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Elastic instabilities in planar 
elongational flow of monodisperse 
polymer solutions
Simon J. Haward1, Gareth H. McKinley2 & Amy Q. Shen1

We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational 
flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We 
use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a 
series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over 
a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric 
and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry 
resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for 
intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement 
and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a 
well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric 
and rheological scaling parameters. The criterion yields maximum values of M which compare well 
with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude 
that the same mechanism of tension acting along curved streamlines governs the onset of elastic 
instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows.

Extensional kinematics occur locally in all �ows that possess streamwise velocity gradients, including �ows 
through intersections (like T- or Y-shaped junctions), �ows through contractions or expansions, and �ows 
around obstacles such as sedimenting particles. Many industrial and technological processes involve the �ow of 
viscoelastic polymeric �uids under conditions of strong extensional deformation, resulting in a complex rheolog-
ical response from the �uid. �e maximum rates at which many processing operations involving polymeric �uids 
can be carried out are restricted by the onset of elastic instabilities, which would be entirely unexpected for the 
equivalent �ow of a Newtonian �uid1–3. Understanding of the conditions resulting in the onset of elastic instabili-
ties in viscometric shearing �ows is now quite advanced4–6, however the same is not true for extension-dominated 
or “shear-free” �ows, which are much more di�cult to study under well-controlled and well-de�ned conditions7,8. 
Gaining a complete understanding of the factors causing the onset of elastic instabilities in arbitrary �ow kin-
ematics will be of bene�t to the optimization of widespread applications and processes including extrusion, 
�ber-spinning, blow-moulding, inkjet printing, lab-on-chip design and laboratory micro�uidics experiments3.

�e cross-slot device is a common �ow geometry that is widely utilized for generating a controllable planar 
extensional �ow �eld. It consists of mutually bisecting rectangular channels with two opposing inlets and two 
opposing outlets and, under ideal conditions, the symmetry of the geometry results in the occurrence of an iso-
lated stagnation point at the precise center of the �ow �eld9. Planar elongation occurs as �uid elements accelerate 
away from the stagnation point along the axis of the outlet channels. �is extensional �ow �eld has proven itself 
extremely useful in laboratory applications9. In particular, cross-slot devices have yielded signi�cant insights into 
the stretching dynamics of polymers in dilute solution under strong elongational �ow �elds10–13. Experiments 
with solutions of �exible polymers have con�rmed that as the strength of the extensional �ow is increased such 
that the magnitude of the Weissenberg number exceeds a critical value given by τε= > .Wi 0 5 (where τ is the 
characteristic relaxation time of the �uid and ε  is the applied elongation rate), polymer molecules in the region of 
the stagnation point can undergo a conformational change from a random coil to a highly stretched state, known 
as the coil→ stretch transition14–17. This has been shown by measuring the resulting optical anisotropy, or 
�ow-induced birefringence, in the polymer solution using polarized light techniques10,18–20, and also by direct 
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observations of single molecules of fluorescently-labelled DNA unraveling at the stagnation point11,12. The 
stretching of polymer molecules at the stagnation point and the entropic elasticity driving their relaxation as they 
are advected downstream results in the formation of an elastic strand localized along the out�owing symmetry 
plane of the cross-slot, a so-called “birefringent strand”10,21–23. Within these regions, the highly extended polymers 
strongly resist additional deformation, elastic tensile stresses dominate and lead to a non-Newtonian increase in 
the local extensional viscosity of the �uid. �e e�ective viscosity within the elastic strand of highly-aligned poly-
mer can be orders of magnitude greater than the viscosity of the �uid surrounding the strand, in which the poly-
mers are only weakly deformed from their equilibrium coil con�gurations21,20. �e extensional viscosity of the 
elastic strand can be deduced by measurements of the non-linear increase in the bulk pressure drop across the 
cross-slot device as ε  is increased, or alternatively by measuring the local birefringence and invoking the 
stress-optical rule (SOR)19,20,24–27. �e local increase in extensional viscosity within the birefringent strands is so 
great that they can even be modeled to a good approximation as internal elastic boundary layers in the �ow �eld21. 
This can cause severe perturbations to the flow field compared with the Newtonian case20,21,28–31. Feedback 
between the polymer elongation in the strand and the resulting �ow �eld modi�cation can give rise to a variety of 
theoretically predicted and experimentally observed elasticity-in�uenced �ow instabilities22,30,32–37. Of particular 
relevance to the present study is a �ow asymmetry, �rst reported by Gardner et al.30 that can occur for viscoelastic 
�ows in cross-slot devices at high deformation rates.

Over the past decade, there has been an increasing interest among the experimental and computational �uid 
dynamics and rheology communities in the �ow asymmetry observed by Gardner et al.30 as an example of a 
“purely-elastic” �ow instability34,35,38–43. �is symmetry-breaking �ow bifurcation occurs when inertia is negligi-
ble (i.e. the Reynolds number, Re, is low) but elastic e�ects, as characterized by the Weissenberg number (Wi), 
become signi�cant. �e instability is characterized by the unequal division of the inlet �ow between the two outlet 
channels of the cross-slot. Although �rst reported in the 1980’s30, study of this phenomenon has only proceeded 
in earnest since the advent of widely accessible techniques for the fabrication of micro�uidic devices44. Since 
∼ Re  and ε ∼ −

ɺ ℓ
1, the inherently small length scales  of micro�uidic devices allow �uids to be deformed at 

high rates while inertia remains low45, and give ready access to regimes of very high elasticity El =  Wi/Re at which 
elastic instabilities become prevalent3,46–50.

Purely elastic instabilities, i.e. those arising when inertial forces are negligible compared with elasticity, have 
been reported for viscoelastic �uids in a wide variety of �ow con�gurations2–4,6. An example pertinent to the 
present investigation is the �ow of polymer solutions into abrupt contractions, which is a widely studied problem 
due to its great industrial relevance in polymer processing51–56. In this case a rich sequence of instabilities can 
be observed as the �ow rate through the contraction is increased. �ese instabilities have been characterized 
extensively over a wide range of Wi and Re by varying �uid properties and channel dimensions in micro�uidic 
planar abrupt contraction geometries46,47,57–59. For �uids of high elasticity (El >  1), the Weissenberg number is 
the dominant parameter controlling the initial onset of instability. For low Wi, the �ow is steady and appears 
Newtonian-like, but as the Weissenberg number is increased streamlines may begin to diverge as they approach 
the contraction throat, a feature which is o�en soon followed by the formation of “lip-vortices” at the reentrant 
corners and the onset of unsteady �ow46,47,57–59. Further increases in Wi are usually associated with the formation 
of vortices in the salient corners upstream of the contraction throat, which may grow large distances upstream as 
the Weissenberg number is progressively increased. Here, depending on the elasticity number El, various scenar-
ios are possible: the upstream corner vortices may remain steady and symmetric, or they may grow asymmetri-
cally and may oscillate in size either periodically or aperiodically46,47,57–59.

