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Elastic flow instability, curved streamlines, and mixing in microfluidic flows
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Flow instabilities are well known to occur in macroscopic flows when elastic fluids flow along
curved streamlines. In this work we use flow visualization to study the mechanism underlying a
purely elastic flow instability for Poiseuille flow in amicro smdchannelhaving a zigzag path(curved
streamlines) and quantitatively investigate its implications for fluid mixing(studied by fluorescence
microscopy) in themchannel. We find that the instability enhances mixing over the range of applied
flow rates. For Newtonian streams, mixing occurs by molecular diffusion, and, as expected, mixing
worsens with increasing flow rate because of decreasing residence time. However, for elastic fluid
streams, we find substantial enhancement of mixing at sufficientlyhigh throughputs, which indicates
a strategy to counter the loss of diffusive mixing at high throughputs by exciting an elastic flow
instability. Flow visualization is done using neutrally buoyant non-Brownian tracer particles added
to the elastic fluids and also to the Newtonian fluids. In the Newtonian fluids, the tracer particles
follow the streamlines. In the elastic fluids, the particles areradially displaced while flowing around
bends in the zigzagmchannel, revealing the presence of secondary flow. This radial secondary flow,
which promotes mixing between adjacent fluid streams, motivates us to draw an analogy between
the instability observed here for the elastic fluids in themchannel and the elastic instability that
occurs in systems with curved streamlines, e.g., in the viscoelastic(non-inertial) Taylor–Couette,
Dean, and Taylor–Dean instabilities.[DOI: 10.1063/1.1792011]
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I. INTRODUCTION

It is well known thatpurely elasticflow instabilities1,2

can occur in elastic fluids flowing along curved streamli
The appropriate dimensionless parameters that gover
onsetof these flow instabilities3 (in terms of creating th
nonlinearities in flow response) are the Weissenberg numb
sWid and the Deborah number(De).4 Wi is the ratio of the
first normal stress differencesN1d to the shear stressstd,
which are both functions of shear ratesġd. De is the dimen
sionless residence time:

Wi =
N1sġd
tsġd

, s1d

De =
l

tres
. s2d

The symboll denotes the longest relaxation time of
polymer chains in the elastic fluid andtres is the characteris
tic residence time of the flow. McKinleyet al.3 have consid
ered purely elastic instabilities in several different ge
etries(Couette, cone-and-plate, eccentric cylinders, etc.) and
derived dimensionless criteria, which combine the stream
curvature and the first normal stress difference, which ca
used to identify critical conditions that govern the growth

these instabilities. It is also known that these instabilities are
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seen when«1/2Wi= Os1d.5 Here «=d/Rcurv denotes the d
mensionless radius of curvature,d is the gap width(e.g.,
between concentric cylinders in a Couette cell) andRcurv is
the radius of curvature(taken to be the inner cylinder rad
in the Couette setup). These instabilities are conside
purely elastic as they occur at Reynolds number Re!1, or,
equivalently, Ta!1, where Ta=«Re2 is the Taylor number6

Since microfluidic flows are low Re flows, mixing
fluid streams inmchannels is diffusion limited. The chara
teristic time scale of molecular diffusion can often exc
the residence time of the fluid stream in amchannel, requir
ing longer channels for mixing streams at high flow r
and/or species with small diffusion coefficients. Mixing
viscoelastic liquids(e.g., polymers)7 poses a similar cha
lenge faced in mixing fluids in microfluidic flows, as they
both low Re flows, and scientists8,9 have explored the use
chaotic mixing/advection to promote mixing in viscoela
liquids. Certainly, an alternative strategy for promoting m
ing in mchannels would be chaotic advection. In this w
we focus on exploiting purely elastic flow instabilities. S
entists have proposed different approaches to improve
ing in mchannels such as a three-dimensional serpe
mchannel for passive mixing,10 three-dimensional microva
cular networks,11 placement of slanted wells at the junct

12 13
of a T mchannel, hydrodynamic focusing, flow obstacles
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in mchannels,14 bas relief structures on themchannel floor,15

use of internal hydrodynamic recirculation in emulsion dr
lets under shear flow,16 electrokinetic flow instabilities,17,18

and electrohydrodynamic mixing.19 Many of these ap
proaches have been nicely discussed by Stoneet al.20 in their
recent review on microfluidic flows.

