher 11.7uH
Co Capacitance of Power Supply 0.0804 F
Ry Resistance of Launcher 0.015€2
m Mass of Armature 0.08¢
E, Constant Friction Force 1N
o Constant Friction Force 220V

To give an example, the parameters in Table 6.1 were modeled and the velocity
of the armature was calculated. For this example the velocity was sampled at a
rate of 100 kH z and random noise with a magnitude of 20m/s was added to the
velocity signal. This signal is plotted in Figure 6.14 labeled simulated experiment.
The simulation was run again using F, = 0.6 as a guess for the friction force;
this is also plotted in Figure 6.14 labeled guess. This guess was put through
the least squares fit and iterated 20 times and the final result of this iteration
process is also plotted in Figure 6.14 labeled fit. The calculated fit value of the
friction force was found to be F,, = 0.99 & 0.04(F, = .9867 without rounding).
This means that if this were a real experiment and the model presented here was
a good approximation for that experiment it would be possible to measure the
friction force to within about 4% with this sensor. Since the ’experimental’ data
was simulated, the actual accuracy is also known and it is roughly 1.3%. For this
type of calculation the actual accuracy and the calculated uncertainty will depend
on the noise level of the signal, and the sampling rate of the velocity sensor. In
a real experiment, only the calculated uncertainty will be known and it will also
depend on the accuracy of the model being used in the fitting program.

Requirements for sensing can be looked at by doing this calculation many times
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Figure 6.14: Example Friction Calculation

for different values of sampling rate or noise level. This was done for the case of
different sensor noise levels. This case is pictured in Figure 6.15, the sampling rate
was fixed at 100 kH z and the noise level was varied between 5m/s and 75m/s. In
this plot, the actual percent error is plotted along with the calculated uncertainty
from the least squares fit. Each data point in this plot was calculated 30 different
times using a different random noise each time. This was done because each
solution uses different random noise and gives a slightly different value for the
uncertainty. These 30 different values are where the error bars in Figure 6.15 came
from. They illustrate the spread in the accuracy that one might expect when
attempting this type of measurement. Figure 6.15 was generated by running the
parameter estimation program 450 times. Because there are 20 iterations, each
time this routine is executed this amounts to numerically solving Equation 6.14

approximately 9000 times.

152



N
N

L +Actua1 AC,Curarcy N 7 B -

N
o

L. <> CaICUIated Uncertlanty ......... S I

—
oo

— —
A O
T
|
1
i i

Percent Accuracy (%)
s &
.
S U,
N

Noise Amplitude (m/s)

Figure 6.15: Friction Uncertainty for Varying Noise Level

For the plot pictured in Figure 6.15 the calculated uncertainty shows a strong
dependence on the noise amplitude while the actual accuracy does not. This is
probably an artifact of the fact that the model being used here is exactly correct. If
the noise level is pushed close to the total signal level then this actual accuracy will
grow substantially. It will also grow if the sampling rate is reduced. It is important
to remember that this number will be unknown in a real experiment and is of very
little practical use. It is only shown in Figure 6.15 for the sake of reference. The
calculated uncertainty on the other hand will be known. Figure 6.15 indicates that
if one wanted to make a measurement of the friction with an uncertainty of 10%
the noise level of the sensor would have to be smaller than approximately 40 m/s if
the sampling rate were 100 kH z. This requirement is well beyond the capabilities
of a reasonable B-dot based system. This highlights the need for better velocity

measurement techniques in electromagnetic launcher experiments.
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Chapter 7

Homopolar Motor Brush Calculations

As described in Section 1.2, the homopolar motor associated with the research
in this dissertation uses metal fiber brushes for current transfer (see Figure 1.4).
These brushes operate under different conditions than conventional brushes (see
Figure 1.1). Specifically, they they operate under considerably smaller contact
pressures for a given current. This chapter introduces the properties of these
homopolar motor brushes. Then an introduction to the basics of electrical contact
theory is given and this is used to develop a statistical model for the compliance
of straight fiber brushes. The intent of this model is to predict the load-deflection
and resistance deflection curves of the brush fiber. An attempt is also made to

develop an idealized model for the interaction of the fibers under compression.