Despite being widely studied and well-characterized, gaining a deeper understanding of the underlying phys-
ical mechanism of the onset of elastic instabilities in the abrupt contraction geometry has been elusive. �e main 
reasons for this are the complex mixed kinematics of the �ow �eld (which contains both strong shear at the 
walls and strong non-homogeneous elongational components as �uid accelerates into the contraction), com-
bined with the large number of variable geometric parameters that can a�ect the instability. Far more success at 
understanding the onset conditions of elastic instabilities in polymer solutions has been achieved by examining 
well-de�ned, viscometric shearing �ows, such as those generated by the Taylor-Couette60,61, the cone-plate62–64 
and the plate-plate62,63,65 geometries (see extensive reviews provided by Larson2, Shaqfeh4 and Muller6). Such 
geometries are of great importance as they are the most frequently used devices for characterizing the rheology 
of complex �uids on rotational rheometers. �erefore understanding the critical conditions that result in �ow 
instability is vital since this bounds the upper limit of the measurement range of the rheometer. �e culmination 
of these studies of viscometric torsional �ows via experiment, theory, simulation and linear stability analysis has 
been the development of a universal criterion for the onset of elastic instabilites, which couples streamwise nor-
mal stresses with the curvature of streamlines:
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Here v  is the magnitude of the local �ow velocity, R is the local radius of curvature of a streamline, σ11 is the 
normal stress in the streamwise direction, η0 is the zero shear rate viscosity of the �uid, τ is the characteristic 
relaxation time of the �uid, and  γ  is the magnitude of the local deformation rate5,66. �e �rst term on the le� can 
be thought of as a ratio of lengthscales: the product τ v  describes a distance over which perturbations to the �ow 
�eld due to elastic stresses relax – if this distance is large relative to the streamline radius of curvature, the �ow 
becomes prone to instability. However, the magnitude of the elastic stress acting along the curved streamline is 
also important, and this is accounted for by the coupling with the second term on the le�. For a �xed geometry, 
increases in �uid �ow rate generally lead to proportionate increases in both the local velocity and the shear rate. 
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In addition, since for a given �uid η0 and τ are material constants, it is apparent from Eq. 1 that the most impor-
tant parameters governing the magnitude of M are R and σ11. It is important to note that Eq. 1 does not anticipate 
a numerical value for Mcrit but only describes how it should scale with rheological and geometric parameters. �e 
scaling has been shown to hold in the Taylor-Couette and the cone-plate geometry providing values of .M 5 9crit  
and .M 4 6crit , respectively5. McKinley et al.5 have also demonstrated expected scalings for some more complex 
two-dimensional �ows, arriving at values of .M 4 8crit  for the lid-driven cavity, and .M 6 1crit  for �ow past a 
con�ned cylinder. McKinley et al.5 also consider the planar contraction geometry and point out that the curvature 
of streamlines depends on the contraction ratio Λ = w w/u d, where wu and wd are the upstream and downstream 
channel widths, respectively. �erefore, for a given viscoelastic �uid, contraction geometries with higher values of 
Λ should be more prone to instability, which appears to be consistent with experimental results obtained in 
microchannels59. �is highlights an interesting point that is in fact clear by inspection of Eq. 1: if the contraction 
ratio Λ → 1, then the geometry becomes a straight planar channel, → ∞R  and M becomes identically equal to 
zero. Whether it is possible to observe elastic instabilities for viscoelastic �uids �owing in an in�nitely long 
straight channel without some external perturbation being imposed is extremely challenging to test  
experimentally67 and is a matter of current debate, with some theoretical works indicating that nonlinear  
instability is still possible in the absence of any streamline curvature68.

Returning to the case in point of the cross-slot �ow asymmetry, recently Cruz et al.43 have attempted to spa-
tially evaluate the instability criterion M as a function of the applied Wi in cross-slot devices by means of numeri-
cal simulations performed with the upper-convected Maxwell (UCM) and simpli�ed Phan-�ien Tanner (sPTT) 
viscoelastic constitutive models. �ese simulations were performed in geometries with sharp square reentrant 
corners at the channel intersections (which we will refer to from now on as “standard-shaped” cross-slot devices). 
Near the corners of such devices, �nite elastic stresses are generated, which are of lower magnitude than at the 
stagnation point, however the streamline curvature near the corners is large and the �ow velocity there is much 
higher than it is close to the stagnation point. Cruz et al. found that the highest values of M occur near the cor-
ners of the �ow geometry and suggest that these are the primary instability-driving regions in the �ow �eld, as 
opposed to the central stagnation point43. �is supports the earlier work of Rocha et al. 39 who found the onset of 
the �ow asymmetry was delayed to higher Wi if the corners of the standard-shaped cross-slot were rounded o�.

However, ideal planar elongational �ow, as described by the streamfunction ψ ε= xy, has hyperbolic stream-
lines whose curvature decreases continuously with increasing distance from the stagnation point and does not 
possess the sharp re-entrant corners of the standard-shaped cross-slot device. In this case the highest curvature is 
along streamlines passing close to the stagnation point, which must turn sharply through 90°. Numerous experi-
ments invloving �ow-induced birefringence measurements in stagnation point devices20,27,32,37,69, as well as simu-
lations35,36,39 and theory22,33,70,71, show clearly that the birefringent strand of �uid carries high elastic stresses in a 
band of �nite width about the stagnation point. �us, close to the stagnation point, conditions exist for non-zero 
values of the M criterion to be possible, and this was shown by Öztekin et al.72 using simulations of the Oldroyd-B 
model in planar stagnation point �ow. In terms of experiment, the micro�uidic optimized-shape cross-slot exten-
sional rheometer (OSCER) device (see Fig. 1) has been shown to generate an excellent approximation to the ideal 
streamfunction describing planar elongation9,27,73. Flows of highly elastic polymer solutions in the OSCER device 
indeed exhibit �ow asymmetries of very similar appearance to those observed in the standard-shaped cross-slot 
device37. However, until now no experimental evaluation of the elastic instability criterion M has been performed 
in either the standard or the optimized-shape cross-slot type devices.

In this work we perform a detailed experimental study of the onset of elastic flow instabilities in the 
well-de�ned hyperbolic �ow �eld within the OSCER geometry. We use a series of well-characterized nearly 
monodisperse polymer samples dissolved in a thermodynamically ideal θ-solvent, which we anticipate will be 
amenable to comparison with future numerical simulations. We use micro-particle image velocimetry (µ-PIV) 

Figure 1. (a) 3D drawing of a portion of the Optimized Shape Cross-slot Extensional Rheometer (OSCER) 
device, indicating the principal channel dimensions (width w =  200 µm, depth d =  2 mm) and the coordinate 
system with origin at the geometric center. (b) Streak photograph obtained from �uorescent tracer particles in a 
Newtonian �uid at Re =  0.35. Superimposed colored hyperbolae represent streamlines expected for ideal planar 
elongational �ow and the arrows indicate the �ow direction (in�ow along ± y, out�ow along ± x).
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to characterize the �ow �eld and quantitative �ow-induced birefringence measurements to quantify the stress 
�elds in the polymer solutions as the imposed �ow rate is progressively increased until the �ow becomes unsta-
ble. Our detailed, time-resolved µ-PIV measurements reveal that the �ow asymmetry in the OSCER geometry 
does not occur spontaneously but rather represents the later stage of development of an instability that begins at 
a much lower Wi (in a manner similar to the instability progression observed in the planar contraction geometry, 
described above). We evaluate the magnitude of the elastic instability criterion M at the onset of the �rst signs of 
instability (which corresponds to a lateral displacement and quasiperiodic lateral motion of the stagnation point) 
and we obtain maximum values of M in localized regions close to the stagnation point, as shown numerically by 
Öztekin et al.72 In the almost ideal planar elongational �ow �eld provided by the OSCER device, we �nd good 
agreement with the scaling suggested by Eq. (1) and we obtain an estimate of Mcrit for the onset of the �rst elastic 
instability that is comparable with values obtained previously in viscometric torsional shearing �ows.

