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Elastic electron scattering by fullerene, Cg,
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We report cross sections for elastic scattering of low-energy electrons by fullerene, Cgy, calculated within the
static-exchange approximation. The calculations are carried out via the Schwinger multichannel (SMC)
method, equivalent in this case to the standard Schwinger variational principle. Combining the high parallel
efficiency of the SMC method with a quadrature specially adapted to the high symmetry of Cg facilitates the
most demanding step of the calculation and so permits the use of a large basis set. We analyze the structure of

the cross section with reference to a simple spherical-shell model, and we compare our results to prior

measurements and calculations.
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I. INTRODUCTION

Fullerene, Cg, has attracted a tremendous amount of at-
tention since its discovery [1], and many of its properties are
by now well characterized. Interactions between low-energy
electrons and gas-phase Cg4y, however, have received com-
paratively limited study. Most of that attention has been di-
rected to identification of inelastic thresholds (electron-
energy-loss spectroscopy) [2-5] or to studies of Cgy’s highly
anomalous electron attachment [5-14], which exhibits a
large cross section for nondissociative attachment over a
wide energy range [5,6,9,11]. Studies of the simplest colli-
sion process, elastic scattering, are surprisingly limited.
Some information is available from experiment and Born-
approximation theory at high impact energies [15,16], but to
our knowledge, the only experimental study of low-energy
elastic electron-C, collisions remains the 1994 paper of
Tanaka and co-workers [17], who reported differential cross
sections on a relative scale over limited ranges of energy and
scattering angle. Theoretical studies of electron interactions
with Cg4, have mostly employed simplified models. Yabana
and Bertsch [18] computed electronic-excitation cross sec-
tions in the distorted-wave Born approximation using a
spherical jellium model of the target; spherical jellium poten-
tials have also been extensively applied to photoabsorption
and ionization of Cg, [19-22,28,29]. Still simpler but none-
theless useful models have been applied for photoionization
by Xu and co-workers [23], who employed two types of
radial square-well potential, and by Amusia and co-workers
[24], who treated the target as a spherical S-function shell,
with the strength of the & function tuned to produce an ¢
=0 bound state at 2.65 eV, the observed electron affinity of
Ceo [25] (a more recent determination is 2.69 eV [26]). Amu-
sia and co-workers used the same model to compute the in-
tegral electron scattering cross section. More elaborate
photoionization calculations, employing the local-density ap-
proximation but avoiding the spherical jellium model, have
also been carried out [27-29]. Intermediate- and high-energy
elastic electron scattering has been studied in the Born ap-
proximation [15,16,30]. The only high-level computational
study of the low-energy elastic cross section, however, is that
of Gianturco and Lucchese [31-33], whose procedure incor-
porated a full treatment of the direct and exchange interac-
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tions and an approximate accounting for polarization. Gian-
turco and Lucchese also applied a similar procedure to obtain
photoionization cross sections [34]. Owing to the size of the
target molecule, they employed a very restricted basis set
(3-21G, in the usual notation) to describe the target wave
function.

Our aim in the present study is to obtain a well-converged
static-exchange cross section that may be directly compa-
rable to experiment at higher energies, where the neglected
polarization effects are less important, and that may also
serve as a point of reference for more elaborate calculations.
To that end, we apply the Schwinger multichannel (SMC)
method [35] in its parallel implementation [36,37]. The most
time-consuming step in the calculation is greatly accelerated
by adopting a quadrature that fully exploits the high symme-
try of Cgp. The resulting cross sections reveal a rich resonant
structure. We analyze that structure with the aid of a simple,
semiempirical spherical model and by reference to the unoc-
cupied molecular orbitals of Cg,. As we will see, both points
of view are important to understanding the low-energy reso-
nance structure in our cross section.

II. COMPUTATIONAL DETAILS

The SMC method and its implementation have been dis-
cussed in detail elsewhere [35-37]. Here we give only details
specific to the present calculations.

All calculations were carried out in the fixed-nuclei ap-
proximation. /;, symmetry was assumed, and the C-C bond
distances were those determined by Hedberg et al. [38].