While the nonlinear response of elastic fluids has b
cleverly exploited for achieving fluidic control and mem
elements in amchannel,21 to our knowledge, no study h
been published hitherto on purely elastic flow instabilitie
mchannels with curved streamlines, and their impact on
mixing of fluid streams. Groisman and Steinberg have
lished an experimental study on the effect of fluid elast
on the mixing of streams inmacroscopic curvilinear
channels.22 Their serpentine channel had a depth of 3 m
and consisted of 60 smoothly interconnected half rings
inner and outer radii of 3 mm and 6 mm, respectively. W
recent reports suggest that Burgheleaet al. have extende
this work to microchannels(see Ref. 16 in Ref. 23), it is not
currently available in the published literature.

Here, we extend the work of Groisman and Steinber
microfluidic channels. Beyond the practical applications,
scaling down of dimensions is of interest because micr
drodynamic flow24 can be significantly affected by surfa
forces (surface tension), van der Waals forces, electric
charges, surface roughness, complicated three-dimen
geometry, and the possibility that suspended particles o
solved polymer chains have dimensions comparable to
of themchannels. Here we are also concerned with the c
over from diffusive mixing(at the smaller flow rates used) to
mixing driven by fluid elasticity(at higher flow rates). Elas-
ticity on its own is not sufficient for exciting these pur
elastic flow instabilities, and we argue that these purely
tic flow instabilities come about due to coupling betw
curved streamlines and elasticity.25 We note that Stoneet
al.20 have also alluded to the use of elasticity as an appr
to passive mixing by coupling elasticity with streamline c
vature. Here we show that it is indeed possible to attain
critical value of «1/2Wi required to trigger a purely elas
instability in amchannel and force mixing between adjac
fluid streams.

We carry out our mixing experiments with a model e
tic fluid whose rheology and physical chemistry are w
characterized. We prepare a model aqueous elastic
(a dilute polymer solution, essentially a Boger fluid26,27)
having constant shear viscosity but appreciable elasticity(re-
flected inN1). We excite a flow instability in themchanne
flow of this elastic fluid in regimes where Wi/Re@1 and
«1/2Wi= Os1d. For the channel,« is defined in terms of th
channel widthw:«=w/Rcurv. We compare mixing betwee
fluid streams in themchannel(quantified from fluorescenc
microscopy data) in the cases where both analyte streams
(a) Newtonian fluids and(b) elastic fluids. We elucidate th
mechanism of the instability by visualization of tra
particle trajectories in the elastic fluids flowing in

mchannel.
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II. EXPERIMENTAL PROCEDURE

A. Channel fabrication

A zigzagmchannel[see Fig. 1(a) for sketch] was fabri-
cated by ablation of a polycarbonate substrate with a 19
UV excimer laser, and then sealed with a poly(methyl-
methacrylate) lid overnight in an oven at 105 °C(see Ref. 1
for details). Inlet ports for the analyte streams were drilled
the lid prior to sealing, and then syringe needles were pl
in the ports and held in place by cured epoxy. The cha
dimensions are widthw=85 mm, depthd=60 mm and con
tour lengthL=45 mm(from the junction of the analyte inle
to the outlet).

B. Preparation, rheological and physical
characterization of Newtonian and elastic fluids

A solution of 39.15% mass fraction sucrose and 0
mass fraction sodium chloride was prepared in de-ion
water as the control Newtonian fluid. An elastic solution c
taining 6.6310−3% mass fraction polyacrylamide(PA) of
mass average molar masssMd=1.83107 (Polysciences)28

was prepared in the Newtonian fluid. The PA concentra
was kept well below the overlap concentratio29

