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Pavel Krejč́ı † and Jürgen Sprekels ‡

May 26, 2009

MSC2000: Primary: 35Q72; Secondary: 74C05; 74K10; 74N30; 34C55; 47J40;

Keywords: Elastoplasticity, beam equation, hysteresis operators, Prandtl-Ishlinskii model,
von Mises model

Abstract

We consider a model for one-dimensional transversal oscillations of an elastic-ideally
plastic beam. It is based on the von Mises model of plasticity and leads after a dimen-
sional reduction to a fourth-order partial differential equation with a hysteresis operator
of Prandtl-Ishlinskii type whose weight function is given explicitly. In this paper, we
study the case of clamped beams involving a kinematic hardening in the stress-strain
relation. As main result, we prove the existence and uniqueness of a weak solution.
The method of proof, based on spatially semidiscrete approximations, strongly relies
on energy dissipation properties of one-dimensional hysteresis operators.

1 Introduction

The use of hysteresis operators in the modeling of hysteretic stress-strain relations that are
commonplace in nonlinear elastoplasticity dates back to the pioneering works of Prandtl [7]
and Ishlinskii [2]. The Prandtl-Ishlinskii hysteresis model describes the time evolution of the
relation between strain and stress in the form

σ(t) =

∞∫

0

ϕ(q) sq[ε](t) dq . (1.1)
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Here, ϕ : (0,∞) → R is a nonnegative weight function satisfying suitable integrability
conditions. The symbol sq denotes the one-dimensional stop operator or Prandtl’s elastic-
perfectly plastic element with yield limit q . Between the thresholds ±q , the behavior is
linear elastic (with elasticity modulus 1), while along the upper (lower) threshold +q (−q)
we have irreversible plastic yielding and can only move to the right (left).

The operator sq is a special case of the abstract stop operator SZ in a separable Hilbert
space X associated with a closed and convex set Z ⊂ X . It is defined as the solution
operator, which with each given input function v ∈ W 1,1(0, T ; X) and a given initial datum
χ0 ∈ Z associates the unique solution χ ∈ W 1,1(0, T ; X) to the variational inequality

χ(t) ∈ Z ∀ t ∈ [0, T ] , χ(0) = χ0 ,

(χ̇(t)− v̇(t) , z − χ(t)) ≥ 0 ∀ z ∈ Z , for a.e. t ∈ (0, T ) . (1.2)

Here, and throughout this paper, the superimposed dot denotes differentiation with respect
to time, and ( · , · ) is a scalar product in X . The theory of such variational inequalities
goes back to [6], and further special properties related to the geometry of the set Z have
been established in [3, 4]. In this paper, we restrict ourselves to the canonical choice of initial
conditions

χ0 = ProjZ(v(0)) , (1.3)

where ProjZ : X → Z is the orthogonal projection onto Z . We then simply write χ = SZ [v]
instead of χ = SZ [χ0, v] . In this setting, the one-dimensional stop sq is just another notation
for S[−q,+q] .

The stop operator forms a corner stone of the mathematical theory of hysteresis opera-
tors. For a thorough treatment of its analytical and geometrical properties, we refer to the
monographs [1], [3], [4], [8].

Although the Prandtl-Ishlinskii operator is easily understood and rather intuitive, its use
in the physical and engineering literature is still nonstandard. The main reasons are the
following: on the one hand, the operator appears to be entirely phenomenological, and its
weight function ϕ is a priori unknown and must be identified; on the other hand, well-
established three-dimensional plasticity models like those by von Mises or Tresca are available.

In the recent paper [5], the authors have demonstrated that the use of the three-dimensional
single-yield von Mises plasticity model leads in the case of transversal vibrations of thin one-
dimensional elastoplastic rectangular beams to a model in which a one-dimensional multi-
yield Prandtl-Ishlinskii operator occurs. For the transversal component w of the displace-
ment, it resulted a fourth-order PDE of the form

%wtt − %h2

3
wxxtt + P [wxx]xx = g , (1.4)

where

P [wxx](x, t) =

∞∫

0

ϕ(q) sq[wxx(x, ·)](t) dq , (1.5)
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with ϕ given by the formula

ϕ(q) =

{
0 , if 0 ≤ q ≤ R

Eh
,

R3

E2h
q−4 , if q > R

Eh
.