The ground state of the molecule was computed in the
restricted Hartree-Fock (RHF) approximation using the elec-
tronic structure program GAMESS [39] and its internal basis
sets. Exploratory calculations were carried out with the
3-21G basis set, which is the same basis set as used in the
studies of Gianturco and co-workers [31-34]. Final results
were obtained using the 6-31G(d) basis set, together with the
following supplemental set of Gaussians at the center of the
Cgo cage: five s functions, with exponents 3.0, 1.0, 0.35,
0.12, and 0.04; four p functions, with exponents 1.0, 0.35,
0.12, and 0.04; and three d functions, with exponents 0.5,
0.2, and 0.1. No eigenvalues of the Gaussian overlap matrix
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fell below the GAMESS warning threshold of 107>, so numeri-
cal linear dependence should not be a problem in this basis
set. The “3s” (x?>+y?+z?) linear combination of each Carte-
sian d orbital was excluded, leaving a total of 872 molecular
orbitals (180 occupied and 692 virtual) to be formed from
the 935 contracted Gaussians. The variational basis for the
scattering problem consisted of the 692 doublet configuration
state functions formed from the RHF ground state and each
of the virtual orbitals.

The most demanding computational task in our imple-
mentation of the SMC method is the evaluation of the
interaction-free Green’s function for the target and incident
electron. By introducing a spectral representation, this task
can be reduced to numerical quadrature over a wave vector k.
The three-dimensional quadrature over k is carried out as a
product of quadratures in the magnitude |I€| and in the polar

angles (6,, ¢,) that orient the unit vector k. The angular in-
tegrations are of the form

Jf sin(00)d 0d byl Xon| VP explik - Fiyy))

X(Dy exp(ik - P IVIX) - (1)

where x,,, are (N+1)-particle configuration state functions,
V is the electron-molecule interaction potential, and @, is the
N-electron molecular ground-state wave function. The Dirac
brackets indicate integration over the electronic coordinates
F1.Tas ... Fys1. The matrix elements (x,,|V|®g exp(ik-Fy,;))
can be expressed as linear combinations of readily comput-
able one- and two-electron integrals involving Gaussians and
a plane wave. A molecule as large as Cg, poses a challenge
because the number of two-electron integrals scales as NiN°,
where N; is the number of (6, ¢) quadrature points and N,
is the number of contracted Gaussian functions used to rep-
resent O, and the y,,.

For general molecules, the numerical integration over
(6, &) is best carried out using the quadratures of Lebedev
[40], which are two-dimensional quadratures specifically de-
signed for integrals on the sphere. Not only are Lebedev
quadratures efficient, but they also possess octahedral sym-
metry, so that in molecules belonging to any subgroup of Oy,
many points can be obtained by symmetry rather than explic-
itly evaluated. However, the octahedral symmetry of the
Lebedev grids is ill-suited to the icosahedral symmetry of
Cqo, and evaluating the Green’s function would require nu-
merical integration over one quarter of the sphere. That is
quite feasible for small |k| but grows extremely expensive for
large |k|, where many points are needed to achieve an ad-
equate angular density.

The high symmetry of Cg, suggests an alternate approach.
If C4, were spherical, all directions of k would be equivalent,
and a single (6,,¢,) angle would suffice for the Green’s-
function quadrature. Because Cg, is nearly, but not quite,
spherical, we can hope to replace such a single-point quadra-
ture with quadrature over a finite but small solid angle. Spe-
cifically, we note that all 60 carbons are equivalent. Thus
after projecting the molecular frame onto the unit sphere, we
can partition that sphere into 60 equivalent “Voronoi poly-
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gons” [41], each defined as the set of points nearest a given
carbon atom. It is easy to see that each such polygon is a
spherical triangle whose vertices are the centers of the three
faces (two hexagons and a pentagon) surrounding the chosen
carbon, and that any such polygon can be transformed into
any other under operations of the [, point group. Moreover,
these Voronoi triangles are isosceles, with halves that are
equivalent under a reflection. Thus our numerical integration
need only extend over one half of one such triangle—a solid
angle of 47/120=m/30 steradian. This economy of a factor
of 30 compared to integrating over a quarter sphere makes it
much easier to achieve a high density of quadrature points.

To complete the angular integration, we could apply the
group operations to map the chosen Voronoi cell to the full
(6, &) sphere. However, it is much simpler to observe that
the integrand in Eq. (1) is totally symmetric; therefore the
integral vanishes unless y,, and y, belong to the same com-
ponent of the same irreducible representation. In the nonde-
generate A, and A, representations, we need only multiply
the integral over the cell by the appropriate scale factor, and
in each degenerate representation of /,, we can obtain the
integral by averaging together the results for each component
of that representation and scaling up to the full sphere.

