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summary 
Elastic Kirchhoff migration is implemented for the VSP record- 

ing geometry. The resulting migration formula requires measure- 
ment of the stress as well as the displacement. Since stress is not 
measured in a VSP, and in many cases the horizontal compo- 
nent of displacement is not measured, approximate migration 
formulas are given for these cases. The elastic migration formula 
for the case where only the vertical components are available, is 

the same as the acoustic migration formula, where the pressure 
data are replaced by the magnitudes of the elastic data as recon- 
structed from the vertical components, and the acoustic Green’s 
functions are replaced with either the P or S wave elastic Green’s 

functions. Two expressions for migration of two component dis- 
placement data are presented. In the first, the terms involving 
traction data are simply ignored. In the second, an improved 
backpropagation operator for the displacement field is obtained 
by replacing the traction data in the Kirchhoff integral by dis- 
placement data using Hooke’s law. The migration expressions for 
the cases where two component data are available produce im- 
ages which are less contaminated by artifacts than the migration 
images of one component data. 

The Elastic Kirchhoff Integral 

The elastic Kirchhoff integral describes how to forward propa 

gate the displacement field when the displacement field and the 
stress field have been recorded on some surface. Kuo and Da; 
(1984) obtained a formula for elastic Kirchhoff migration for the 
case of constant background parameters with sources and re- 
ceivers on a free surface. Elastic Kirchhoff migration for the 
VSP geometry is described here. 

The elastic Kirchhoff integral in the frequency domain is 
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where A is the unit vector normal to the surface S, w is angular 
frequency, ri is the displacement, the traction vector, < is 

t’= h’. &; .A’ , (2) 

the stress tensor, T”, is 
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where X is Lame’s parameter, n is the &ear modulus, 7 is the 

unit dyadic, and the Green’s displacement tensor, c”, and the 

Green’s stress tensor, 5 can be written in terms of the Green’s 
functions 
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where A is the amplitude, and r is the travel time

For 2-D wavefield extrapolation, the Kirchhoff integral can be 
written more simply a3 
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where p is density, up and vd are the P and S wave velocities, 
and the integration over s, is now a line instead of the surface S. 
The 2 x 2 matrices A, B, C, and D are functions of $, and the 
incident angle at the receiver. 

Elastic Kirchhoff Migration 

Equation (5) above describes how to forward extrapolate the 
displacement field when the displacement and traction are mea- 
sured on the surface s. The process of migration requires that the 

field be propagated backwards into the medium where it will fo- 
cus at the scatterers and hence form an image or pseudo-reflection 
coefficient. In order to change Equation (5) from forward propa- 

gation to backward propagation, the complex conjugates z* and 

g* will be used in place of the Green’s displacement and stress 

tensors, E and i. The resulting equation is evaluated at t = 0 
(imaging condition) and one can obtain for example, a P to S 
pseudo-reflection coefficient in the form 
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Pseudoreflection coefficients for Rpp, Rsp, and Rss can also be 
obtained. 

Migration Without Stress Data 

Stress data are not measured in a VSP. Since the stress data 
cannot be obtained from a single measurement of displacement at 
a given receiver location, the migration cannot be implemented 
as expressed by Equation (6). 

However, if we utilize the assumptions of the migration prc- 
cess, stress terms can be replaced with displacement terms in the 
Kirchhoff integral. These assumptions are: 1) the data are in the 
far field; 2) the medium parameters are known (i.e., a background 
medium is assumed, through which the field is backpropagated); 
and, 3) the scatterers are point scatterers, and their locations are 
known (i.e., the process of focusing at an image point assumes 
the image point is a scatterer). 

These assumptions allow us to use Equation (3) to determine 
the stress from the measured displacement along the diffraction 
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curve as due to a point source located at the image point. As- 
sumption (1) allows the spatial derivatives in Equation (3) to be 

expressed as temporal derivatives, and assumptions (2) and (3) 

allow the directions of the gradients in Equation (3) to be deter- 
mined by ray tracing. Note that for a given receiver location, the 
stress determined by this method will be different for each image 
point. 