FIG. 1. (a) Schematic of themchannel used in these experiments.(b) Steady
shear rheology of the model aqueous elastic fluid.(c) Oscillatory shea
rheology of the model aqueous elastic fluid.
c*s>1/fhgd where fhg is the intrinsic viscosity, to make a
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dilute polymer solution. We fit the data of Kulickeet al.30 on
M dependence offhg to the Mark–Houwink equation31 fhg
=KMa, to determine the Mark–Houwink coefficien
Ks=1.46310−2 L/kgd and as=0.72d for polyacrylamide in
water. The value ofa is in accord with our expectations fo
good solvents0.7,a,0.8d.31 These Mark–Houwink con
stants are also in fair agreement with those provided by
rata and Tsunashima.32 We used this Mark–Houwink equ
tion to estimate the intrinsic viscosity of our aqueous
solution at room temperature,fhg=2.43103 L/kg, and this
the overlap concentrationc* =4.1310−4 kg L−1. Since fhg
<R3/M <1/c*, we estimate the size of the chainsR
>0.4 mm. This value ofR is consistent with dimensions
PA chains of comparable molar mass, as listed by Kulicket
al.30 The PA chains are much smaller than the channe
mensions and finite size effects on the polymer dynamic
unambiguously ruled out.

Sucrose was added to increase the solution viscosit
thus boost the longest relaxation time of the PA ch
therein. Sodium chloride was added to the solution wi
view to making electro-osmotic flow(EOF) measurement
but we used Poiseuille flow since EOF gives much lo
volumetric flow ratessQd than Poiseuille flow. Achievin
sufficiently highQ, and, hence, highġ, which enable us t
reach the regime where Wi.1, is of paramount importanc
for triggering the elastic instability. The solution viscosit
(measured using 50 mm diameter cone-plate tools
0.04 rad cone angle in a Rheometric Scientific ARES rhe
eter equipped with a low shear Force Rebalance Transd)
are h=5.9310−3 Pa s (Newtonian fluid) and h=6.8
310−3 Pa s(elastic fluid) at 22 °C. Thus, the viscosityh of
the elastic fluid was quite insignificantly perturbed over
viscosity of the Newtonian fluid. The steady shear rheo
of the elastic fluid is shown in Fig. 1(b).

Linear viscoelastic measurements of the angu
frequency svd-dependent complex shear modulus,G*svd
=G8svd+ iG9svd, were made on the elastic fluid at 23
[see Fig. 1(c)]. The elastic fluid exhibits classical termin
response33 of a viscoelastic liquid under these conditions
G9 exceedsG8 over all accessible frequencies. The ex
terminal slopes(G8,v2 andG9,v) are not seen due to t
polydispersity of the PA chains. The longest relaxation t
(Zimm time) of the polymer chains is estimated by fitting
best-fit straight lines toG8 andG9, and extrapolating them
determine where the best-fit lines intersect(see Fig. 8.7 in
Ref. 31). The frequencyvc corresponding to the intersecti
serves as a measure of the longest Zimm relaxation time
determinedvc>160 rad s−1 and thus the longest relaxati
time for the PA chains in the elastic fluidl=1/vc=6.25
310−3 s. No fluid inertia effects were seen, as we opera
the so-called gap-loading limit, where the rheometer gaph is
much smaller than the shear wavelengthlshear. We estimate
lshearfrom our data using its relation toG*svd and the phas
anglesdd :lshear=2p / fvÎsr /Gdd cossd /2dg, wherer denotes
fluid density andGd is defined by the relationG8=Gd sin d,
or, G9=Gd cosd. Schrag34 has shown that whenh!lshear in
the gap-loading limit, the shear wave propagates acros
gap without damping and fluid inertia effects are negligi

From our data, we determine 0.017,h/lshear,0.033.
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The viscoelasticity of Boger fluids and dilute polym
solutions is captured by the Oldroyd-B4,35 constitutive equa
tion, derived by treating the polymer chain as a dumb
where two frictional beads are connected by a Hoo
spring. The stress tensort=tp+ts is the sum of the polyme
stresstp and solvent stressts=−hsġ. The termhs is the
solvent viscosity andġ= ¹v+ ¹vT is the rate of strain tens
(the superscriptT denotes the transpose of the tensor
tained from the gradient of the velocity vectorv). The solu
tion viscosityh is h=hs+hp, wherehp is the polymer vis
cosity. Thetp is written as follows:

tp + ldtps1d = − hpġ. s3d

Hereld is the dumbbell relaxation time andtps1d is the con
vected derivative oftp.

tps1d =
D

Dt
stpd − ftp · ¹ v + ¹ vT · tpg. s4d

D /Dt=d/dt+v ·¹ denotes the substantial derivative in
Eulerian frame. Birdet al.4 have evaluated the shear str
and the first normal stress difference for the Oldroyd-B fluid:

t = t21 = − hġ,

s5d
N1 = t11 − t22 = − 2hldġ2.