For this scheme to work, care must be taken on two tech-
nical points. First, the y,, must be fully classified by symme-
try, so that, for example, those Y,, transforming as T, are
subdivided into x-, y-, and z-type blocks. We must then im-
pose a consistent sign convention across all components of a
given degenerate representation. One way to do that is to
perform a trial evaluation of Eq. (1) using Lebedev quadra-
ture, then flip signs in the virtual orbitals as necessary to
impose consistent signs. Both of these steps can be auto-
mated to reduce the chance of errors.

In implementing the above procedure, we oriented the
molecule so that the z axis passed through the center of a
pentagonal face and the yz plane through the carbon at one of
that pentagon’s vertices, which carbon was chosen as the
center of the Voronoi triangle for the numerical angular inte-
grations in the off-shell portion of the Green’s function. Thus
those integrations were carried out over the half cell having a
vertex at 6,=0 and extending from O to 7/5 in ¢,. To carry
out the quadrature within that cell, we used a simple direct
product of one-dimensional quadratures in 6, and ¢, gradu-
ally increasing the number of ¢, and 6, points as the mag-
nitude |l€| increased. For convenience in evaluating the dif-
ferential cross sections, the on-shell matrix elements were
evaluated on Lebedev grids of order 23 below 15 eV, order
35 from 15 to 40 eV, and 41 above 40 eV, sufficient to in-
sure that partial cross sections for different components of a
given irreducible representation differ by no more than two
parts in 10° below 40 eV. The numerically intensive steps
were performed on a Xeon cluster using 128 processors in
parallel; pre- and post-processing was done in single-
processor mode on Xeon work stations.

Eigenphase sums are extremely useful in analyzing the
resonance structure. In past work, we have computed eigen-
phases from the partial-wave representation of the S matrix,
S(€,m;€",m’). In the present work, we avoid a partial-wave
expansion by diagonalizing S in the plane-wave representa-

tion, S (12,12’); because our scattering amplitude is computed
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on a quadrature grid, a finite-matrix representation of S (12, 12’)
suitable for diagonalization is easily generated.

To provide a frame of reference for the ab initio results,
we also evaluated cross sections for an elementary spherical
model of Cg, consisting of an attractive rectangular-well po-
tential shell centered at R=6.7173 bohr, the radius of Cgy,
and having a thickness equal to twice the covalent radius of
carbon, 2.9102 bohr. Similar well-like models have been
suggested before [19,23,42,43]. Like Amusia and co-workers
[24], we tuned the potential strength to produce a state bound
by 2.65 eV, but we required the angular momentum of the
2.65-eV state to be €=1 rather than 0, because electronic-
structure calculations indicate the ground anionic state is
2T, - This requirement fixes the well depth at 7.0725 eV; the
model has no other parameters. Below 40 eV, we solved the
model scattering problem for partial waves up to €=15,
which contributes less than 0.1% of the integral cross section
at 40 eV; and from 40 to 100 eV, we retained partial waves
up €=24, so errors due to omission of higher waves should
be negligible. Rassat and Bensimon [43] used a similar
model to study bound states and found that their results were
insensitive to the model parameters.

III. RESULTS AND DISCUSSION
A. Integral cross sections

The lowest four partial waves fall into distinct irreducible
representations of the /;, point group: s belongs to a,, p to ty,,
d to hy, and f to t,, and g,. The first possibility of interfer-
ence arises with the ¢ wave (€=4), which falls into g, but
also h,, where it can interact with d (£=2). At low energies,
where contributions from higher partial waves are mini-
mized, it is therefore interesting to compare our ab initio
partial cross sections for the just-named irreducible represen-
tations to our spherical-model partial cross sections for the
appropriate partial waves. This comparison is shown in Fig.
1. Several remarkable correspondences are evident. In the
upper left panel of Fig. 1, we can see that the spherical model
produces a minimum at 2.5 eV in the s-wave cross section,
just where the full static-exchange calculation for a, shows a
(deeper) minimum; there is even a weak undulation in the
model result near 8 eV, where the full calculation shows a
second minimum. Above the 2.5-eV minimum, the cross sec-
tion rises fairly quickly to a maximum. Examination of the
associated model wave functions and s-wave phase shifts
reveals a minimum in the phase shift at about 2.4 eV asso-
ciated with suppression (compared to the potential-free case)
of probability density inside the spherical shell, followed by
a jump in the phase shift associated with enhancement of the
probability density inside the spherical shell, indicative of
resonant trapping. A nonlinear fit of the model s-wave phase
shift below 10 eV to the resonant form, using a cubic poly-
nomial in k to represent background scattering, gives a posi-
tion of 3.0 eV and width of 2.2 eV for this “endohedral”
resonance; a similar fit to the a, eigenphase sum below 6 eV
gives a position of 3.2 eV and a width of 0.89 eV for its
static-exchange counterpart.