7.1 Homopolar Motor Brushes

Before getting into the calculations it is necessary to discuss the characteristics of
these brushes in a qualitative sense. There have been many iterations of the brushes
in this motor and so it is necessary to discuss the qualitative differences between the
different brushes. Pictures of some of the brushes are shown in Figure 7.1. These
brushes were manufactured by SSI and Hipercon and they have very different
constructions. The Hipercon brush is made of a tangled mesh of irregular copper
fibers and the SSI brush is constructed from straight round fibers. Each of the
brushes is wrapped with copper wire. The SSI brush uses a mesh and the Hipercon
brush is wrapped with individial wires. The differences in the construction of these
brushes gives them very different mechanical properties.

The fibers in the Hipercon brushes are irregular in nature. To illustrate, SEM
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(b) Hipercon Brush

Figure 7.1: Different Copper Fiber Brushes

pictures were taken of some of these fibers. These pictures are shown in Figures 7.2-
7.3, These pictures clearly show that the fibers are very irregular in cross section
and that the diameters of these fibers appear to vary from 20 um to 200 um,
but typical fibers are between 50 and 70 pum. The irregularity of the shape of
these fibers means the brush is more of a tangled mesh of fibers than a series of
parallel fibers. This irregular construction is not seen in the later versions of the
SSI brush pictured in Figure 7.1; where round, straight fibers were used (= 60
wm in diameter). It is not clear from the analysis done here whether one of these

constructions is better than the other.

I Pictures courtesy of Alex Holiat of the Cornell Materials Science Department
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(a) Typical Fiber

Figure 7.2: Typical Homopolar Motor Brush Fiber SEM Pictures

157



300pn | |———

(a) Atypical Split Fiber

(b) Atypical Fiber Cross-Section

Figure 7.3: Atypical Homopolar Motor Brush Fiber SEM Pictures
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7.2 Statistical Treatment of Electrical Contacts

On the micro scale, all electrical contacts are rough, as shown in Figure 7.4. The
classic method for the treatment of electrical contacts is to use some form of
statistical analysis to model the surface roughness. The basic principle of this
method is outlined in most tribology texts [10]. Basically, rough surfaces are
modeled as a series of bumps whose heights are defined by a distribution fucntion
¢(z) which is usually taken to be a Gaussian. The points of contact are typically
treated as spherical bumps and in this section, one of the surfaces will be treated
as being nominally flat. For this case, it is possible to characterize both the

mechanical and electrical behavior of the contact interface.

Average Surface Heights Contact Asperity

Approach of Surfaces

Figure 7.4: Rough Contact Surfaces

For the mechanical characterization, all that is needed is a force deflection curve
for the individual contact points. Then it is possible to calculate the total force
statistically. When the problem is treated with a continuous distribution of heights

this calculation is carried out as follows.

F(z)= /00 Fi(s — z)p(s)ds (7.1)

Where Fi(s — z) is the load deflection curve for a single contact asperity and z is
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the approach of the average of the two surfaces as shown in Figure 7.4. To treat
this case discretely, the force deflection curve is a sum over the individual forces

Fo(z — z).

z2>2;

F(z) = Z Fy(z— z) (7.2)

Where the summation is only taken over the contacts with heights greater than the
distance between the mean of the two surfaces (i.e. z > z;). Electrical character-
ization consists of defining the resistance of each individual contact. This can be
accomplished with a load-resistance curve or resistance-deflection curve. Since the
resistances of each contact will add in parallel, the total resistance for a continuous

model can be integrated as follows.

1
R(2) = —= (7.3)
I. Rs(i—s)ﬁb(s)ds
The discrete version is as follows.
1

2>z 1
Zi R.(z—z;)
These equations outline the essential calculations that can be carried out in a

multi-point electrical contact problem where the asperity heights are statistically

distributed.

7.2.1 Mechanical and Electrical Characterization of the

Contact

Typically, the individual bumps on a surface are treated as small hemispheres as
shown in Figure 7.5. Mechanically, the contact between a spherical bump and a
nominally flat surface can be described using the Hertz contact model [10]. The
load-deflection curve of a Hertz contact is given by the following relationship.