Results
Flow experiments are performed in the micro�uidic OSCER device9,27,37,73,74,75 illustrated schematically in Fig. 1a. 
�e device has a shape that has been determined by a numerical optimization procedure27,73,75 in order to provide 
a close approximation to ideal planar elongational �ow over a wide region of the �ow �eld surrounding the cen-
tral stagnation point. �e �delity of the �ow �eld has been con�rmed experimentally9,27,75 and is illustrated qual-
itatively in Fig. 1b, which shows a streak image obtained for low Reynolds number �ow of a Newtonian �uid 
compared with theoretical hyperbolic streamlines obtained using the ideal streamfunction, ψ ε= xy. Test �uids 
are pumped through the OSCER device at controlled volume �ow rates, Q, using four high precision syringe 
pumps (neMESYS, Cetoni GmbH). Two pumps simultaneously inject �uid at equal rates into the two opposing 
inlets while an additional two pumps withdraw �uid simultaneously at an equal and opposite rate from the two 
diametrically-opposed outlets. Syringe volumes are selected to ensure minimal pulsation in the resulting �ow; the 
pumps displace �uid at a rate of at least 600 increments per second even for the lowest applied Q

Newtonian flow characterization in the OSCER. Control experiments involve pumping the Newtonian 
solvent dioctyl phthalate (DOP) through the OSCER device over a range of applied flow rates and using 
micro-particle image velocimetry (µ-PIV)76,77,78 to confirm the expected characteristics of the flow field at 
Reynolds numbers spanning the range covered in later experiments with viscoelastic polymer solutions. �e 
Reynolds number here is de�ned by ρ η=Re UD /h s

, where ρ = .0 985 g mL−1 and ηs =  59 mPa s are the density 
and viscosity of the DOP, respectively, =U Q wd/  is the average �ow velocity, and = +D wd w d2 /( )h  is the 
hydraulic diameter; w =  200µm and d =  2 mm are the characteristic width and depth of the channel, respectively 
(see Fig. 1a).

Over a wide range of Re, the Newtonian �ow �eld shows good self-similarity, as exempli�ed by the normalized 
velocity magnitude �elds shown in Fig. 2a–c. �ese are ensemble-averaged over 20 individual velocity �elds cap-
tured over a 5 s period and show a centrally-located stagnation point and a velocity magnitude that continuously 
increases with distance from the stagnation point along the �ow axes. Pro�les of the x-component of the velocity 
along the x-axis (i.e. 

=

v x( )x y 0
) are extracted from such velocity �elds and are shown in Fig. 2d. At each applied 

�ow rate (or Re), vx is proportional to x, i.e. the velocity gradient ∂ ∂v x/x  along y =  0 is constant over the measured 
range of x. �is velocity gradient ∂ ∂v x/x  de�nes the elongation rate ε  imposed on �uid elements passing through 
the OSCER device. �e inset to Fig. 2d shows the relationship between the measured value of ε  and the average 
imposed �ow velocity U, which provides the following best linear �t :

ε =

.

.
w

U
0 214

(2)

�e constant of proportionality in Eq. 2 (0.214/w) is close to the expectation from two-dimensional (2D) 
numerical simulations (0.2/w) and the discrepancy is consistent with the �nite aspect ratio of the experimental 
OSCER device (α =  d/w =  10)27. Time-resolved µ-PIV measurements with the solvent con�rm the temporal sta-
bility of the �ow �eld in the Newtonian case. Velocity �elds are collected at a rate of 4 Hz over a 30 s time period 
and pro�les of 

=

v x( )x y 0
 are extracted from each �eld. Figure 2e shows a space-time diagram composed of such 

velocity pro�les for the case of Newtonian �ow at Re =  0.49, and shows clearly how the stagnation point remains 
centrally-located and that spatio-temporal velocity �uctuations are low (at any position along the y-axis, rms 
velocity deviations over time are  . U0 02 ).

�e local components of the velocity �elds (v x y( , )x  and v x y( , )y ) obtained from the µ-PIV experiments can be 
used to locally evaluate the components of the deformation rate = ∇ + ∇v vD ( )

T1

2
 and vorticity 

Ω = ∇ − ∇v v( )
1

2

T  tensors. In Fig. 3a we show the xx component of the deformation rate tensor (γ xx) in normal-
ized form. �is was evaluated using the velocity �eld shown in Fig. 2b for the �ow of the DOP solvent at Re  =   0.49. 
�e result agrees very well with a 2D numerical prediction obtained for Newtonian creeping �ow and illustrates the 
homogeneity of the �ow �eld over the central region of the geometry27. It is also possible to locally evaluate the 
�owtype parameter, ξ according to the criterion of Astarita79,80,81. �e �owtype parameter is de�ned as:

γ

γ
ξ

Ω

Ω
=

−

+




x y( , ) ,
(3)

where γ = D D2 :  and Ω Ω Ω= 2 :  are the magnitudes of the deformation rate and vorticity tensors, 
respectively.
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�e �owtype parameter varies between − 1 and 1, with values of − 1 corresponding to purely rotational 
kinematics, values of 0 corresponding to purely shearing kinematics and values of + 1 corresponding to purely 
extensional kinematics. Figure 3b shows the local �owtype parameter computed from the velocity �eld shown in 
Fig. 2b. It is clear that the �owtype is dominated by purely extensional kinematics along the �ow axes and over a 
wide symmetrical region surrounding the central stagnation point.

It is also of value to consider the strain applied to �uid elements as they �ow through the OSCER geometry. 
An estimate of the strain can be readily computed by assuming that �uid elements follow hyperbolic streamlines 
within the numerically optimized region of the �ow geometry, i.e. over the domain spanning − . ≤ ≤ .w x y w7 5 , 7 5  
about the stagnation point27.  Fluid elements enter this domain at initial locations given by 

≤ = .x w y w( /2, 7 5 )0 0
 and exit the domain at �nal locations given by | | = | | | | = | |x y y x( , )f f0 0 . If a �uid ele-

ment enters this domain at a position given by (x0,y0), the Hencky strain that the �uid element has accumulated 
at any subsequent position (x,y) along the streamline is given by ε = =x x y yln( / ) ln( / )H 0 0

. �e result of this 
calculation performed over the entire domain is shown in Fig. 3c (cropped to the experimental �eld of view). �e 
Hencky strain is constant along x and varies along y as ε = . |y y( ) ln(1 5/ )H  (with y in mm). �e strain is sharply 

Figure 2. Control experiments to characterize the �ow �eld in the OSCER geometry using the pure Newtonian 
solvent (DOP): (a–c) Normalized velocity magnitude �elds obtained over a range of imposed Re show good 
self-similarity. (d) x-component of the velocity vx(x) measured along y =  0 shows proportionality at each 
imposed Re, i.e. a uniform velocity gradient. �e correspondingly-colored lines passing through each data set 
are linear �ts to the data through the origin, from which the velocity gradient at each imposed �ow rate is 
obtained. Inset shows the streamwise velocity gradient along y =  0 (i.e. ε = ∂ ∂ v x/x ) as a function of the average 
�ow velocity U, displaying the expected linearity. (e) Space-time diagram showing the magnitude of vx(x, t) 
along y =  0 normalized by U at Re =  0.49, demonstrating the steadiness of the �ow �eld over a 30 s time period 
(data captured at 4 Hz).

Figure 3. Spatially-resolved characterization of the Newtonian �ow �eld in the OSCER device. (a) Strain 
rate �eld for the �ow of DOP at Re =  0.49. (b) Flow type parameter for the �ow of DOP at Re =  0.49. (c) Fluid 
Hencky strain computed assuming ideal hyperbolic streamlines within the hyperbolic region marked by dashed 
red lines.
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peaked about the y =  0 axis, where theoretically the strain becomes in�nite. For |y| ≤  1.5 µm, εH exceeds 6.9 units. 
For |y| ≤  1 µm (which corresponds to the spatial resolution of our imaging system), εH ≈  7.3 units.

Viscoelastic test fluid characterization. Solutions of low-polydispersity atactic-polystyrene (a-PS) 
in the room-temperature (22 °C) θ-solvent DOP82 are prepared at molecular weights Mp =  6.9 and 16.2 MDa 
(denoted hereonwards as PS7 and PS16, respectively) and over a range of concentration 0.035 ≤  c ≤  0.14 wt.%. 
�is polymer-solvent system is extremely well characterized and details of the molecular parameters of the two 
a-PS samples in the DOP solvent are provided in Table 1.