(1.6)

Here, % is the mass density, 2h is the thickness of the beam, E is the Young elasticity
modulus, and R is the yield limit in the original von Mises model. It was shown in [5] that
Problem (1.4)–(1.5), complemented with the initial and boundary conditions

w(0, t) = P [wxx](0, t) = w(1, t) = P [wxx](1, t) = 0 , 0 ≤ t ≤ T , (1.7)

w(x, 0) = w0(x) , wt(x, 0) = w1(x) , 0 ≤ x ≤ 1 , (1.8)

and under suitable assumptions on the data, admits a unique weak solution

w ∈ W 1,∞(0, T ; L2(0, 1)) ∩ L∞(0, T ; H2(0, 1)) ∩H1(0, T ; H1(0, 1)) .

In this paper, we consider the case of a clamped beam, i. e., the boundary condition (1.7)
is replaced by

w(0, t) = wx(0, t) = w(1, t) = wx(1, t) = 0 . (1.9)

It turns out that these boundary conditions are somewhat more difficult to treat than (1.7),
and the analysis performed in [5] does not apply. Also, the space discretization method
presented below fails for Eq. (1.4). In order to obtain existence, we thus assume the presence
of a kinematic hardening term γ wxxxx in our model; that is, we replace Eq. (1.4), normalizing
all physical constants to unity, by

wtt − wxxtt + P [wxx]xx + wxxxx = g . (1.10)

It will be shown in the forthcoming sections that the initial-boundary value problem (1.10),
(1.5), (1.8), (1.9) admits under appropriate regularity assumptions a unique weak solution

w ∈ W 2,∞(0, T ; H1(0, 1)) ∩W 1,∞(0, T ; H2(0, 1)) .

The following text is divided into three sections. In Section 2, we state the main results and
recall some basic facts about hysteresis operators. In Section 3, we define the corresponding
space discrete approximations and derive estimates independent of the discretization param-
eter. Finally, in Section 4, we pass to the limit and prove the existence and uniqueness of a
solution to the original problem.

2 Statement of the mathematical results

In what follows, we use the standard notations for the spaces of continuous functions and for
the usual Lebesgue and Sobolev spaces. The L2 - norm is denoted by ‖ · ‖ .

We study Problem (1.10), (1.5), (1.8), (1.9) in QT := (0, 1) × (0, T ) under the following
general assumptions on the data of the system:
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(H1) g, gt ∈ L2(QT ) .

(H2) w0 ∈ H3(0, 1), w1 ∈ H2(0, 1) , and the following compatibility conditions are satisfied:

wi(0) = wi
x(0) = wi(1) = wi

x(1) = 0 , i = 0, 1 . (2.1)

(H3) The weight function ϕ : (0,∞) → [0,∞) of the Prandtl-Ishlinskii operator

P [u] =

∫ ∞

0

ϕ(q) sq[u] dq

is measurable and satisfies the growth condition
∫ ∞

0

(
1 + q2

)
ϕ(q) dq < +∞ . (2.2)

Putting

u(x, t) = w1(x) +

∫ t

0

(I + P) [wxx] (x, s) ds , f(x, t) = w1(x) +

∫ t

0

g(x, s) ds , (2.3)

where I is the identity mapping, we rewrite problem (1.10), (1.5), (1.8), (1.9) in the form

ut − (I + P) [wxx] = 0 in QT , (2.4)

wt − wxxt + uxx = f(x, t) in QT , (2.5)

w(0, t) = w(1, t) = wx(0, t) = wx(1, t) = 0 , 0 ≤ t ≤ T , (2.6)

u(x, 0) = w1(x) , 0 ≤ x ≤ 1 , (2.7)

w(x, 0) = w0(x) , 0 ≤ x ≤ 1 . (2.8)

The aim of this paper is to establish the following result.

Theorem 2.1. Suppose that the conditions (H1)–(H3) are satisfied. Then the system (2.4)–
(2.8) has a unique solution (u,w) having the following properties:

(i) u ∈ W 2,∞(0, T ; L2(0, 1)) ∩W 1,∞(0, T ; H1(0, 1)) ∩ L∞(0, T ; H2(0, 1)) .