4E*V R
VE 4,

F(w) = 3

(7.5)
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Figure 7.5: The Hertz Contact

Where the quantities R and w are the radius and deflection of the spherical bump
as shown in Figure 7.5. The parameter E* is the composite modulus of the two
materials?. For the case of similar materials, which is what will be considered
in this thesis, F* = E. The contact radius for a particular load is given by the

following relationship.

3F.R\?
> (7.6)

r) = (%

Combining this equation with the force-displacement relationship gives a radius-
deflection relationship [72].

re(w) = VRw (7.7)

These equations give the basic mechanical relationships of individual electrical con-
tacts under small loads. For larger loads, the individual contacts deform plastically
and the load deflection curve must be modified [47]. The small load situations seen
in the homopolar motor only require the elastic model. The intent of using fiber
brushes is specifically to stay below the plastic limit. This is because when one
goes above this limit, increased wear can occur.

It is important to note that the Hertz contact model does not take into account

2See Bhushan [10] Table 4.2.1
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the fiber structural stiffness. This is because this theory is typically applied to solid
bodies which will not buckle under the applied loads The fibers in the homopolar
motor brushes are very thin and will buckle under the applied loads and so the
structural stiffness must be taken into account in the load-deflection model.

The operating load of the brushes in the homopolar motor is in the range of 2
Newtons. This is very roughly equivalent to the combined critical buckling load of
about 1000 of the individual fibers. This highlights the fact that the load deflection
curve must be modified to take this buckling into account. In general, the load-
deflection curve of a post-buckled fiber is non-linear but for small deflections it can

be approximated by a line. The equation for this line is as follows.
FS(Z) = kyz + F,, (78)

Where k; is the approximate buckled stiffness and F, is the critical load which is

given by the following relationship.

2 EJ
Fc = 12 (79)

Where F is the elastic modulus of the fiber, J is the cross-sectional moment of in-
ertia and L is the length. Equation 7.8 assumes that the pre-buckled fiber stiffness
is much greater than the post buckled stiffness. For the fibers in the hompolar
motor, the difference between these stiffnesses is on the order of 10° so this is a
reasonable assumption. Another way to state this assumption is that as soon as a
fiber comes into contact, it is buckled.

Since the structural stiffness of the fibers is significantly smaller than the ef-
fective stiffness of a Hertz contact then the contact equations will be dominated
by the buckled fiber load deflection curve (Equation 7.8). This will affect how

the contact radius is calculated. For this case, the contact radius is calculated as

162



follows.

) = (Ml ) ) (7.10)

Where the deflection of the Hertz contact has been neglected. The relationships for
the contact resistance are dependent on this radius so it is important to calculate
it as a function of the dominate load-deflection curve. This equation allows for the
full statistical load-deflection relationship to be written. This relationship for the

full brush is calculated as follows.

z2>2;

F(z) =) (ky(z — ) + Fuy) (7.11)

2

Where, again, the structural stiffness of the fiber k; has been assumed to be con-
siderably smaller than the effective stiffness of a Hertz contact (see Equation 7.5).

In addition to the mechanical characterization, it is necessary to present the
electrical model. The basic quantity to model is the resistance of the contact. In
electrical contact theory, each of these contacts is referred to as an a-spot [42]. The

total resistance across an a-spot is given by three main components.
Riot = Ry + R. + Ry (7.12)

The first qantuty, Ry, represents the bulk resistance of the material away from the
contact. In the case of brush fibers, if there is one contact per fiber, this resistance

is given by the following.
_pA

Ry 7

(7.13)

Where p is the resistivity of the fiber material, A is the cross-sectional area of the
fiber and L is its length.