�e rheological properties of the polymeric test solutions are measured in steady shear at 22 °C using an Anton 
Paar MCR 502 stress-controlled rotational rheometer equipped with a 50 mm diameter 1° cone-and-plate geom-
etry. �e resulting �ow curves of viscosity η as a function of the applied shear rate γ  are shown in Fig. 4 in com-
parison with the viscosity of the pure solvent, ηs =  59 mPa s. �e a-PS solutions are rather weakly shear-thinning 
over the shear rate range. �e �ow curves are �tted with a Carreau-Yasuda Generalized Newtonian Fluid (GNF) 
model84 from which the zero-shear viscosities of the �uids (η0) are extracted. �e values obtained for η0 are pro-
vided in Table 2. Table 2 also includes the characteristic relaxation time of each �uid, τ, the determination of 
which is made from direct measurements of polymer stretching in the OSCER device itself and will be described 

a-PS sample Mp[MDa] Mw/Mn n LC [µm] N lp[nm] r0
2 1/2

[nm] Rg[nm] L2 c* [wt.%]

PS7 6.9 1.09 66346 16.6 6840 2.43 201 82 6821 0.5

PS16 16.2 1.07 155769 38.9 16059 2.43 308 126 15951 0.32

Table 1.  Molecular parameters of the a-PS samples under θ-solvent conditions. �e peak molecular weight 
is Mp and the sample polydispersity is given by Mw/Mn, where Mw and Mn are the weight and number averaged 
molecular weights, respectively. �e number of repeat units is n =  Mp/m, where m =  104 Da is the monomer 
molecular weight. �e contour length LC =  nlm, where lm =  0.25 nm is the monomer length. �e characteristic 
ratio = = = .

∞
c n N l l/ / 9 7p m , where N is the number of equivalent segments in an ideal chain and lp is the 

persistence length. �e ensemble-averaged equilibrium end-to-end distance of the random coil is 

= =r R N l6 g p0
2 1/2

, where Rg is the equilibrium radius of gyration. An extensibility parameter can be 
de�ned as =L L r/C

2 2
0
2 . �e characteristic concentration for overlap of polymer chains is found using the 

formula π=
⁎c M N R3 /4p A g

3, where NA is Avogadro’s constant83.

Figure 4. Steady �ow curves of viscosity η as a function of the imposed shear rate γ  for the Newtonian 
solvent (DOP) and for the various polystyrene-based test solutions. Data is �tted using the Carreau-Yasuda 
model (solid lines).

property PS7 PS7 PS16 PS16 PS16

c [wt.%] 0.07 0.14 0.035 0.07 0.14

⁎c c/  0.14 0.28 0.11 0.22 0.44

η
0
 [mPa s] 71 81 68 82 107

β η η= /
s 0

 0.84 0.75 0.88 0.72 0.56

τ [ms] 13 16 80 90 120

∆− n106
0 56 112 28 56 112

Table 2.  Properties of the viscoelastic a-PS in DOP test solutions at various polymer concentrations.
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in due course. For future computational studies, the molecular parameters and rheological information provided 
in Tables 1 and 2 also facilitate �tting of the data to a range of viscoelastic constitutive equations such as the 
White-Metzner model or the Finitely-Extensible Non-linear Elastic (FENE) dumbbell model, for example84. �e 
value of ∆ n0 in Table 2 refers to the magnitude of �ow-induced birefringence that can be expected from a solution 
of polymer molecules fully stretched to their contour length. For a-PS in DOP it has been calculated that 
∆ ≈ − .n c0 080 , with c expressed in terms of the mass of polymer per unit mass of solution25,69.

Viscoelastic flow in the OSCER. In the �ow experiments performed using viscoelastic �uids in the OSCER 
device, the Weissenberg number is de�ned in the standard way, i.e. τε= Wi , while the Reynolds number is cal-
culated according to:

ρ

η γ
=


Re

UD

( )
,

(4)
h

where η γ( ) is the shear rate dependent viscosity found using the Carreau-Yasuda �t to the steady �ow curves 
(Fig. 4) evaluated at a characteristic deformation rate γγ ε= = = D D2 : 2 . Since the polymer concentra-
tions in the test solutions are quite low, the densities of the �uids do not vary signi�cantly from that of the solvent, 
and we take ρ =  0.985 g mL−1 in all cases. In the experiments, the Weissenberg number is varied over a range 

< Wi0 3, while the Reynolds number remains low (Re <  1). �e elasticity number is given by El =  Wi/Re. 
Since the polymeric test �uids are mildly shear-thinning (Fig. 4), the Reynolds number increases non-linearly, 
hence El decreases slightly with increasing shear rate.

�e viscoelastic a-PS in DOP solutions are examined in �ow through the OSCER device over a range of 
imposed ε  using a combination of �ow-induced birefringence measurements and time-resolved µ-PIV. Figure 5 
shows the evolution of �ow patterns (here time-averaged over 2 s) and the spatial distribution of birefringence  
(∆ n) measured in the OSCER device for the �ow of a 0.07 wt.% solution of PS16 as the imposed strain rate is 
increased. At lower ε  (Fig. 5a) the velocity �eld appears quite Newtonian-like, with a centrally-located stagnation 
point about which incoming streamlines divide symmetrically between the outlet channels. Here, the birefrin-
gence is at the lower end of the color scale, although there is in fact some degree of polymer chain alignment along 
the out�owing symmetry axis, as evidenced by the corresponding plot of the orientation angle of the slow optical 
axis, θ. In this plot, the blue coloration on the horizontal �ow axis indicates orientation of the slow optical axis 
along the y-direction (θ =  ± π/2 rad). �is is consistent with the principal direction of polymer chain segment 
orientation, which indicates the axis for extraordinary polarizations, being along the out�ow direction χ =  0 rad. 
�is is because, due to the benzene-ring side groups, the refractive index of stretched polystyrene is greatest in the 
direction perpendicular to the direction of backbone orientation (i.e. for ordinary polarizations), resulting in a 
negative birefringence and a negative stress-optical coe�cient85. As ε  is increased (Fig. 5b) the velocity �eld 
begins to deviate from the Newtonian-like form; the stagnation point has been displaced laterally and the incom-
ing streamlines bend le� towards the displaced stagnation point. Birefringence is now clearly visible in the form 
of a localized strand aligned along the out�owing stagnation point streamline and the width of the band of ori-
ented polymer has increased signi�cantly. As ε  is increased further (Fig. 5c) the �ow becomes more unstable and 
the stagnation point becomes more significantly displaced from the center point of the OSCER device. 
Interestingly, even under this severely distorted �ow �eld, the birefringent strand appears to remain localized, 
uniform and unperturbed. Finally, at higher ε  (Fig. 5d) a large scale symmetry-breaking results in a globally 
asymmetric �ow �eld reminiscent of that previously reported in standard-shaped cross-slot devices34,35,38–43. Here 
the birefringence also exhibits asymmetry along with a signi�cant reduction in apparent intensity.

�e results displayed in Fig. 5 are quite representative of the evolution in �ow behavior observed with all of the 
�ve di�erent polymeric test solutions, except that the onset of di�erent behavior occurs for �uid-dependent val-
ues of ε . It is important to note that the lateral displacement of the stagnation point (as exempli�ed in Fig. 5b,c) 
can be either to the le� or to the right of the centre point. We identify this distortion of the �ow �eld with the 
onset of a �rst viscoelastic �ow instability at Wi =  Wic1. Equally, the global asymmetry (exempli�ed in Fig. 5d) can 
be either clockwise or counterclockwise with respect to either one of the �ow axes; we identify this as the onset of 
a second viscoelastic �ow instability at Wi =  Wic2. It should also be remembered that the velocimetry �elds shown 
in Fig. 5 are time-averaged over 2 seconds of �ow. In fact once instability develops (i.e. Fig. 5b–d) the �ow �eld 
exhibits increasing spatio-temporal �uctuations as ε  is increased. Discussion and analysis of these �uctuations 
will follow below, but it is important to note here that this �uctuation can have some e�ect on the birefringence 
measurements. �e �ow-induced birefringence images shown in Fig. 5 are formed from a combination of seven 
individual images, each captured with a 1 s exposure time under di�erent modulation states of the light source 
(see Methods Section). �us, for steady �ows they can be considered as “time-averaged” over a total of approxi-
mately 7 s of �ow. However, if the position of the birefringent strand �uctuates between the acquisition of the 
seven individual frames (as it certainly does in Fig. 5d) the �nal result should only be interpreted qualitatively.