(ii) w ∈ W 1,∞(0, T ; H2(0, 1)) ∩W 2,∞(0, T ; H1(0, 1)) .

(iii) Eqs. (2.4)–(2.5) hold almost everywhere in QT .

(iv) The initial and boundary conditions (2.6)–(2.8) are satisfied pointwise.

Remark 2.2. We call (u,w) having the above properties (i)–(iv) a strong solution to (2.4)–
(2.8), and w a weak solution to (1.10), (1.5), (1.8), (1.9). The meaning of the conditions (i),
(ii) in Theorem 2.1 is that

utt, uxt, uxx, wxxt, wxtt ∈ L∞(0, T ; L2(0, 1)) . (2.9)

By virtue of the initial/boundary conditions and of embedding theorems, we then have

u, ux, ut, w, wx, wt, wxt ∈ C(QT ) , wxx ∈ L2(0, 1; C[0, T ]) . (2.10)

Hence, as we will see below, P [wxx(x, ·)] is well defined for a. e. x ∈ (0, 1) .
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Before proving Theorem 2.1 in the next sections, we now collect some well-known proper-
ties of the one-dimensional stop operator that can be found in a more general form in the
monographs [1] or [4].

Proposition 2.3. Let v1, v2 ∈ W 1,1(0, T ) be given, χi = sq[vi] , pi = vi−χi , i = 1, 2 . Then

(i) (χ1(t)− χ2(t))(v̇1(t)− v̇2(t)) ≥ 1

2

d

dt
(χ1(t)− χ2(t))

2 a. e.;

(ii) |ṗ1(t)− ṗ2(t)|+ d

dt
|χ1(t)− χ2(t)| ≤ |v̇1(t)− v̇2(t)| a. e.;

(iii) |χ1(t)− χ2(t)| ≤ 2 max
0≤τ≤t

|v1(τ)− v2(τ)| ∀t ∈ [0, T ] ;

(iv) χ̇i(t) ṗi(t) = 0 a. e.

It follows from Proposition 2.3 (ii), (iii) that the Prandtl-Ishlinskii operator P from Hy-
pothesis (H3) is Lipschitz continuous in W 1,1(0, T ) and admits a Lipschitz continuous ex-
tension to C[0, T ] . Moreover, Proposition 2.3 (iv) implies that there exists a constant C > 0
such that

0 ≤ d

dt
P [v](t) v̇(t) ≤ C v̇2(t) a. e. (2.11)

As a consequence of Proposition 2.3 (i), we obtain the inequality

(P [v1](t)−P [v2](t))(v̇1(t)− v̇2(t)) ≥ 1

2

d

dt

∫ ∞

0

ϕ(q)(sq[v1]− sq[v2])
2(t) dq (2.12)

for every v1, v2 ∈ W 1,1(0, T ) and a. e. t ∈ (0, T ) . Formula (2.12) implies in turn the two
well-known hysteresis energy inequalities: choosing v1 = v ∈ W 1,1(0, T ) and v2 = 0 yields

P [v](t) v̇(t) ≥ 1

2

d

dt

∫ ∞

0

ϕ(q) s
2
q[v](t) dq (2.13)

almost everywhere, while, if we consider v1 = v ∈ W 2,1(0, T ) and v2(t) = v(t − h) for
h > 0 with a suitable extension to [−h, 0] , and let h tend to 0 , then (using also Proposition
2.3 (iv)),

d

dt
P [v](t) v̈(t) ≥ 1

2

d

dt

∫ ∞

0

ϕ(q)

(
d

dt
sq[v]

)2

(t) dq =
d

dt

(
1

2

d

dt
P [v](t) v̇(t)

)
(2.14)

in the sense of distributions, that is, the function

D[v](t) =
1

2

d

dt
P [v](t) v̇(t)−

∫ t

0

d

dt
P [v](τ) v̈(τ) dτ (2.15)

is nonincreasing in [0, T ] . This means, in particular, that the function

U [v](t) =
d

dt
P [v](t) v̇(t) (2.16)
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has bounded variation on [0, T ] whenever v ∈ W 2,1(0, T ) . A detailed discussion of these
issues can be found in [4, Chapter II]. Note only that (2.13) is the usual energy inequality,
where