The second component, Iy, represents the film resistance. It is the resistance
of any material layers between the two contact surfaces (oxides, contaminants,

etc.). A basic relationship that can be used to approximate this resistance is as
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follows [42].

t
Ry = pAi (7.14)

Where p; is the resistivity of the film, ¢ is the thickness and A, = 772 is the area
of the contact. This component of the resistance is very difficult to approximate in
most situations because the composition of the film is typically unknown. In addi-
tion to this, the method of current transport can be either ordinary conduction or
tunneling. This means that p; can be highly dependent on the film thickness [85].
For copper contacts, an approximate value of pst is 1.5 x 10712Qm? [3]. The
actual value will depend heavily on the atmosphere that the copper is kept in so
this is only a rough scale parameter.

The final component represents the constriction resistance. As the name im-
plies, this term comes from the fact that the current is constricted as it passes
through the small contact points. For the case of circular contact points, this

component of the resistance is given by the Holm constriction resistance [42].

R, =L

C2r,

(7.15)

These equations can be combined statistically as indicated in the previous section

to give the overall resistance of the brush. This resistance is calculated as follows.

1 z2>z; 1
=, (7.16)
R(z) 4~ Ry(z—2) + Re(z — z) + Ry(z — z)
2>z 1

- Z pr(re(z=20))°
z L

Where 7.(z — z;) is given by Equation 7.10. Using these relationships it is possible

P pyt
+ + m(re(z—24))?

2rc(z—z;)

to estimate the load-deflection and resistance-deflection curves for a metal fiber

brush. This will be done in Chapter 8.
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7.3 Fiber Interaction Effects

The fibers in the brush are not completely independent of each other. They are
close enough to one another to interact. One way to consider this interaction is
to look at buckling of the fibers. The idea behind this is that if two fibers are in
contact with one another, they will tend to buckle differently than if they were
isolated. The contact between fibers act like discrete supports transverse to the
fiber axis. If these supports were rigid and evenly distributed along the length of
the fiber, then the fiber will buckle with multiple zero deflection nodes. A few of
these different buckling modes are pictured in Figure 7.6. This concept is of course
highly idealized, but if enough is known about the brush construction then this

model could give insight into the amount of inter-fiber interaction under load.

Fixed
Constraints

etc...

Pinned or
Sliding
Constraints

1 Node 2Nodes 3 Nodes 4 Nodes

Figure 7.6: Buckled Fiber Mode Shapes

With this conceptual model, a statistical distribution of fiber lengths, and
Equations 7.11 and 7.16. it is possible to make a plot of the load-deflection and
resistance-deflection curves for a fiber brush with interacting fibers. First, a sta-
tistical distribution of fiber lengths is generated, this is plotted in Figure 7.7. This
distribution was generated using a gaussian with a standard deviation of 50 um,

and it is plotted about the average fiber length. The total number of fibers for
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Figure 7.7: Assumed Fiber Length Distribution About Average Length

this distribution is 11,000. To use equations 7.11 and 7.16 it is necessary to pick
values for the fiber geometry and material as well as the stiffness of the fibers. For
the sake of putting together an example, values of these parameters were chosen.
For the plots in this section the fibers were assumed to be 1 ¢m in length and have
a radius of 70 um. The material was assumed to be copper so the density was
8320 kg/m?3 and the elastic modulus was 120 GPa. The results of this calculation
are plotted in Figure 7.8 for various values of k;, including k;, = 0.

For this model the low-deflection loads are essentially independent of the buck-
led fiber stiffness. The stiffness seen in this region is primarily from the F,. term
in Equation 7.11. The increases in the force in this region are due to the fact that
additional fibers are being brought into contact and then buckled as the brush is

compressed. In the large load region, differences are visible between the curves.
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Figure 7.8: Statistical Model With Different Fiber Stiffnesses
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The additional stiffness in this region is due to the k; term in Equation 7.11.

The resistance curve does not show strong dependence on the value of k;, either.
It does, however, show strong nonlinearities in the low load region. This indicates
that while the structural deformations do affect the overall contact resistance, the
resistance curve will not be highly dependent on the specific fiber stiffness.

These observations mean that if this fiber interaction model is correct, it can
only be tested for very large loads. Measurements of the load deflection curve for
the homopolar motor brushes were taken, but unfortunately, these brushes could
not be pushed this hard without being damaged. Only one sample of each brush
was available so destructive testing was not an option. The experiments that were

attempted will be presented in the next chapter.
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Chapter 8

Homopolar Motor Brush Experiments

This chapter presents the experimental measurements that were taken with the
metal fiber brushes. These consist of both static measurements of the entire brush
structure as well as dynamic tests of the individual fibers.