Applying the results in Eq.(5) to Eq. (1) yields Wi=2ldġ.
We shall invoke these characteristics of the Oldroyd-B fluid
when we discuss the physics underlying the instability
served in this work.

C. Fluorescence microscopy and quantification of
mixing

The control experiment involved mixing of the Newto
ian fluid in both analyte streams, with RhodamineB (Acros
Organics) dye added to one stream as a fluorescent pro
visualize flow, and quantifying mixing in themchannel. Th
dye concentration was kept sufficiently smalls1.1
310−4 mol/Ld to prevent self-quenching. The gain on
detector was set carefully to prevent saturation of pixe
tensities. Fluorescence microscopy(543 nm He–Ne lase)
was performed on a Zeiss LSM 510 confocal laser-scan
microscope. The next experiment involved quantifying m
ing of two streams, each containing the elastic fluid,
RhodamineB added to one of the two streams. Poiseu
flow, generated by a syringe pump, was used to set the
lyte stream flow rates.

Quantification of the deviation from mixingDi is based
on a metric proposed by Liuet al.,10

Di =Î 1

N
o
i=1

N

sI i − Imaxd2. s6d

N denotes the number of pixels;I i andImax denote the inten
sity at pixel i and the maximum intensity, respectively,
served at any pixel in a fully mixed system.Di was calcu
lated at several points along the channel, and normalize
the value ofDi at the channel junction where the incom

analyte streams meet. It follows from Eq.(2) and the nor-
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malization that for two perfectly mixed streamsDi,normalized

=0, while for two completely unmixed streamsDi,normalized

=1.

III. RESULTS AND DISCUSSIONS

The comparison of the deviation from mixing betwe
Newtonian streams and elastic streams is shown in Figs(a)
and 2(b), respectively. Data are shown in Fig. 2 for 25mL/h,
75 mL/h, and 100mL/h. For the elastic fluid only,Q was
pushed up to 150mL/h. For all Q studied, theDi,normalizedis
smaller in the elastic fluids than in the Newtonian flu
indicating an enhancement of mixing with elasticity. As
pected, theDi,normalized at any spot on the channel increa
with increasingQ for the Newtonian fluids, due to decre
ing tres as tres,Q−1. In contrast, for the elastic fluids, t
relationship betweenQ andDi,normalized is not strictly mono
tonic: compare the order of the curves in Figs. 2(a) and 2(b).
This is also seen clearly in Fig. 3(a), where a comparison
Di,normalized vs Q in the two cases is made at a fixed sp
8.5 mm from the junction of the analyte streams.

For the elastic fluids, the interesting result of the pea
theDi,normalizedvs Q curve in Fig. 3(a) arises due to the com

FIG. 2. Deviation from mixing between(a) Newtonian analyte streams a
(b) elastic analyte streams in themchannel. The deviation from mixing
normalized by the corresponding value at the channel junction. Lines m
guide the eye.
petition between residence time and elastic instability effects

Downloaded 22 Nov 2004 to 129.6.154.174. Redistribution subject to AIP
To understand this result, we calculate Wi,«1/2Wi, Re, and
De [see Fig. 3(b)] for the flow of the elastic fluid in th
mchannel. The residence timetres=L / kvl, where kvl is the
average velocity. As an engineering approximation, we
sumed the channel to be nearly circular in cross section
calculated an averageġ=4Q/d3, for calculating Wi. The ra
tio Wi/Re>52 for our system signifies(in conjunction with
Wi .1 and Re!1) that inertial effects are negligible a
significant chain stretching occurs.