As the upper right panel of Fig. 1 shows, both the model
p-wave result and the full ¢, result produce a maximum
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FIG. 1. (Color online) Comparison of low-energy static-

exchange integral cross sections with results from the simple
spherical-shell model described in the text. s, p, d, f, and g refer to
partial waves from the spherical model; the remaining labels refer
to irreducible representations of [, from the static-exchange
calculation.

centered near 1 eV, with rough agreement between the two
in both magnitude and width, but with little suggestion of a
resonance in either case; below 5 eV, there is only a very
weak secondary maximum in the static-exchange cross sec-
tion near 4.5 eV. In the lower left panel of Fig. 1, we com-
pare the d and g waves from the model with the static-
exchange results for g, and h, The strong resonance at
2.3 eV in the model g wave is clearly also present in the g,
and h, cross sections, less than 0.1 eV lower in energy. At
first glance, though, there is seemingly little resemblance on
the low-energy side of the resonance between the d-wave
and h, cross sections. We may account for the suppression of
hg relative to d, however, by invoking destructive interfer-
ence between the d and g contributions to s,. The resonant
jump in the g-wave phase shift as we move across the reso-
nance profile causes the relative phases of d and g to change
quickly, giving rise to the window-and-peak structure seen in
the h, partial cross section. Looking next at the lower right
panel of Fig. 1, we see that the spherical-shell model pro-
duces an extremely strong and narrow f-wave resonance at
0.250 eV and a broad, nonresonant maximum near 4 eV.
Once more, both of these features are echoed in the results
from the full calculation for the corresponding representa-
tions, #,, and g,,.

Both bound and unbound orbitals of Cg, are commonly
classified as o or 7 according to whether they have zero or
one radial node located near the carbon cage. As we saw
above, the s-wave resonance is endohedral and so does not
fit well into the o/ 7 classification. In contrast, the associated
radial wave functions indicate that the f- and g-wave
spherical-model resonances are associated with a buildup of
probability density within the attractive shell, with no radial
node there; thus they (and the related t,,, g,. g, and h,
resonances) can be classified as . However, like the s-wave
resonance, these resonances have no molecular-orbital
counterparts.
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The absence of sharp low-energy shape resonances asso-
ciated with the s, p, and d waves is easily understood. As
mentioned above, the model potential is chosen to support a
p bound state at —2.65 eV, and it naturally supports an s state
as well, at —3.43 eV. Examination of the phase shifts shows
that not only those for s and p but also that for d go to mr,
rather than zero, at zero energy (after imposing the
asymptotic condition 8,— 0 as E—<); thus the model po-
tential also supports a bound d state, though we did not de-
termine its binding energy. Because true bound states exist
for these lowest angular momenta, the first strong quasi-
bound, resonant states are seen at =3 and above.

Considering the results shown in Fig. 1 as a whole, we
may observe that the spherical model, despite its extreme
simplicity, is surprisingly successful in its qualitative, and
even semiquantitative, predictions compared to the far more
elaborate static-exchange calculation. Comparison with the
model results, moreover, allows us to conclude that some of
the most prominent features of the static-exchange cross
section—the minimum near 2.5 eV in a, and the lowest-
energy resonances in g,, f, t,, and g, symmetries—are “ge-
neric” or global properties of a Cgy-like object that can have
little connection to its detailed structure, since they all appear
in a nearly structureless model. (The &-function shell poten-
tial of Amusia and co-workers [24] also predicts these fea-
tures, though somewhat broadened and shifted to higher en-
ergies.) Indeed, only in &, did we see a clear signature of
less-than-spherical target symmetry, in the form of interfer-
ence between the d and g waves.