We note that the lateral asymmetry and unsteady oscillatory motion of the stagnation point observed here for 
Wic1 ≤  Wi ≤  Wic2 is clearly distinct from the oscillatory instability reported by Varshney et al.50 for viscoelastic 
�ow in a T-shaped junction with a recirculating cavity, and is also distinct from the inertio-elastic instabilities 
previously reported for the �ow of weakly elastic �uids in the OSCER device37. In both of those previous cases the 
�uctuations were measured in the direction orthogonal to the direction of �ow, whereas in the present case the 
periodic displacement of the stagnation point is along the out�ow direction.

In Fig. 6a–d we use the time-averaged �ow �elds shown in Fig. 5a–d to evaluate the �owtype parameter 
(Equation 3) for the 0.07 wt.% solution of PS16 under the various �ow regimes that were described previously. 
Under Newtonian-like flow conditions (Fig. 6a) the central region of the flow field is dominated by purely 
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extensional kinematics and is quite comparable to the result for the Newtonian solvent at low Re (Fig. 3b). As the 
Weissenberg number is increased beyond Wic1 and the stagnation point becomes increasingly displaced laterally 
(Fig. 6b,c) this central region becomes increasingly dominated by shear, although extensional �ow persists along 
the horizontal �ow axis passing through the stagnation point. For Wi >  Wic2 the global symmetry breaking causes 
complete loss of the stagnation point and the central strand of extensional �ow is replaced by a region of purely 
shearing kinematics.

For �ow rates below this second transition (i.e. for Wi <  Wic2), we measure the value of ∆ n at the location 
x =  y =  0 as a function of the imposed strain rate, see Fig. 7a. �e birefringence begins to increase as ε  is increased 
beyond an onset value ε onset. �is onset can be shi�ed to τε= = .Wi 0 5onset onset  (Fig. 7b) in order to obtain the 
characteristic relaxation times of the polymer solutions, τ, provided in Table 2. In Fig. 7b we have normalized the 
measured birefringence by that expected from solutions of fully-stretched polymer molecules, ∆ n0 =  − 0.08c, 
Table 2 25. �is normalized birefringence can be related to the ensemble-averaged end-to-end length of polymer 

chains r2 1/2
 through the model provided by Treloar25,86, which relates the optical properties of strained poly-

meric networks to the mean segmental orientation. Based on this model, we estimate the polymer stretches to 

reach an ensemble-average end-to-end separation of . < < .r L0 3 0 4 C
2 1/2

 before the onset of the global �ow 
asymmetry at Wic2.

Figure 5. Example results from �ow experiments conducted with one of the polymeric test �uids showing the 
evolution of velocity �elds and �ow-induced birefringence in the OSCER geometry for a 0.07 wt.% solution of 
PS16 in DOP as the �ow rate (or Wi) is increased: (a) = .

−U 4 9 mms 1, ε = .
− 5 2 s 1, = .Wi 0 47, = .Re 0 023.  

(b) = .
−U 12 2 mms 1, ε = .

− 13 0 s 1, = .Wi 1 17, = .Re 0 058. (c) = .
−U 20 3 mms 1, ε = .

− 21 7 s 1, = .Wi 1 96, 
= .Re 0 10. (d) = .

−U 28 5 mms 1, ε = .
− 30 4 s 1, = .Wi 2 74, = .Re 0 14. Le� column: normalized velocity �elds 

(time-averaged over two seconds) with superimposed streamlines; middle column: �ow-induced birefringence; 
right column: angle of slow optical axis (θ =  0 radians corresponds to the x-direction). For polystyrene the slow 
axis is perpendicular to the direction of backbone chain orientation.
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Analysis of time-dependent viscoelastic flow in the OSCER. In the viscoelastic polystyrene solu-
tions, as the imposed strain rate is increased, and �ow instability develops, the �ow becomes time-dependent and 
exhibits an increasing degree of spatio-temporal �uctuation.

In Fig. 8 we represent this time-dependence in the form of space-time diagrams constructed from pro�les of 

=

v x( )x y 0
 measured at a sampling rate of 4 Hz over a 30 s time period. �e images show representative data 

obtained for the flow of the 0.07 wt.% solution of PS16 over a range of flow rates spanning the regimes of 
Newtonian-like �ow (Fig. 8a), laterally-displaced unsteady stagnation point (Fig. 8b,c), and globally asymmetric 
unsteady �ow (Fig. 8d). Movies showing full 2D, spatio-temporally-resolved velocity �elds corresponding to 
Fig. 8a–d, are provided in the Electronic Supplementary Information as Movies M1–M4, respectively.

We analyse the power spectral density (PSD) of the velocity �uctuations for each test �uid over time at a loca-
tion x =  1 mm, y =  0 mm, using a normalized velocity magnitude, −v t v t v t( ( ) ( ) )/ ( )x x x , where <> represents 

Figure 6. Spatially-resolved evaluation of the �owtype parameter ξ for �ow of the 0.07 wt.% solution of 
PS16 in DOP at conditions equivelent to those in Fig. 5a–d, respectively. i.e. (a) = .Wi 0 47, = .Re 0 023.  
(b) = .Wi 1 17, = .Re 0 058. (c) = .Wi 1 96, = .Re 0 10. (d) = .Wi 2 74, = .Re 0 14. Analysis is performed on 
time-averaged velocity �elds.

Figure 7. Measurement of �ow-induced birefringence made at the location = =x y 0 over a range of imposed 
flow rates enables the characteristic relaxation times τ of the polymer solutions to be determined:  
(a) birefringence ∆ n as a function of ε  shows an increase for ε ε>  onset. (b) Shi�ing the data to an onset of 

τε= . = Wi 0 5onset onset provides the relaxation time. Here, ∆ n is normalized by the birefringence expected for a 
solution of fully-stretched molecules ∆ n0, which can be used to estimate the degree of macromolecular 
deformation in each case. For each data series, the �nal data point shown at high ε  (or high Wi) represents the 
�nal measurement made before the onset of the global �ow asymmetry, as exempli�ed in Fig. 5d.
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a time-average. For this analysis, data was captured at a rate of 10 Hz for 30 s. Representative results from the 
0.07 wt.% solution of PS16 under �ow conditions corresponding to the cases shown in Fig. 8a–d are provided in 
Fig. 8e–h, respectively. For comparison, in Fig. 8e–h we also show PSD’s corresponding to velocity magnitude 
�uctuations occurring for the �ow of the Newtonian solvent at equivalent �ow rates. In the Newtonian-like �ow 
regime, Fig. 8e, the PSD measured with the polymer solution is virtually indistinguishable from that of the 
Newtonian solvent and �uctuations are extremely low. For the solvent, the �uctuations remain small as the �ow 
rate is increased. However for the polymer solution, as the Weissenberg number increases above Wic1 and the 
stagnation point begins to exhibit lateral displacements and unsteadiness, some signi�cant peaks in the PSD rise 
above the base level noise (Fig. 8f,g). For Wi >  Wic2 (Fig. 8h), broadband velocity �uctuations are clearly evident 
in the PSD. �e sequence of behaviors demonstrated by Fig. 8 is typical of all the �ve polymer solutions we exam-
ined. Although velocity �uctuations become easily detectable as the �ow becomes increasingly unstable, the 
power spectra are complex and no distinct characteristic frequencies are manifested.