Q[v] =
1

2

∫ ∞

0

ϕ(q) s
2
q[v] dq (2.17)

is the so-called clockwise admissible potential of P . The dissipation

∫ t2

t1

P [v](t) v̇(t) dt− (Q[v](t2)−Q[v](t1)) ≥ 0 , (2.18)

defined as the difference between the work done during a time interval [t1, t2] and the potential
increment, corresponds to the area of hysteresis loops . In (2.15) instead, the “dissipation”
D[v] is related to the curvature of the hysteresis branches.

3 Space discretization

For a generic vector v = (v0, v1, . . . , vn) we introduce the notation

Dkv = n2(vk+1 − 2vk + vk−1) , k = 1, . . . , n− 1 , (3.1)

dkv = n(vk − vk−1) , k = 1, . . . , n . (3.2)

We start with an easy, but useful auxiliary result.

Lemma 3.1. Let v = (v0, v1, . . . , vn) be such that

1

n

n∑

k=0

v2
k ≤ 1 ,

1

n

n−1∑

k=1

(Dkv)2 ≤ 1 .

Then maxk=1,...,n |dkv| ≤ 7 .

Proof. We define an auxiliary sequence v̂2j = vj for j = 0, . . . , n , v̂2j−1 = (vj + vj−1)/2 for
j = 1, . . . , n . Then

1

2n

2n∑

k=0

v̂2
k ≤ 1 , (2n)3

2n−1∑

k=1

(v̂k+1 − 2v̂k + v̂k−1)
2 ≤ 2 .

Let v̂k ≥ 0 for at least n + 1 elements; otherwise we pass from vk to −vk . We further
proceed by contradiction. Assume that for some j we have 2n(v̂j − v̂j−1) > 7 (the case
“< −7” is similar). Then for all k we have

|2n(v̂k − v̂k−1)− 2n(v̂j − v̂j−1)| ≤ 2n
2n−1∑

k=1

|v̂k+1 − 2v̂k + v̂k−1| ≤
√

2 ,
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hence 2n(v̂k− v̂k−1) > 7−√2 for all k . In particular, v̂n ≥ 0 , and v̂n+j > j (7−√2)/(2n)
for all j = 1, . . . , n . This yields that

1 ≥ 1

2n

n∑
j=1

v̂2
n+j >

(7−√2)2

8n3

n∑
j=1

j2 >
(7−√2)2

24
,

which is the desired contradiction. Hence, 2n|v̂k − v̂k−1| ≤ 7 for all k , and the assertion
follows.

We now fix an integer n ∈ N , and consider space-discrete approximations of (2.4)–(2.8) in
the form

u̇k(t)− (I + P) [Dkw] (t) = 0 , k = 0, 1, . . . , n , (3.3)

ẇk(t)−Dkẇ(t) + Dku(t) = fk(t) , k = 1, . . . , n− 1 . (3.4)

We prescribe “boundary conditions”

w0(t) = wn(t) = 0 , w−1(t) = w1(t) , wn+1(t) = wn−1(t) , (3.5)

and initial conditions

wk(0) = w0
k := w0(k/n) , k = 1, . . . , n− 1 , (3.6)

uk(0) = w1
k := w1(k/n) , k = 0, 1, . . . , n . (3.7)

The right-hand side fk(t) is defined as

fk(t) = w1
k + n

∫ k/n

(k−1)/n

∫ t

0

g(x, τ) dτ dx , k = 1, . . . , n− 1 . (3.8)

Note that formula (3.1) under the additional hypothesis v0 = vn = 0 generates on Rn−1 a
symmetric negative semidefinite matrix D̃ with entries D̃kk = −2n2 , D̃k(k−1) = D̃(k−1)k =

n2 , D̃ij = 0 otherwise. With this notation, Eq. (3.4) for t = 0 reads (I − D̃) ẇ(0) =
(I− D̃) w1 , hence

ẇk(0) = w1
k , k = 1, . . . , n− 1 . (3.9)

The ODE system (3.3)–(3.8) has a unique global solution by virtue of the Lipschitz conti-
nuity of the operator I+P and the invertibility of the matrix I− D̃ in (3.4). We now derive
some estimates that will enable us to pass to the limit as n →∞ . We denote by C1, C2, . . .
any constant that depends possibly on the data, but not on the discretization parameter n .