When the collision energy is more than a few eV, it is no
longer possible to associate each irreducible representation
of I, with just one or two partial waves. However, we may
extend the utility of our spherical model by resumming its
cross sections into I, components. That is, we treat each
partial wave as a reducible representation of the I;, subgroup
and perform the reduction to determine weighting factors by
which each partial cross section of the spherical model is
partitioned among the irreducible representations of I,
[44,45]. Note that this is only a repartitioning of the spherical
results; we are not introducing any perturbation to break the
spherical symmetry. The results are shown in Fig. 2. Clearly,
there is strong qualitative agreement between the spherical-
model results and the full static-exchange calculation all the
way up to 30-eV collision energy.

Despite the apparent successes of the simple spherical
model, there are many features of the full static-exchange
cross section that it cannot explain. Some of these are al-
ready visible in Fig. 1, where we can see a sharp peak on the
high-energy side of the lowest /1, resonance as well as a
second peak in t,, at 2.3 eV, neither of which is predicted by
the spherical model. Still more unaccounted-for resonances
are visible in Fig. 2. However, as we will now discuss, many
of these features can be understood in terms of the empty
valence molecular orbitals of Cgy.

In Table I, we collect the energies of the first “extra”
resonance in each irreducible representation—that is, the first
resonance not accounted for by the spherical-shell model—
and we compare those energies to the energies of the lowest
unoccupied orbitals from a Hartree-Fock calculation using
the MINI [46] minimal basis set, all of which are of 7 type.
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FIG. 2. (Color online) Comparison between the contribution of
different irreducible representations of I, to the static-exchange
cross section (solid curves) and the corresponding components as
derived by resumming the spherical-shell model cross section
(dashed curves); see text for discussion. The a,, contribution, which
is extremely small, is not shown.

As may be seen, the correlation is quite good, with the reso-
nance energies being on average about 1.4 eV below the or-
bital energies. This energy shift is easily accounted for by the
difference in basis-set quality between the two calculations,
as well as the influence of scattering dynamics. We can there-
fore say with some confidence that these resonances in our
static-exchange cross section are 77" resonances. The fact that
they are not seen in our simple model indicates that the more
realistic static-exchange interaction is critical to producing
them.

At this point it is worth emphasizing that, especially at
low collision energies, where the interaction time is long, the
static-exchange approximation, which neglects polarization
and correlation effects, gives resonance energies that are too
high. We thus do not expect the measured resonance energies
to coincide with our calculated positions, and indeed, we
expect that some of the lowest resonances in the static-
exchange cross section will actually correspond to bound
excited states of Cg, . In past studies of smaller molecules,
we have typically seen energy shifts of 2 to 4 eV for narrow,
low-energy resonances. Although the enormous polarizabil-
ity of Cg, [47] suggests that larger shifts might be possible in
the present case, on the other hand, treating an extended
object as a single polarizable center seems likely to overes-
timate the strength of the polarization interaction. Moreover,
there is only ~2.2-eV difference between the Hartree-Fock
energy of our f;, lowest unoccupied molecular orbital
(LUMO) and the experimental electon affinity [25,26]. In-
verse photoemission studies using electron impact on
condensed-phase Cg, [48] reveal two additional features
within ~2 eV of the first feature, which correlates with the
ground 2T1u state of gas-phase Cg, . Supporting calculations
[42,48] indicate that the second feature is 7, and the third
ty+e,+1,+a,, and that both are of 7 character. The same
calculations indicate that the first excited feature, seen at
~1.1 eV, should be about 0.5 eV closer to the ground fea-
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TABLE 1. Energies of the lowest resonances not predicted by the spherical-shell model compared with the
energies of the lowest unbound minimal-basis-set Hartree-Fock virtual orbitals.

Shape resonance Virtual orbital Energy
Symmetry energy (eV) energy (eV) difference
tg 1.1 1.6 0.5
hy 22 3.8 1.6
tr 2.3 3.9 1.6
h, 48 6.3 1.5
g 5.7 7.3 1.6
8u 6.8 8.4 1.6
fag 7.7 8.9 1.2