Identification of Wic1. Further analysis of temporal velocity �uctuations in the �owing �uids is performed 
by evaluating the turbulence intensity along the x-axis, |

=
T

y 0
. �e turbulence intensity is de�ned by:

=

−

T
v v

v

( )
,

(5)

2 1/2

where v  is the velocity magnitude at a particular x y( , ) location and  represents an average over all frames in a 
particular time series of velocity vector �elds.

Figure 9a,b shows how T varies with position along the x-axis for �ow of the Newtonian solvent and the 
0.07 wt.% PS16 solution, respectively, over a range of imposed ε . For the DOP solvent Fig. 9a, T is basically inde-
pendent of the �ow rate. Note the large peak in T for the Newtonian �uid at x =  y =  0 (Fig. 9a) arises because here 
at the stagnation point velocity �uctuations, though small, remain �nite but the time-average value of v  is close 
to zero. In the polymer solution (Fig. 9b) as ε  increases such that Wi >  Wicrit1, lateral displacement of the stagna-
tion point means this peak in T may move o�-center and increasing �uctuations in  v  mean that the peak broad-
ens signi�cantly. (Note that for the polymer solutions, the magnitude of the peak in T generally increases with 
increasing ε , however this measure has poor reproducibility due to the sharpness of the peak and to the spacing 
between velocity vectors obtained from the µ-PIV). Avoiding values of T >  0.1 (above the horizontal dashed lines 
in Fig. 9a,b), we obtain average values of |

=
T

y 0
 for both the polymer solutions (T sol) and the pure DOP (T DOP) 

which we compare as a function of ε  in Fig. 9c. At low imposed strain rates, velocity �uctuations in the polymer 

Figure 8. Time-resolved �ow velocimetry illustrates the progressive increase in �uctuations as the Wi is 
increased. Space-time diagrams show |vx| along y =  0 (normalized by U) for �ow of a 0.07 wt.% solution of PS16 
in DOP under the following conditions: (a) = .

−U 4 1 mms 1, ε = .
− 4 3 s 1, = .Wi 0 39, = .Re 0 019.  

(b) = .
−U 12 2 mms 1, ε = .

− 13 0 s 1, = .Wi 1 17, = .Re 0 058. (c) = .
−U 20 3 mms 1, ε = .

− 21 7 s 1, = .Wi 1 96, 
= .Re 0 10. (d) = .

−U 28 5 mms 1, ε = .
− 30 4 s 1, = .Wi 2 74, = .Re 0 14. Movies M1–M4 in the Electronic 

Supplementary Information show full 2D, spatio-temporally-resolved velocity �elds corresponding to Fig. 8a–d, 
respectively. (e–h) Power spectral density (PSD) of normalized velocity signals −v t v t v t( ( ) ( ) )/ ( )x x x  made 
at 10 Hz over a 30 s time period at location x =  1 mm, y =  0 mm under �ow conditions corresponding to parts 
a–d, respectively. �e PSD obtained for velocity signals from the DOP solvent at equivalent �ow rates is also 
shown for comparison.
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solutions are similar to the solvent so that − ≈T T/ 1 0sol DOP . Above a �uid-dependent critical strain rate ε c1, 
velocity �uctuations in the polymer solutions begin to grow relative to �uctuations in the DOP and non-zero 
values of −T T/ 1sol DOP  are obtained. For ε ε>  c1 linear growth of ( −T T/ 1sol DOP ) with strain rate is observed. 
�e dashed curves in Fig. 9c are linear �ts to the data of the form ε ε− = − T T A( / 1) ( )sol DOP c1 , from which the 
value of ε c1 for each �uid is obtained. �is allows an unambiguous value of the �rst critical Weissenberg number 
to be obtained by τε= Wic c1 1. Of course, the second critical Weissenberg number (Wic2) is quite easy to identify 
since the transition to the globally asymmetric �ow state is very obvious. Values of Wic1 and Wic2 are provided in 
Table 3 along with corresponding values of Rec1 and Rec2 determined from Eq. 4.

Summary of results in dimensionless parameter space. In Fig. 10, we summarize the onset of di�er-
ent �ow regimes in the OSCER device using a dimensionless Wi–Re parameter space. Here, the colored lines with 
arrows represent the trajectories of di�erent polymer solutions with di�erent elasticity numbers (El =  Wi/Re) 

Figure 9. Determination of critical onset conditions for the �rst elastic �ow instability using measurements of 
the turbulence intensity along the x-axis, |

=
T

y 0
. (a) For the Newtonian solvent, the turbulence intensity along 

y =  0 is independent of the applied strain rate. (b) For polymer solutions, the onset of instability results in a large 
increase in T due to lateral motion of the stagnation point. Average values, |

=
T

y 0
, are obtained for both the 

solvent and the polymer solutions and are compared in (c). �e large peak for | > .
=

T 0 1
y 0

, above the dashed 
lines in (a,b), is omitted from the average since variability in its size can skew the result. (c) �e onset of 
instability at ε c1 is determined by linear extrapolation of the growing region of the curve to − =T T/ 1 0sol DOP . 
Dashed lines in (c) are linear �ts to each data set of the form ε ε− = − T T A( / 1) ( )sol DOP c1 .

property PS7 PS7 PS16 PS16 PS16

 c [wt.%] 0.07 0.14 0.035 0.07 0.14

 El 2.7 3.7 16.0 22.1 37.7

Wic1 0.87 0.77 0.82 0.65 0.65

 Rec1 0.32 0.21 0.05 0.03 0.02

Wic2 1.85 1.93 2.28 2.19 2.14

Rec2 0.69 0.53 0.14 0.11 0.07

Mcrit 4.6 ±  0.2 4.7 ±  0.2 4.2 ±  0.2 5.1 ±  0.3 5.9 ±  0.4

Table 3. Critical onset conditions for elastic instabilities in the OSCER device.
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through this dimensionless state space. Since the �uids are only mildly shear-thinning, the approximate values of 
El shown in Fig. 10 and listed in Table 3 are simply obtained using Reynolds numbers based on the measured zero 
shear viscosities of the �uids. For �ow at Wi <  Wionset =  0.5, Fig. 10 shows the regime of Newtonian-like steady 
viscous �ow. For < < ≈ .Wi Wi Wi 0 75onset c1 , the polymer begins to stretch signi�cantly in the �ow�eld, but the 
�ow remains steady and here we de�ne a regime of “steady viscoelastic �ow”. As the Weissenberg number is 
increased such that Wi >  Wic1 ≈  0.75, the �ow transitions to the state of the laterally displaced, unsteady stagna-
tion point. Finally, for Wi >  Wic2 ≈  2 the �ow transitions to the globally asymmetric unsteady �ow state.