Using the molecular diffusion time estimatetmix

>w2/D, we determinetmix>14 s (using the diffusion coe
ficient D>10−10 m2 s−1 known for Fluoroscein, a molecu
similar to RhodamineB). Residence time effects are imp
tant at 25mL/h [tmix/ tres>0.75 at 25mL/h; see Fig. 3(b)]
for the Newtonian streams: the streams spend long enou
the channel for diffusion to provide appreciable mixing.
the other hand, for the elastic fluid atQ=25 mL/h, both the
advantageous effects of large residence timeand the incipi-
ent elastic flow instabilitys«1/2Wi >1d are felt. With increas
ing Q, the effects of residence time are progressively
(e.g., atQ=75 mL/h, tmix/ tres>2.2) while the effects from

y

FIG. 3. (a) Comparison of the deviation from mixing vs volumetric fl
rate between the elastic and the Newtonian cases, at a fixed point(8.5 mm
from the stream junction). Lines merely guide the eye. The bars are a m
sure of the typical standard uncertainty associated with the data in Figs(a),
2(b), and 3(a), and numerically equal one standard deviation.(b) The dimen
sionless numbers Wi, Wi/«1/2, De, Re, andtres/ tmix plotted vsQ.
.the flow instability are increasingly felt, giving rise to a peak
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in the curve ofDi,normalizedvs Q for the elasticfluid streams
Ultimately, the flow instability effects become sufficien
strong on their own to counter the decreased residence
at higherQ, and thenDi,normalizeddecreases steadily with i
creasingQ (i.e., increasing Wi).

What causes the improved mixing in the elastic strea
kinematically? To gain insight into the mechanism of
underlying elastic flow instability, we performed flow vis
alization of tracer particles(Fluoresbrite polystyrene micr
spheres, Polysciences; average diameter50.5 mm;
concentration=2.6310−3% mass fraction) added to th
streams. The particles are effectively neutrally buoyant
the Peclét numbersPe=ġr2/Dself<hġr3/kTd associated wit
them is Pe=Os107d, signifying the domination of convectio
over Brownian motion.Dself denotes the self-diffusion coe
ficient of the particle,r is the particle radius,k is Boltz-
mann’s constant andT is absolute temperature. In the ela
streams[see Figs. 4(a) and 4(b); flow rate=50mL/h], the
tracer particles are radially displaced across the channe
tours as they traverse a bend in themchannel. In Fig. 4(a),
the particle path(in that frame) is closer to the upper wall a
it comes to the bend, while in the next frame[0.03 s later
Fig. 4(b)] it is closer to the lower wall. Ifd1 denotes th
distance of the streak from the top wall in the straight pa
the bend, andd2 denotes the distance of the streak from

FIG. 4. Position of tracer particle streak in elastic fluid in themchanne
observed at(a) time t and(b) at time t+0.03 s. The dashed lines are dra
to indicate the channel edges. The background(containing tracer particle
stuck to the walls of the channel) was subtracted, so that only the position
the streak is visible in the image. Data were taken at a flow rate of 50mL/h.
top wall in the upturn section of the bend, then the data in

Downloaded 22 Nov 2004 to 129.6.154.174. Redistribution subject to AIP
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Fig. 4(b) yield d2/d1=1.4. Visualization at a higher flow ra
s100 mL/hd reveals that this value ofd2/d1 increases to 2.4
Clearly, the magnitude of this radial displacement dep
on Wi. While secondary flow(as discerned from the rad
displacement of the streak while it traverses the bend i
channel) is clearly seen in the flow of elastic fluids in t
mchannel, no such secondary motion is displayed by
tracer particle streaks when both fluid streams are New
ian. In the Newtonian fluids, the particle paths follow
streamlines. In Figs. 5(a) and 5(b), we show the positions
particle streaks(visualized in the same location as Fig.
flow rate550 mL/h) in two successive frames. The stre
in the Newtonian fluid follow the channel contours, and
radial displacement is seen.