ture in the gas phase [48], which would place it at about
—-2.1 eV, taking —2.65 eV as the ZTIM energy. Comparison to
our static-exchange resonance energies in Table I thus sug-
gests that our 7, resonance should be shifted downward by
~3.2¢eV to become a T, . bound anion state. The third
inverse-photoemission feature, about 2.0 eV above the first,
in part correlates to &, and ,, in gas-phase Cq, suggesting a
shift of ~2.9-3 eV for our &, and 1,, resonances, converting
them to weakly bound anion states (which may nonetheless
give rise to low-energy resonances when vibration is taken
into account). Finally, the condensed-phase calculations in-
dicate that the a, state contributing to the third inverse-
photoemission feature “is localized in the center of the Cy,
molecule and does not correspond to any of the canonical o
or 7 resonances” [48]. We may, however, correlate it with
the resonance that we see in both our spherical-model s-wave
cross section and our static-exchange a, cross section.
From the evidence in the preceding paragraph, it appears
that downward energy shifts roughly in the 2.2-3.2-eV
range are needed to align the static-exchange resonances
with experiment, quite comparable to the shifts seen in
smaller molecules. The first actual 7 resonance therefore
should be an £, resonance at 1.6—-2.6 eV, with the g, reso-
nance at 2.5-3.5 eV, the g, at 3.6-4.6 €V, and the f,, at
4.5-5.5 eV. The o resonances that correlate with resonances
in the spherical-well model will likewise be shifted. Both the
€=3 resonances appearing in #,, and g, and the €=4 reso-
nances in g, and h, are likely to join the s-wave resonance
discussed in the preceding paragraph in becoming bound
states. The first o feature to appear as an actual resonance
would then be that associated with €=5, which in principle
contributes to ty,, t,, and h,, but which in our static-
exchange results (Fig. 2) is seen clearly only in &,, where
€=5 is the leading partial wave, at 4.25 eV; assuming the
same shift, it should appear in experiment around 2-3 eV.
Huang and co-workers [11] observed peaks in the attach-
ment cross section at 0.2, 1.5, 4.5, and 5.5 eV, as well as a
shoulder at ~8.0 eV. They interpreted the lowest three peaks
as shape resonances, tentatively assigning the 0.2-eV peak to
h, or 1, and the 1.5-eV peak to h, or g,. Our predicted
resonance positions from the preceding paragraph generally
support these assignments, although they suggest that the g,
resonance may lie too high to contribute to the 1.5-eV peak,
and that g, and a,, as well as 1,, and h,, may contribute to

attachment at near-zero energies. Moreover, we can tenta-
tively associate the 4.5-eV attachment peak with the g, 7
resonance and the 5.5-eV peak with the #,, 7 resonance.
However, as Fig. 2 shows, there are additional resonances
besides the 7 resonances that must be considered; in particu-
lar, there are resonances in ¢, and t,, that may also contrib-
ute to the 4.5-eV attachment peak, and yet another ¢, reso-
nance that may contribute to the 5.5-eV peak. These are
probably the lowest-lying of the many o resonances ex-
pected in Cg; indeed, as seen in Fig. 2, the cross section up
to ~30 eV is densely populated with resonances.

Better insight into the dense resonant structure of the
cross section may be gained by examining the eigenphase
sums, shown in Fig. 3, in conjunction with the partial cross
sections shown in Fig. 2. Weak but narrow resonances, in
particular, are more readily visible in the eigenphase plot
than in the cross sections. The convention followed in plot-
ting Fig. 3, by which the static-exchange eigenphase sums go
to zero at zero energy, is correct except for #,,, where a
bound state exists and the zero-energy phase shift should be
7. For comparison, Fig. 3 also shows the spherical-shell
phase shifts for the first several partial waves. As expected
from the good agreement of the cross sections seen in Fig. 1,
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FIG. 3. (Color online) Eigenphase sums in the different irreduc-
ible representations of ;. The curves labeled s, p, d, f, and g show,
for comparison, the leading partial waves in selected representa-
tions as computed from the spherical-shell model.

012711-5



C. WINSTEAD AND V. MCKOY

there is good agreement for the first few eV between these
phase shifts (modulo ) and the eigenphase sums in the sym-
metries where they are the leading partial wave; the excep-
tion, as noted in the discussion of Fig. 1, is hg, where not
only the leading d wave but also g contributes strongly even
at low energies. Some of the notable features at higher en-
ergy in Fig. 3 include the clear indication that the 7,, feature
seen just below 10 eV in Fig. 2 is not one but two overlap-
ping resonances and the presence of a narrow (I’
~0.08 eV) a, resonance at about 27.4 eV. Because our a,
variational space is so small, we cannot attach much signifi-
cance to the computed properties of the latter resonance, but
because there is one empty o valence orbital of a, symmetry,
its existence is not unexpected.