Evaluation of the elastic instability criterion M. We evaluate the elastic instability criterion M or M2 
(Equation 1) at conditions as close as possible to the onset of the �rst instability at Wic1. Since a combination of 
both streamline curvature and streamwise stress is required to obtain non-zero values of M, we perform the anal-
ysis over a small quadrant near the stagnation point, corresponding to ≤ ≤x y0 ( , ) 50 µm. For ≤Wi Wic1, since 
the �ow �eld only deviates weakly from the Newtonian case (see e.g. Figs 2b, 3b, 5a and 6a), we assume the �ow 
�eld is well represented by the ideal streamfunction ψ ε= xy. �is assumption should also be most valid away 
from the con�ning walls of the OSCER device and close to the stagnation point, where we perform this evaluation 
(see Fig. 3). Velocity components are given by ψ ε= ∂ ∂ = v y x/x , ψ ε= −∂ ∂ = − v x y/y  and the local velocity 

magnitude is | | = +v x y v v( , ) ( )x y
2 2 . �e velocity magnitude is shown in dimensionless form in Fig. 11a with 

superimposed streamlines determined from the streamfunction. �e curvature of streamlines at any point in 
space is given by the following general expression:

=

+ −
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which, for ideal planar extensional �ow, can be simpli�ed to:

=

+

.
R x y

xy

x y

1

( , )

2

( ) (7)2 2 3/2

�e streamline curvature is shown in dimensionless form over the 50 ×  50 µ m quadrant in Fig. 11b.
�e elastic tensile stress along streamlines σ11 is estimated using the following procedure. Firstly, the com-

ponents of the stress tensor σ are estimated by applying the stress-optical rule (SOR)24 to the spatially-resolved 
measured birefringence, ∆ n, see Fig. 5. �e stress-optical rule states that ∆ n and the components of σ obey the 
following relations:

σ χ=
∆n

C
sin(2 ),

(8)xy

and

σ σ χ− =
∆n

C
cos(2 ),

(9)xx yy

where C is the stress-optical coe�cient24. For moderate polymer deformations and stresses, the value of C is o�en 
found to be constant for a given polymeric system. In our experiments, at ≈ .Wi 0 75c1  we estimate the 

Figure 10. Stability diagram in dimensionless Wi-Re state space for the onset of viscoelastic instabilities 
during ideal planar elongational �ow in the OSCER device. Closed squares represent Wic1 and open circles 
represent Wic2. Error bars on data points represent the typical ranges of Wi and Re for the onset of instabilities in 
each polymer solution over at least �ve experimental test runs in each case.
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ensemble-average end-to-end separation of polymer chains in the elastic strand to be ≈ .r L0 15 c
2 1/2 25,86. 

Previous experiments with similar �uids in stagnation point �ows have shown a linear dependence between stress 
and birefringence up to much higher polymer extension than this26,87, so here we assume linearity of the SOR. In 
the case of polystyrene, several previous studies have measured values of C in a close range between 
− × < < − ×

− − −C Pa4 10 6 109 9 126,88–90, here we take a representative value of = − ×
− −C 5 10 Pa9 191. We 

make a further approximation by assuming that σ σyy xx. �is seems reasonable given that the deformation 
occurs predominantly along the xx direction, as clearly shown by Figs 3 and 5, as well as in previous works27.

Since the polymer orientation angle in the birefringent strand is along χ = 0 rad (Fig. 5), we �nd σ ≡ 0xy  and 
the stress tensor only contains a single non-zero component given by σ ≈ ∆n C/xx . �e streamwise tensile stress 
can then be found as follows:

σ σ φ σσ≈ . . = =

+

c cT
x

x y
cos

( )
,

(10)
xx xx11

2
2

2 2

where c is the direction-cosine transformation matrix and φ = = +v v x x ycos / /( )x
2 2 1/2. A spatial map of 

dimensionless σ11 values (scaled by an elastic modulus η τ≈G /
0

) thus determined from birefringence measure-
ments made with the 0.035 wt.% solution of PS16 at = .Wi 0 7 is provided in Fig. 11c. Finally the data shown in 
Fig. 11a–c can be combined on a pixelwise basis according to Eq. 1 in order to obtain a spatially-resolved map of 
the instability criterion M2 in the region of the stagnation point at conditions close to the onset of instability at 
Wic1, as shown in Fig. 11d. We observe contours of M2 of similar form to those shown numerically by Öztekin  
et al.72 for planar stagnation point �ow of viscoelastic �uids modelled by the Oldroyd-B constitutive equation. In 
our experiment with the 0.035 wt.% PS16 solution, we find a maximum value for the instability criterion 

≈M 18max
2  is reached at a location close to the stagnation point. More precisely, we report a mean and standard 

deviation value of = . ± .M 4 2 0 2max  over a 3 ×  3 pixel area centered on the location = . = .x w y w/ 0 0225, / 0 0125.
Rather similar results are obtained from the remaining four polystyrene-based test solutions, see Fig. 12. We 

equate the resulting values of Mmax in the spatial maps of the instability criterion with the value of Mcrit for the 
onset of elastic instability. For our test solutions, Mcrit varies in a narrow range . ≤ ≤ .M4 2 5 9crit , indicating that 
the geometric and rheological scaling of M provided by Eq. 1 holds well for this planar elongational �ow. �e 
values of M and their standard deviations obtained for individual �uids are shown in Table 3. �ese values of M 

Figure 11. Determination of the elastic instability criterion M2 at the onset of the �rst elastic instability 
at (Wic1,Rec1) for the 0.035 wt.% solution of PS16 in the OSCER device. (a) dimensionless velocity �eld 
and hyperbolic streamlines determined using the ideal stream function for planar elongational �ow. (b) 
dimensionless streamline curvature. (c) dimensionless streamwise stress determined from birefringence 
measurements made at Wi =  0.7, Re =  0.04. (d) Spatial distribution of M2 values obtained by combining data in 
parts (a) to (c) according to Eq. 1.
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are of similar magnitude to those predicted numerically by Öztekin et al.72 in planar elongational �ow as well as 
to previously reported values determined from experiments performed in viscometric torsional shearing �ows5.

Discussion and Conclusions
In this work we have employed a series of very well characterized viscoelastic polymer solutions to examine the 
onset of elastically-induced �ow instabilities in an almost ideal planar stagnation �ow in an optimized-shape 
cross-slot extensional rheometer (OSCER). We have measured the growth of �ow-induced birefringence and 
performed time-resolved �ow velocimetry measurements on the �uids as the dimensionless Weissenberg num-
ber is increased by control of the total volume �ow rate through the micro�uidic OSCER device. As Wi increases 
above Wionset =  0.5 the �ow �eld remains steady and Newtonian-like as a narrow, localized birefringent strand 
develops along the out�owing symmetry axis of the �ow. As the Weissenberg number increases above Wic1 ≈  0.75, 
we observe a new type of elastic instability characterized by a lateral displacement and local unsteadiness of the 
stagnation point. In this instability, the stagnation point moves erratically, and apparently quasiperiodically, from 
side to side along the ou�owing symmetry axis of the �ow device. �is is in contrast to other recently-reported 
oscillatory viscoelastic �ow instabilities, in which the periodic �uctuations were observed in the direction per-
pendicular to the out�ow axis37,50. At a higher critical Weissenberg number Wic2 ≈  2, a second instability results 
in the �ow breaking symmetry globally in a manner that resembles previously reported elastic �ow asymmetries 
in standard-shaped cross-slot devices34,35,38–43. A similar sequence corresponding to a local time-dependent �ow 
instability preceeding a global elastic instability has also been documented along strongly curved streamlines near 
the re-entrant corner of an abrupt contraction geometry53.