From the static tests it is found that the static mechanical properties of the
brush as a whole can vary significantly between different brushes of the same con-
struction. This difference could be due to the differing wear rates of the brushes
or uncertainties in the construction process. Either way, the compliance test pre-
sented in this section could be used as a quality control test to ensure uniformity
of the brushes. Most of the brushes could be characterized by a zero stiffness offset
and a linear stiffness constant that essentially constitutes a bilinear spring.

The dynamic tests were performed to see if the fibers of the tangled brush act
in any way similar to simple straight fibers. Acoustic emission measurements of
the brushes have been taken by researchers at the University of California at San
Diego (UCSD) [53] and very high frequency vibrations were measured (> 100 kH 2).
This section explores the vibrations of a single fiber to characterize the natural

frequencies for the fibers in the homopolar motor brushes.

8.1 Static Measurements

A device was constructed to measure the stiffness of the electrical brushes. This
device consists of a 250 g load cell placed between two different translation stages.
The brush is attached to the load cell and then pushed against a flat copper
surface. The change in distance between the two stages is measured using a linear

variable differential transformer (LVDT). A picture of the device with a brush
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Figure 8.1: Brush Compliance Measurement Device

mounted to it is shown in Figure 8.1. Also included is a sketch of the device to
help in illustrating its operation. The copper plate and brush are also attached to
a precision inductance-capacitance-resistance (or LCR) meter (HP model number
4284A). This allows for electrical characteristics to be measured along with the
mechanical.

Four different brushes were put through this experiment and the results are
shown in Figure 8.2. The SSI brushes shown in these plots were new brushes and
the hipercon brushes had been used in the General Atomics homopolar motor.
Before the test, the copper plate was sanded and cleaned and the brush was very
lightly sanded. This was done to try to reduce the effect of surface films on the
measurement.

As one can see, the brushes exhibit drastically different load-deflection curves.
From these plots it is possible to define an effective gap for each brush. This
can be found by drawing a line parallel to the load deflection curve in the large
deflection limit and following it down to the deflection axis. The point where it
meets the deflection axis is the effective gap. An example of this effective gap is
shown for one of the brushes in Figure 8.2. This gap qualitatively represents the

width of the distribution of fiber lengths. What is interesting about this data is the
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Figure 8.2: Axial Compression Measurement
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drastic difference in the effective gaps for each brush. The two Hipercon brushes
were made using the same technique and they exhibit drastically different load
deflection curves. The only known difference between these two brushes is that
one of them was on the positive voltage side of the motor and the other was on
the negative side. It is possible that the effective gap difference was caused by the
different wear rates on either side of the motor, but since no other brushes were
available for testing we were unable to confirm this observation. Even if this is not
the case, this measurement could work as a quality control test for the brushes as
they are made. The wear rate of each fiber depends on the pressure between the
fiber and motor pickup surface so uniformity of the mechanical behavior of the
brushes would increase the predictability of the system as well as the repeatability

of experiments carried out with the motor.

8.1.1 Comparison to Statistical Model

While it is not possible to test the fiber interaction model developed in Section 7.3,
it is still useful to try to fit the model to the data for the straight fiber brush. The
straight fiber brush is the one labeled SSI Brush 1 in Figure 8.2. This brush
has straight, round fibers in contrast to the other brushes which had irregular
shaped fibers such as those shown in Figures 7.2-7.3. For this brush, the average
fiber length is 17.8 mm and the average fiber diameter is approximately 60 um.
The spread in the fiber length distribution ¢ was measured under a microscope.
This was done by looking at the tips of the fibers from the side and scanning
over the surface of the brush. The maximum and minimum fiber length could
then be roughly gaged. This process gave value for ¢ of approximately 30 um.
Since the brush was not pushed hard enough to measure the deflections due to the

post-buckled stiffness, the parameter k; was set to zero for the comparison. These
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parameters were plugged into Equation 7.11 and the result is plotted in Figure 8.3.
As one can see, the structural model appears to fit pretty well.