The estimates are based on the “second-order energy inequality” (2.14). We differentiate
(3.4) twice and (3.3) once, test (3.4) by ẅk(t) , use summation by parts and the conditions
(3.5), and obtain for a. e. t ∈ (0, t) the identity (omitting the argument t for simplicity)

1

n

n−1∑

k=1

...
wk ẅk +

1

n

n∑

k=1

dk
...
w dkẅ +

1

n

n∑

k=0

δk
d

dt
(I + P)[Dkw] Dkẅ =

1

n

n−1∑

k=1

f̈k ẅk , (3.10)
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with δk = 1 for k = 1, . . . , n − 1 , δ0 = δn = 1/2 . Now, by virtue of (2.14)–(2.15), the
function

V (t) :=
1

n

n−1∑

k=1

ẅ2
k(t) +

1

n

n∑

k=1

(dkẅ)2(t) +
1

n

n∑

k=0

δk
d

dt
(I + P)[Dkw](t) Dkẇ(t)

−2

∫ t

0

1

n

n−1∑

k=1

f̈k(τ) ẅk(τ) dτ

is nonincreasing in (0, T ) . By (2.11), we have V∗(t) ≤ V (t) ≤ V ∗(t) a. e., where both the
functions

V∗(t) :=
1

n

n−1∑

k=1

ẅ2
k(t) +

1

n

n∑

k=1

(dkẅ)2(t) +
1

n

n∑

k=0

1

2
(Dkẇ)2(t)

−
∫ t

0

(
‖gt(τ)‖2 +

1

n

n−1∑

k=1

(ẅk)
2(τ)

)
dτ ,

V ∗(t) :=
1

n

n−1∑

k=1

ẅ2
k(t) +

1

n

n∑

k=1

(dkẅ)2(t) +
1

n

n∑

k=0

C1 (Dkẇ)2(t)

+

∫ t

0

(
‖gt(τ)‖2 +

1

n

n−1∑

k=1

(ẅk)
2(τ)

)
dτ ,

with a suitable constant C1 > 1 , are continuous. For a. e. 0 < s < t < T , we have
V∗(t) ≤ V (t) ≤ V (s) ≤ V ∗(s) . Hence, in particular,

V∗(t) ≤ V ∗(0) ∀t ≥ 0 . (3.11)

The proof that V ∗(0) is bounded from above by a constant is more delicate. As a consequence
of Hypothesis (H2), we have indeed, with some C̄ ≥ 1 ,

1

n

n∑

k=0

(Dkẇ)2(0) ≤ C̄‖w1
xx‖2 . (3.12)

For the remainder, we differentiate (3.4) and test by ẅk(t) , to obtain for every t ∈ [0, T ]
that

1

n

n−1∑

k=1

ẅ2
k(t) +

1

n

n∑

k=1

(dkẅ)2(t) =
1

n

n∑

k=1

dku̇(t) dkẅ(t) +
1

n

n−1∑

k=1

ḟk(t) ẅk(t) , (3.13)

hence, for t = 0,

1

n

n−1∑

k=1

ẅ2
k(0) +

1

n

n∑

k=1

(dkẅ)2(0) ≤ C2

(
1

n

n∑

k=1

(dku̇)2(0) + ‖g(0)‖2

)
. (3.14)
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Eq. (3.3) and the Lipschitz continuity of the operator I + P entail that for 2 ≤ k ≤ n − 1
we have

|dku̇(0)| ≤ C3 n|Dkw0 −Dk−1w
0|

= C3 n3

∣∣∣∣∣
∫ k/n

(k−1)/n

(w0
x(x + 1/n)− 2w0

x(x) + w0
x(x− 1/n)) dx

∣∣∣∣∣

= C3 n3

∣∣∣∣∣
∫ k/n

(k−1)/n

∫ x

x−(1/n)