At conditions close to Wic1, we have used the birefringence measurements from our extensional �ow exper-
iments to evaluate a well-known criterion for the onset of elastic instabilites5,66,72. We have found maximum 
values of the criterion, Mmax, occur close to the stagnation point where there is a critical combination of high 
tensile viscoelastic stress, strongly curved streamlines and non-zero �ow velocity. Values of M at this location are 
essentially �uid independent and have a magnitude similar to critical values of M reported at the onset of elastic 
instabilities in well-de�ned torsional shearing �ows. Our experimental results thus support the arguments of  
Öztekin et al.72 that the mechanism for the onset of elastic instability in planar stagnation point �ow is similar 

Figure 12. Spatially-resolved evaluation of M at conditions as close as possible to the onset of the �rst 
instability at (Wic1, Rec1) provides reasonable agreement between values for the various test �uids.  
(a) 0.07 wt.% PS7 at Wi =  0.90, Re =  0.33; (b) 0.14 wt.% PS7 at Wi =  0.74, Re =  0.20; (c) 0.07 wt.% PS16 at 
Wi =  0.69, Re =  0.03; (d) 0.14 wt.% PS16 at Wi =  0.63, Re =  0.02. In each case the maximum value, Mmax, is 
located at position = . .x w y w( / , / ) (0 0225,0 0125), marked “× ”, and the value anotated in each plot is an average 
over values of M obtained over a 3 ×  3 pixel area (≈  9 µm2) centered on that point.
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to that for elastic instabilities in simple shearing �ows. �at is to say, coupling between streamline curvature 
and streamwise elastic tensile stresses results in the ampli�cation of small disturbances to the base �ow. �is 
mechanism appears to be independent of whether the curvature and stresses arise due to shearing or extensional 
kinematics and should thus be applicable to complex mixed �ows with arbitrary kinematics. �ese observations, 
taken in conjunction with recent arguments by James92 regarding the magnitude of elastic normal stresses in a 
wide range of complex �ows with mixed kinematics, and measurements of oscillatory instabilities in other �ow 
geometries37,50 suggest that the onset of spatially-localized viscoelastic instabilities may indeed be ubiquitous at 
moderate values of the Weissenberg number.

In this work we have focused on relatively simple viscoelastic �uids with almost constant viscosity. In the 
future it will be interesting to examine the in�uence of shear thinning on the critical onset conditions for the 
observed �ow transitions. Sousa et al.42 have recently studied the onset conditions for the forward bifurca-
tion leading to the global �ow asymmetry in standard-shaped micro�uidic cross-slots using �uids with a wide 
range of rheological properties. �ey found a general trend for a reduction in the critical Weissenberg number 
as the degree of �uid shear thinning increased. Strongly shear thinning �uids tended to transition to a steady 
asymmetric �ow state, while less shear thinning �uids displayed a tendency to transition to a time-dependent 
asymmetric state42 (which is consistent with the observations reported here for �ows above Wic2). By contrast, 
recent experiments and numerical simulations of viscoelastic �ows in serpentine microchannels indicate that 
in this shear-dominated geometry, shear thinning may have a stabilizing e�ect on the onset of purely elastic 
instabilities93. Unraveling the connections between the local �ow kinematics, the �uid rheology and the mode of 
instability should become possible in the near future by combining these detailed micro�uidic observations (all 
performed using well-characterized polymer solutions) with recent developments in computational abilities for 
studying time-dependent and three-dimensional viscoelastic �ows42,43,75,93,94.

Materials and Methods
Polymer solution preparation. Polymer solutions are prepared using an intermediate solvent method. �e 
polystyrene powder is weighed and dissolved in a small quantity (≈  20 mL) of dichloromethane. A�er complete 
dissolution, the polystyrene plus dichloromethane mixture is added to an appropriate volume of the �nal solvent 
dioctyl phthalate (DOP). �e �uids are mixed by gentle hand swirling until no refractive index variations can be 
seen throughout the mixture. Finally the dichloromethane is removed by evaporation in a fume hood maintained 
at room temperature. �e removal of the dichloromethane is monitored by periodic weighing and is considered 
complete when there is no further weight loss.

Microdevice fabrication. �e micro�uidic OSCER device is fabricated by cutting channels through 2 mm 
thick stainless steel by the technique of wire-electrical discharge machining with a 30 µm diameter copper wire. 
Subsequently, annealed soda-glass windows are bonded (using silicone aquarium adhesive) to the upper and 
lower �at surfaces of the stainless steel in order to form enclosed channels with optical access to the inside. One 
of the glass windows has four holes drilled through it ultrasonically, through which �uid can be injected or 
withdrawn appropriately in order to drive the �ow through the device. �is technique allows the fabrication of 
high-aspect ratio micro�uidic devices in materials amenable to use with organic solvents, able to resist defor-
mation under high pressures, and with high quality optical access so as to reduce background noise in sensitive 
�ow-induced birefringence measurements. Additional details of this fabrication technique are provided in several 
previous works26,49.

Flow-induced birefringence measurement. Flow-induced birefringence measurements are performed 
using an Exicor MicroImagerTM (Hinds Instruments, Inc., OR). For these measurements, a light emitting diode 
sends collimated monochromatic light (wavelength λ =  535 nm) along an optical line consisting of (a) a linear 
polarizer at 0°, (b) a photoelastic modulator (PEM) at 45°, (c) a PEM at 0° and (d) a linear polarizer at 45°. �e 
sample (in this case the OSCER device containing polymer solution) is positioned on the imaging stage of the 
instrument between the two PEMs. A 5×  objective lens is used to focus light from the midplane of the OSCER 
device onto a 2048 ×  2048 pixel, 12-bit CCD array (which provides a �eld of view ≈  2 ×  2 mm and hence a spatial 
resolution of ≈  1 µm/pixel). A stroboscopic illumination technique95,96 is used to determine the elements of the 
4 ×  4 Mueller matrix P necessary to compute the pixelwise sample retardance δ and angle of the high refractive 
index (i.e. slow) optical axis θ over the full �eld of view:

δ = +P P P Parc tan (( / ) ( / ) ) , (11)13 33
2

23 33
2

and

θ = . .P P0 5 arc tan( / ) (12)13 23

To compute the required elements of the Mueller matrix, the CCD camera records a total of seven frames, 
each accumulated over ≈ 1 s, and each with the light source modulated in order to sample speci�c polarization 
states achieved within the PEM cycle96. �e spatially-resolved birefringence of the sample is obtained as follows:

λδ

π
∆ =

∆
n

z2

1
,

(13)

where ∆ z is the optical pathlength through the sample. In the case of �uid �ow in the OSCER geometry, due to 
the high aspect ratio (α =  10) we assume two-dimensional �ow and equate ∆ z with the depth of the geometry, d.
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Flow velocimetry. Micro-particle image velocimetry (µ-PIV) is performed by seeding the test �uids with 
2 µm diameter fluorescent melamine resin tracer particles (MF-FluoOrange-1240, microParticles GmbH, 
Germany) with excitation/emission wavelengths of 560/584 nm. �e particle concentration in the test �uid is 
cp ≈  0.02 wt.%. �e imaging system consists of a 1280 ×  800 pixel, CMOS camera (Phantom Miro M310, Vision 
Research Inc., NJ), capable of acquiring image pairs for PIV analysis at up to 1600 Hz, and an inverted microscope 
(Nikon Eclipse TE 2000). A 4× , NA  =   0.13 numerical aperture objective is used to focus on the midplane of the 
�ow geometry. �e resulting measurement depth over which microparticles contribute to the determination of 
the velocity �eld is δ µ≈z 160 mm

97, or ≈  0.08d. �e �uid is illuminated by a dual-pulsed λ =  527 nm Nd:YLF 
laser (Terra PIV, Continuum Inc., CA) with pulse width δ <t 250 ns. �e �uorescent seed particles are excited by 
the laser light and emit at a longer wavelength. �e re�ected laser light is �ltered out with a G-2A epi�uorescent 
�lter, so that only the light emitted by �uorescing particles is imaged on the light sensor array. Images are captured 
in pairs with a time separation ∆ t that is adjusted for each applied �ow rate in order to always achieve an average 
particle displacement of approximately four pixels, optimal for subsequent PIV analysis. At each imposed �ow 
rate, image pairs are captured at rates of both 4 and 10 Hz over a period of 30 s. �e standard cross-correlation PIV 
algorithm (TSI Insight 4G so�ware), with interrogation areas of 32 ×  32 pixels and Nyquist criterion, is used to 
analyze each individual image pair to obtain sets of time-resolved �ow �elds. Tecplot Focus so�ware (Tecplot Inc., 
WA) is used for further analysis of the velocity vector �elds, i.e. to extract velocity pro�les, perform averaging of 
�ow �elds, and to generate contour plots and streamline traces.
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