Since this radial secondary motion(observed at variou
different bends in themchannel) is a known characteristic
flow instabilities in elastic fluids flowing along curv
streamlines, we are inspired to draw an analogy betwee
elastic flow instability observed in themchannel and the in
stabilities observed for elastic fluids in Taylor–Couette,36–39

Dean and Taylor–Dean flows.40–42 This instability depend
on a complex coupling betweenN1 and curved streamlines.
seems that streamline curvature is an essential conditio
the instability, as it has been concluded on the basis of a
sis that non-inertial viscoelastic plane Couette flow is st
at all Wi.43–45 For our channel we estimate«>0.60 (the

FIG. 5. Position of tracer particle streaks in Newtonian fluid in themchanne
observed at(a) time t and(b) at time t+0.03 s. The dashed lines are dra
to indicate the channel edges. The background(containing tracer particle
stuck to the walls of the channel) was subtracted, so that only the position
the streaks is visible in the image. Scale bar from Fig. 4 also applies t
5. Data were taken at a flow rate of 50mL/h.
average radius of curvature was evaluated at the channel cen-
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terline). When mapped back to the Taylor–Couette exp
mental setup,36 this value of« would correspond to the larg
gap case. The critical shear rate for the onset of the tran
decreases with increasing«.37

It has been well known since the 1960s that the se
normal stress differencesN2=t22−t33d is responsible for th
development of secondary motions in viscoelastic fl
through nonaxisymmetric channels.4 Larson1 has pointed ou
that shear thinning and a nonzeroN2 are predicted to hav
strong influences on the stability of viscoelastic flows,
dering the stability characteristics of dilute solutions sig
cantly different from those of polymer melts. We can d
sively rule out this as the mechanism for the obse
secondary motion becauseN2 is vanishingly small in dilut
polymer solutions.46 Magdaet al.46 have measuredN2 in a
Boger fluid of polyisobutylene dissolved in polyisobute
and found its magnitude to be at least 30 times smaller
N1, and opposite in sign. Since Boger fluids, by definition
not shear thin, no influences of shear thinning are expe
on the instability observed here.

As pointed out by Larson, Shaqfeh, and Muller in th
seminal paper,36 and further expounded by Groisman a
Steinberg,39 the axisymmetric mode of the instability(see
sketch in Fig. 6) involves a radial extensional flow as a p
turbation to the base(primary) shear flow. While Larsonet
al. considered this extensional flow to be time depend
Groisman and Steinberg treated it as being time indepen
We shall now summarize the arguments of Groisman
Steinberg39 to rationalize the observed radial secondary fl

The base(primary) flow in the system is a pressu
driven shear flow. The secondary flow involves a radialex-
tensionalflow (see Fig. 6) wherevr =vrsrd and the perturba
tion extensional rate is«̇=]vr /]r. The rate of deformatio
tensor is then written as follows in thesr ,u ,zd coordinate
system:

¹v = 1 0 0 0

ġr «̇ 0

0 0 − «̇
2 . s7d

When the rate of deformation tensor[Eq. (7)] is substituted
in Eq. (3), then the following equations are obtained fortp.

4

FIG. 6. Schematic of the axisymmetric mode of the instability in the flo
the elastic fluid in the Taylor–Couette setup(adapted from Ref. 36).
The sign convention of Birdet al. is followed:

Downloaded 22 Nov 2004 to 129.6.154.174. Redistribution subject to AIP
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d

,
t.

tuu + ld
dtuu

dt
= 2ldtrr ġru, s8d

tru + ld
dtru

dt
= ldtrr ġru + ldtru«̇ − hpġru, s9d

trr + ld
dtrr

dt
= 2ldtrr «̇ − 2hp«̇. s10d

If we assume that the perturbation is steady, i.e.,dtrr /dt=0,
and that the termld«̇!1, then we gettrr =−2hp«̇. Sincetrr

andġru are coupled to each other[see Eq.(9)], the stretchin
of the chains makes them increasingly susceptible to the
shear flow. The shear stress thus increases byDtru

=−3hp«̇ldġru, which couples toġru and causes an increase
the azimuthal(hoop) stress byDtuu=−6hp«̇sldġrud2. Since
N1 in the base shear flow isN1=tuu−trr =−2hpldsġrud2, the
first normal stress difference increases byDN1=Dtuu−trr

=−2hp«̇f3sldġrud2−1g due to the perturbation. This increa
in azimuthal stress(and hence inN1) drives the radial flow
and serves to improve mixing between the elastic
streams in themchannel by increasing the area in con
between the streams and thus facilitating diffusion.
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