If the image point is not actually a scatterer, the reconstructed 

stress terms will be incorrect. Hopefully, this will not be a very 
serious problem. If the image point is not a scatterer, the data 
along the diffraction curve will interfere destructively instead of 
constructively (assuming sufficient aperture), and, since no image 
will be produced, it should not matter whether the stress terms 
were reconstructed correctly or not. 

It should be emphasized that the stress data cannot be ob- 
tained from a single measurement of displacement at a receiver 
location. The process described above does not create a stress 
data set from the observed displacement data set. It utilizes 
the assumptions of Kirchhoff migration as implemented by a ray 
method to replace the stress terms with displacement terms in 
the Kirchlrofl migration integral (Equation (6)). For a given re 
ceiver, this “reconstructed” stress will be different for each image 
point. The true stress is never known. What this procedure has 
allowed us to do is to obtain an improved backpropagation oper- 
ator (i.e., an improved weighting function) which operates only 

on displacement data. Using the above procedure, Equation(G) 
can be rewritten as 

(7) 

where K $ = B F v$ and the 2 x 2 matrix F is a function of 2, 
and the incident angle at the receiver. 

Migration with only the Vertical Components of Dis- 
placement 

In many VSP’s only the vertical component of displacement 
is measured. If Equation (6) is implemented without using the 
horizontal components (i.e., setting them equal to zero), the lo- 
cations of the scatterers cau still be imaged. As in the caee where 
the stress data are not available, when the horizontal components 
of displacement are unavailable, one can make use of the aesump 
tions of Kirchhoff migration as implemented with a ray method to 
replace the horizontal component data with vertical component 
data. The resulting weighting function is simply ccc a, which is 
the same weighting as for the acoustic migration. Thus, elastic 
migration for the case where only the vertical components are 
available, can be implemented using the acoustic migration for- 
mula where the pressure data are replaced by the magnitudes of 
the elastic data as reconstructed from the vertical components 
(i.e., replace the pressure P with & uv when computing Rpp 

or &p and with & uy when computing Rps or Rss), and 
the acoustic Green’s functions are replaced by the elastic Green’s 

functions. 

Example 

In this example, a synthetic VSP is generated using paraxial 
ray tracing (see Beydoun and Keho, 1987) from a model con- 
sisting of two flat interfaces. The recording geometry is shown 
in Figure 1. The ray codee consisted of a direct P wave, and a 
primary reflected P wave and a primary reflected S wave at each 
of the two interfaces. The vertical and horizontal components of 
displacement are shown in Figures 2 and 3, respectively. 

Figure 4 shows the image produced by the One Component 
EKM (Elastic Kirchhoff Migration). Strong artifacts can be seen 

near the borehole (on the left). Figure 5 shows the image pro- 
duced by the Two Component EKM (Equation 6 without the 

stress terms). The main artifact has been significantly reduced, 
but some additional smaller artifacts have been generated. The 

Two Component Plus Pseudostress EKM (Equation 7 - the 
stress terms are replaced with displacement terms using Hooke’s 
Law), shown in Figure 6, eliminates almost completely all arti- 
facts near the borehole. The image of the two interfaces dies out 
more rapidly away from the borehole. 

Conclusion 

The elastic migration formula for the case where only the ver- 
tical components are available, is the same as the acoustic mi- 
gration formula, where the pressure data are replaced by the 
magnitudes of the elastic data BS reconstructed from the vertical 
components, and the acoustic Green’s functions are replaced with 
either the P or S wave elastic Green’s functions. A noticeable 
difference in migration artifacts is observed when comparing the 
One Component EKM and both of the two component EKM for- 
mulations. The Two Component EKM formulation substantially 
improves the quality of the image in the vicinity of the borehole. 

The additional weighting function derived from the stress terms 
in the elastic Kirchhoff integral produces the Two Component 
Plus Pseudo-stress EKM which produces an image with almost 
no migration artifacts in the vicinity of the borehole. 
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FIG. 1. Recording geometry FIG. 2. Synthetic displacement data, vertical FIG. 3. synthetic displacement data, horizontal 
(constant velocity medium). components. components. 

FIG. 4. l-component EKM. FIG. 5. 2-component EKM. FIG. 6. Bcomponent plus pseudo- 
stress EKM . 
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