∫ y+(1/n)

y

w0
xxx(z) dz dy dx

∣∣∣∣∣ ,

hence

1

n

n−1∑

k=2

(dku̇)2(0) ≤ C2
3n

2

∫ 1−(1/n)

1/n

∫ x

x−(1/n)

∫ y+(1/n)

y

|w0
xxx(z)|2 dz dy dx

≤ C2
3

∫ 1

0

|w0
xxx(z)|2 dz . (3.15)

It remains to estimate the terms (1/n)(d1u̇)2(0) and (1/n)(dnu̇)2(0) in (3.14). We have

(1/n)(d1u̇)2(0) ≤ C2
3n

5|w0(2/n)− 4w0(1/n)|2 . (3.16)

By virtue of (2.6), we have for all x ∈ [0, 1] the identity

w0(x) =
1

2
x2w0

xx(0) +
1

2

∫ x

0

w0
xxx(y)(x− y)2 dy ,

hence

w0(2x)− 4w0(x) = 2

∫ x

0

(2w0
xxx(2y)− w0

xxx(y))(x− y)2 dy .

For every x ∈ [0, 1/2] we thus have by Hölder’s inequality

|w0(2x)− 4w0(x)| ≤ 4 ‖w0
xxx‖

(∫ x

0

(x− y)4 dy

)1/2

≤ 4√
5
x5/2 ‖w0

xxx‖ , (3.17)

and combining (3.17) with (3.16) we conclude that

(1/n)(d1u̇)2(0) ≤ 16

5
C2

3 ‖w0
xxx‖2 . (3.18)

In a similar way, we estimate (1/n)(dnu̇)2(0) to obtain that

1

n

n∑

k=1

(dku̇)2(0) ≤ C4 ‖w0
xxx‖2 . (3.19)

From (3.11)–(3.19) and Gronwall’s inequality, we deduce the estimate

1

n

n−1∑

k=1

ẅ2
k(t) +

1

n

n∑

k=1

(dkẅ)2(t) +
1

n

n∑

k=0

(Dkẇ)2(t) ≤ C5 ∀t ∈ [0, T ] , (3.20)
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and, by comparison,

1

n

n∑

k=0

ü2
k(t) +

1

n

n−1∑

k=1

(Dku)2(t) ≤ C6 a. e. (3.21)

We now use Lemma 3.1 to derive the final estimate. For k = 0, . . . , n , set pk(t) = ẇk(t) −
uk(t) . We have ṗk(t) = ẅk(t) − u̇k(t) a. e. and, as a consequence of (3.4), Dkṗ(t) =
ẅk(t)− ḟk(t) . By Lemma 3.1, we have max |dkṗ(t)| ≤ C7 and, by (3.20),

1

n

n∑

k=1

(dku̇)2(t) ≤ C8 a. e. (3.22)

4 Passage to the limit

With the intention to let n tend to ∞ , we define the interpolates

w(n)(x, t) =
1

2
(wk + wk−1)(t) +

(
x− k − 1

n

)
dkw(t) +

1

2

(
x− k − 1

n

)2

Dkw(t) ,

u(n)(x, t) =
1

2
(uk + uk−1)(t) +

(
x− k − 1

n

)
dku(t) +

1

2

(
x− k − 1

n

)2

Dku(t) ,

w̄(n)(x, t) = wk(t) ,

ū(n)(x, t) = uk(t) ,

f̄ (n)(x, t) = fk(t) ,

for x ∈ [(k − 1)/n, k/n) , k = 1, . . . , n , and t ∈ [0, T ] , continuously extended to x = 1,
with the convention Dnu(t) = fn(t) + Dnẇ(t) or, equivalently, un+1(t) = 2un(t)− un−1(t) +
2ẇn−1(t) + (1/n2)fn(t) . In (3.20)–(3.22), we derived the estimates

max
0≤t≤T

(
‖w̄(n)

tt (t)‖2 + ‖w(n)
xtt (t)‖2 + ‖w(n)

xxt(t)‖2
)