It is interesting, at this point, to compare our results to
those of Gianturco and Lucchese [31-33], who carried out
prior ab initio calculations of low-energy electron-Cg, scat-
tering. Although the comparison is somewhat complicated by
our neglect of polarization and by the sheer number of reso-
nances, some clear points of agreement and disagreement
may be seen. In particular, our conclusion above that the
lowest 7r resonance should be an £, resonance at 1.6—-2.6 eV
fits well with their results, which show the first resonance to
be an extremely narrow 4, resonance at 2.17 eV that is as-
sociated with a 7-type wave function [33]. On the other
hand, both our static-exchange calculation and our spherical-
shell model indicate that a o-type h, resonance associated
with €=35 should also exist nearby in energy, but Gianturco
and Lucchese do not appear to see such a feature. Gianturco
and Lucchese predict that the next-lowest resonance should
be an a, resonance at 2.76 eV associated with trapping inside
the cage. Although this fits well with both the character and
the unshifted location of the a, resonance produced by our
static-exchange calculation, as discussed earlier, we expect
that inclusion of polarization should shift the latter down-
ward considerably, close to or below 0 eV, where it would
correlate with the a, feature seen in the condensed-phase
calculation [48]. Why it should appear so high in energy in
the calculation of Gianturco and Lucchese is unclear.

Continuing upward in energy, the next resonance Giant-
urco and Lucchese see is in g,, at 3.19 eV, agreeing quite
well with the corrected position, 2.5-3.5 eV, that we esti-
mated above for our own m-type g, resonance. On the other
hand, we estimated that the two highest m-type resonances,
in g, and f,,, should occur at 3.6-4.6 eV and 4.5-5.5 ¢V,
respectively, while Gianturco and Lucchese place the g,
resonance at 5.82 eV and the 15, resonance at 6.21 eV, closer
than expected to our static-exchange resonance positions. It
is possible that the correction we estimated by comparing our
lowest-energy resonances to bound states seen in inverse
photoemission is too large for these higher-energy reso-
nances. Supporting that interpretation, Gianturco and Luc-
chese place the first #;, resonance at 5.72 eV, close to our
static-exchange energy, 6.2 eV; their first /4, resonance at
7.2 eV, about 1.1 eV below our (third) h, resonance; and
their second ¢, resonance at 7.71 eV, almost the same en-
ergy as for our second #;, resonance. On the other hand, we
see two overlapping ,, resonances at ~9.7 eV where Gian-
turco and Lucchese see a single resonance at 8.16 eV, and
we see a t,, resonance near 5.8 eV while Gianturco and Luc-
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FIG. 4. (Color online) Integral elastic cross section for electron
scattering by Cgo. Solid line: present static-exchange calculation.
Dotted line: calculation of Ref. [32]. Long dashes: Born calculation
of Ref. [30]. Dot-dashed line: spherical model of Ref. [24]. Short
dashes: present spherical model.

chese predict the first #,, resonance to be at 10.1 eV. On the
whole, then, there are some unexplained differences between
the two calculations, but for the most part, the low-energy
resonances can be cross correlated by allowing for down-
ward shifts of the static-exchange resonance positions by
amounts similar to those deduced earlier from comparison
with inverse-photoemission and attachment data, perhaps
decreasing with increasing collision energy as would be
expected.

In Fig. 4, we compare our static-exchange integral elastic
cross section for Cg, with the predictions of other calcula-
tions [24,30,32] and of our own spherical model potential.
The simple models produce cross sections that are too large
at low energies and too small at high energies, with the cross
section from the S-function shell model of Amusia and co-
workers [24] falling off especially quickly. The two high-
level calculations—that of Ref. [32] and the present static-
exchange result—agree rather well in magnitude and overall
trend, despite the differences in resonance positions that
were discussed above. An interesting aspect of our static-
exchange result is a broad maximum centered at roughly
67 eV that is not predicted by our spherical model. This
maximum cannot be attributed to any particular symmetry;
rather, it is the net effect of broad maxima that occur between
50 and 90 eV in each symmetry except a,,.