The resistance comparison is more difficult to make. This is because two of the
parameters are unknown. The parameters that must be approximated include the
film resistivity and thickness pt and the contact radius R. For the film parameters,
the value of pt = 1.5 x 10712 Qm? from the literature is used [3]. There is no real
method for approximating the contact radius R. For the plot in Figure 8.3 a value
of 1/10th of the fiber radius was found to make the data line up roughly. If the
state of the surface films was known then this model could be used to measure
the contact radius or vice-versa. The model fits the slope of the experiments at
first, but the resistance is higher in the brush at larger deflections. A potential
source for this discrepancy is that the shorter fibers could have thicker oxidation
films at their tips This could easily happen because when the brushes were sanded,
they were only very lightly pressed. Experiments in a controlled atmosphere and
a reliable mechanism for cleaning the fibers are needed to make this comparison

more quantitative.

8.2 Single Fiber Vibration Experiments

Acoustic emission experiments by researchers at the University of California at
San Diego found high frequency noise from the brushes in sliding motion opera-
tion [53]. It was thought that this vibration motion along with steady sliding might
contribute to wear. The purpose of the experiments presented in this section is
to measure the natural frequencies of the fibers in the homopolar motor brush.
This was done by rigidly clamping one end of the fiber and exciting it using a
burst of air. The deflections of the fiber were measured using a non-contacting op-

tical follower camera (Opteron model 5600 Electro-Optical Biaxial Displacement
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Follower). A sketch of the set-up is shown in Figure 8.4

The optical device can track vibrations up to 20kHz. Requirements on the scale
of the target depend on the optics being used, but it was found that the follower
camera could track a copper fiber as small as 30 ym in diameter and approximately
1 mm in length. Fibers much smaller than this were very difficult to track. This

section will go through the set of experiments performed with this set-up.

Follower
¥ Camera

Vibrating f fi
) —
Fiber

Figure 8.4: Brush Vibration Measurement Setup

8.2.1 Individual Fibers

The first step was to measure the vibrations of various fibers taken from one of
the copper brushes. These fibers were extracted by cutting the brush in half and
then folding the fibers over so that undamaged fibers could be found. Four fibers
were pulled out and mounted to tabs of paper. The paper was used to make the
small fibers easier to handle, and to make sure that they could be put in a clamp.

The free length of the fiber was measured using a dial caliper and the diameter
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Table 8.1: Fiber Dimensions
Fiber Length  Diameter
I 6.27T mm 73 um
II 6.08 mm 70 um

Imr  592mm 31 um
IV. 648 mm 38 um

was measured under an optical microscope using an objective micrometer. The
dimensions of each fiber are shown in Table 8.1. These values are used in the
comparisons of the data with the theoretical model from Appendix C.

A small aerosol can of compressed air was then used to excite the fibers and
their vibrations were measured. An example of the output of the displacement
follower and its Fourier transform is shown in Figure 8.5. The output of the
displacement follower was not calibrated since the frequency was all that was of
interest. This process was performed for each of the four fibers and the results are
shown in Figure 8.6. Also included in these plots are lines from the theoretical
model in Appendix C. As one can see, the data from these experiments fits the
model very well. This implies that even though these fibers are irregular in nature,
their characteristic frequencies can still be approximately calculated as though

they were straight, round fibers.

8.2.2 Chopped Fiber

The next step in this analysis is to test the frequency response as a function of the
length of the fiber. This is done by taking a long fiber and putting it through the
same tests as the previous section except that in between each test a small portion
of the fiber is cut off and the new length is measured. This gives the frequency
response as a function of the length of the fiber.