≤ C5 , (4.1)

max
0≤t≤T

(
‖ū(n)

tt (t)‖2 + ‖u(n)
xt (t)‖2 + ‖u(n)

xx (t)‖2
)

≤ C9 . (4.2)

Furthermore, for x ∈ [(k − 1)/n, k/n) and t ∈ [0, T ] we have

|ū(n)(x, t)− u(n)(x, t)| ≤ 2|uk(t)− uk−1(t)|+ 1

2
|uk+1(t)− uk(t)| , (4.3)

and similarly for ū
(n)
t −u

(n)
t , w̄(n)−w(n) , etc. This, together with (3.22), yields in particular

that ∫ 1

0

|ū(n)
t (x, t)− u

(n)
t (x, t)|2 dx ≤ 25

4n

n+1∑

k=1

|u̇k(t)− u̇k−1(t)|2 ≤ C10

n2
. (4.4)

In the same way, we obtain from (3.20)–(3.21) that

sup
QT

|ū(n) − u(n)|+ sup
QT

|w̄(n) − w(n)|+ sup
QT

|w̄(n)
t − w

(n)
t | ≤ C11

n
. (4.5)
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Combining the above estimates, and possibly selecting a suitable subsequence of n →∞ ,
we find that there exist functions u,w in the appropriate Sobolev spaces such that the
following convergences take place:

w
(n)
xxt → wxxt, w

(n)
xtt → wxtt, w̄

(n)
tt → wtt,

ū
(n)
tt → utt, u

(n)
xx → uxx, u

(n)
xx → uxx,

}
weakly-* in L∞(0, T ; L2(0, 1)) . (4.6)

Then, by compact embedding,

u(n) → u, u
(n)
x → ux, u

(n)
t → ut,

w(n) → w, w
(n)
x → wx, w

(n)
t → wt, w

(n)
xt → wxt,

}
strongly in C(QT ) . (4.7)

By virtue of (3.3)–(3.3), the identities

ū
(n)
t − (I + P)

[
w(n)

xx

]
= 0 , (4.8)

w̄
(n)
t − w

(n)
xxt + u(n)

xx = f̄ (n)(x, t) . (4.9)

hold a. e. in QT . The operator I+P is invertible on C[0, T ] , and its inverse is Lipschitz con-

tinuous (see [4, Corollary II.3.4]). By (4.4) and (4.7), ū
(n)
t → ut strongly in L2(0, 1; C[0, T ]) ,

hence w
(n)
xx → (I + P)−1[ut] strongly in L2(0, 1; C[0, T ]) . Clearly, f̄ (n) → f strongly in

L2(0, 1; C[0, T ]) , so that we can pass to the limit in (4.8)–(4.9) to see that (2.4)–(2.5) are
satisfied a. e. in QT .

The convergence of the initial conditions easily follows from the inequalities

|w̄(n)(x, 0)− w0(x)| ≤
∫ k

n

k−1
n

|w0
x(x)| dx , |w̄(n)

t (x, 0)− w1(x)| ≤
∫ k

n

k−1
n

|w1
x(x)| dx , (4.10)

for x ∈ [(k − 1)/n, k/n) . To check the boundary conditions, just notice that

|w(n)
x (0, t)|2 = n2 |w1(t)|2 =

1

4n2
|D0w(t)|2 ≤ 1

4n2

n∑

k=0

(Dkw)2(t) ≤ C12

n
,

|w(n)(0, t)|2 =
1

4
|w1(t)|2 ≤ C12

4n3
,

and similarly for x = 1. The uniqueness is easy as well: consider two solutions (u∗, w∗) ,
(u∗, w∗) , and set ŵ = w∗−w∗ , û = u∗−u∗ , p̂ = ŵt− û . We obtain from (2.5) that ŵt = p̂xx .
Differentiating this identity with respect to t , and testing by ŵt , we obtain that

∫ 1

0

ŵtt ŵt + ŵxtt ŵxt + ((I + P)[w∗
xx]− (I + P)[(w∗)xx]) ŵxxt dx = 0 ,

whence, by (2.12), w∗ = w∗ . The proof of Theorem 2.1 is thus complete.
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