B. Differential cross sections

Low-energy differential cross sections (DCSs) for elastic
scattering of electrons by Cg, are shown at selected energies
in Fig. 5. There is good qualitative agreement between the
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FIG. 5. (Color online) Differential cross sections for electron
scattering by Cgo. Solid line: present static-exchange calculation.
Dotted line: calculation of Ref. [32]. Dashed line: present spherical
model.

static-exchange and spherical-model results at the lowest en-
ergies, with both DCSs exhibiting diffraction-type maxima
and minima in approximately the same locations. However,
omission of polarization is a major limitation at low energies,
and the calculation of Ref. [32], which includes polarization,
produces a qualitatively different DCS at 2 and 4 eV. Polar-
ization becomes less important as the energy increases, and
indeed, by 10 eV, the two high-level calculations agree fairly
well with each other. They also agree qualitatively with the
spherical model at near-forward directions, but at higher
angles the DCS is enhanced relative to the model and the
diffraction pattern is washed out.

At still higher energies, shown in Fig. 6, the same general
trend continues: the small-angle DCS exhibits diffraction
minima and maxima at the locations predicted by the simple
spherical model, while at higher angles the static-exchange
DCS is less structured and much larger than the model DCS.
At 50 eV, we can also compare the near-forward DCS to the
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FIG. 6. (Color online) Differential cross sections for electron
scattering by Cgo. Solid line: present static-exchange calculation.
Dashed line: present spherical model.
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Born-approximation model of Gerchikov and co-workers
[30], who computed the DCS up to a momentum transfer of
one atomic unit. Their calculation places the first two minima
at about 14° and 28°, within 1° of both the static-exchange
and spherical-model results. From a semiclassical point of
view, we can understand the forward DCS as being domi-
nated by weak collisions at large impact parameters and thus
sensitive only to the gross features of the potential that are
represented in the model calculations, in particular its radial
extent. Conversely, scattering at higher angles involves
harder collisions at smaller impact parameters and thus is
sensitive to details of the molecular structure. Stronger scat-
tering at high angles appears to be the reason that the static-
exchange integral cross section is much larger than the
model cross sections at higher energies (Fig. 4). We can
verify that the magnitude of the static-exchange DCS at high
angles is reasonable by comparing it to that of benzene. At
30 eV and 180° the Cqy DCS is 5.67 times larger than
our calculated elastic DCS for benzene [49], a reasonable
factor; moreover, after scaling up the benzene DCS by that
factor at all angles, it differs from the C¢y DCS by less than
50% over the whole range from 180° down to 85° (though of
course the detailed angular dependence of the two DCSs is
completely different).

Only limited DCS measurements are available for com-
parison. Tanaka and co-workers [17] reported measurements
of the relative elastic DCSs in which the scattering angle was
kept fixed and the energy varied between 1 and 11.5 eV.
Their results show broad maxima and minima; for example,
the 30° DCS has a single peak, about 4 eV wide, centered
near 5 eV, while at 70° there are two peaks, at about 4 and
9 eV, with minima at about 2.5 and 6 eV. Examining our
static-exchange DCS at fixed angles as a function of energy
reveals essentially no correspondence to the measurements.
The calculated DCS has much more structure, owing to the
numerous resonances, but only a few broad features, and
they do not appear to correlate with those seen in the experi-
ment. Moreover, Tanaka and co-workers [17] estimate
the absolute DCS at 7 eV and 30° to be on the order of
400 X 1076 cm?; although that value is a very rough esti-
mate, it clearly disagrees with our result (Fig. 5), which is
two orders of magnitude smaller. Some of the disagreement
in energy dependence is undoubtedly due our omission of
polarization and of nuclear vibration, which will affect reso-
nance positions, widths, and intensities in the 1-11.5-eV en-
ergy range. Additional measurements, ideally on an absolute
scale and over a wider energy and angle range, would be
very valuable.

IV. SUMMARY

We have reported cross sections for low-energy elastic
collisions of electrons with Cg, computed in the fixed-nuclei
static-exchange approximation. Many features of the static-
exchange cross section were shown to be understandable in
terms of a simple spherical model; however, the static-
exchange results also exhibit features, such as 7 shape reso-
nances and comparatively strong high-angle scattering, that
simple models do not capture. We obtained reasonably good
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agreement with the only previous high-level calculation
[31-33], considering the limitations of both calculations.
Resonance positions appear to correlate fairly well with ob-
served energies of anion states and attachment peaks if al-
lowance is made for a typical downward shift of the static-
exchange resonance energies.
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