This experiment was performed both with a fiber from one of the brushes (Fiber
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IT from the previous section) and with a piece of 40 AWG (diameter ~ 79um)
uncoated copper wire. The uncoated copper wire was used because it was easier
to measure over a wide range of lengths. The results of both of these experiments
are shown in Figure 8.7. Also included are plots of modes of the fixed-free beam
model in Appendix C. For this comparison, the elastic modulus and density were
assumed to have values of £ = 120GPa and p = 8320kg/m?, and the radius
was chosen to match the 40 gage uncoated wire. It is important to state that the
theoretical comparison in Figure 8.7 assumes a round fiber cross-section; while this
is approximately true, many of the fibers exhibit irregular cross-sectional shapes
(see Figure 7.3).

As one can see, they both fit the theoretical model relatively well. The irregular
fiber shows a lot more variation and a slight offset. The variation is due to the
varying cross section of the brush fiber and the offset is likely due to different

material /geometric properties between the fibers and the assumed values for the
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model. The important thing to note is that the dependence on the length of the
fiber appears to be the same as it is in the theoretical model. This has been
verified this down to the 1 mm length scale. This trend should continue until the
length of the fiber becomes comparable to it’s diameter. This means that the very
high frequency vibrations seen in the research from UCSD [53] could be coming
from the individual fibers, but only if the effective vibrating length of the fiber is

considerably smaller than 1 mm.
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Chapter 9

Conclusions and Future Work
9.1 Electromagnetic Launcher Conclusions and Future

Work

This dissertation explored the dynamics of the rails during the launch of an elec-
tromagnetic launcher. These dynamics were explored with respect to the contact
between the armature and the rails. This interaction can affect friction, wear and
the ability to transfer current. It was found that elastic waves and wave radiation
can occur at characteristic speeds of the rails of an electromagnetic launcher.

Simulations indicate that the interference of the armature and the elastic waves
can cause very large pressures to be generated. These pressures are directly related
to the friction during launch and they could potentially affect the wear. In addition
to affecting wear and friction, these pressures are large enough to cause macro-scale
damage to the rails of the launcher.

A fiber optic strain device was constructed to measure these waves. The exper-
iments conducted with this device show that the velocity and wear of the armature
will affect the magnitude of these waves. The shape and magnitude of the mea-
sured strains are comparable to the simulations. This means that the reduced
order model used in this dissertation is capable of capturing the basic dynamics of
the rails during launch.

In addition to the dynamics of the guide way, a simple model for armature
stability was presented. Typical launchers use the armature to push the payload
down the rails. This puts the center of pressure behind the center of mass and sets
up an unstable situation. An unstable armature can vibrate during launch and

these vibrations could affect wear and cause damage to the bore of the launcher.
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A system for the measurement of in-bore armature velocity was also discussed.
This system increases the resolution while decreasing the resources necessary for
measuring velocities. While this is an interesting technique, it does not have enough
resolution to measure parameters such as friction and mass loss. For these mea-
surements to be taken, more accurate measurements of the armature need to be
made during launch.

The essential conclusion one can draw from all of this is that for a launcher
design to be successful, it will be necessary to take into account the structural
dynamics of the rails as well as the armature. In addition to this, a better under-
standing of friction and wear of the system is necessary. Further study is necessary
on both of these fronts and it is likely that the generation of a successful multi-shot
launcher will be highly dependent on both the development of better sensors and

simulations.

9.2 Homopolar Motor Conclusions and Future Work

In terms of mechanical parameters, the brushes tested in this dissertation show
a large variation in compliance. It is unknown if this is a consequence of the
asymmetric wear or inconsistency in the brush construction process. Either way,
the mechanical tests presented in this dissertation could be used as a quality control
test on the uniformity of the brushes.

A statistical model is also considered for the structural and electrical response
of these brushes when they are stationary. This model could be used to quantify
the amount of fiber to fiber interaction there is as a function of the applied load,
but this would require applied loads much greater than the operating loads of the
brushes. A lot more could be learned from these tests if they were conducted in a

controlled atmosphere and if more brush samples were available.
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APPENDIX A

This appendix presents the full derivations for the differential equations for the
Bernoulli-Euler and Timoshenko beam models. These derivations can be found in

many sources but they are included here for the sake of completeness

A.1 Bernoulli-Euler Model

The Bernoulli-Euler beam equation of motion can be derived using both Newton-
Euler and Lagrangian methods. A good example of 