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Abstract

This paper first reviews the shoving model for the non-Arrhenius viscosity of viscous liquids. According to this model the main con-
tribution to the activation energy of a flow event is the energy needed for molecules to shove aside the surrounding, an energy which is
proportional to the instantaneous shear modulus of the liquid. Data are presented supporting the model. It is shown that the fractional
Debye–Stokes–Einstein relation, which quantitatively expresses the frequently observed decoupling of, e.g., conductivity from viscous
flow, may be understood within the model. The paper goes on to review several related explanations for the non-Arrhenius viscosity.
Most of these are also ‘elastic models’, i.e., they express the viscosity activation energy in terms of short-time elastic properties of the
liquid. Finally, two alternative arguments for elastic models are given, a general solid-state defect argument and an Occam’s razor type
argument.
� 2006 Published by Elsevier B.V.
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1. Introduction

Glasses are formed from extremely viscous liquids. The
properties of glasses are inherited from the liquid. Glass-
forming liquids present a challenge from the basic science
point of view because they exhibit universal features which
are not well understood. The term ‘universality’ – a favored
term in the vocabulary of physicists – refers to features
which are shared by all glass-forming liquids whether they
are oxide melts, polymers, molecular liquids, ionic liquids,
metallic liquid alloys, or viscous liquids studied by com-
puter simulations. The universal features relate to the tem-
perature dependence of the viscosity and to the time
dependence of relaxation processes. Here, we shall only
be concerned with the former. The central question is:
0022-3093/$ - see front matter � 2006 Published by Elsevier B.V.
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Why is the viscosity of glass-forming liquids with few
exceptions non-Arrhenius?

It would be easy to understand a viscosity with Arrhe-
nius temperature dependence by reference to rate theory
by arguing as follows: ‘A barrier of molecular origin is to
be overcome in the flow processes, and the height of this
barrier determines the activation energy of viscosity’. There
are, however, only few liquids that exhibit an Arrhenius
viscosity (e.g., a pure silica melt); the vast majority of liq-
uids have an activation energy which increases significantly
upon cooling.

A liquid’s (shear) relaxation time s is related to its shear
viscosity g by Maxwell’s famous expression

s ¼ g
G1

; ð1Þ

where G1 is the instantaneous shear modulus of the liquid,
i.e., the shear modulus measured on short time scales where
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the liquid does not have time to flow. Although G1 varies
with temperature, a fact which is crucial for the model dis-
cussed below, its temperature dependence is insignificant
compared to the dramatic temperature dependencies of
relaxation time and viscosity. Thus the two latter quantities
are roughly proportional.

Well-known models for the non-Arrhenius behavior are
the free volume model [1–3] and the Adam–Gibbs entropy
model [4]. In the free volume model, which exists in several
versions, the idea is that the contraction of the liquid upon
cooling strongly affects the rate of molecular motion
because volume is needed for molecular rearrangements.
The volume in excess of the molecular volume is termed
the ‘free’ volume. This quantity obviously decreases upon
cooling, but it is not possible to define the free volume rig-
orously because a molecule does not have a definite volume.

The entropy model predicts that the activation energy of
viscosity is inversely proportional to the configurational
entropy. This quantity decreases upon cooling, thus giving
rise to non-Arrhenius behavior. The entropy model, which
is generally regarded as experimentally vindicated, is based
on several assumptions. One is the reasonable assumption
that it is possible to split the entropy into two terms, con-
figurational and vibrational entropy. Another assumption
is that the size of a cooperatively rearranging region depends
on the configurational entropy because the region must be
large enough to contain at least two states (potential energy
minima). This implies an increase in cooperativity upon
cooling which is, however, not compelling. For instance,
a crystal without dislocations flows via motion of vacancies
or interstitials, and the flow process does not become more
and more cooperative as temperature decreases – the num-
ber of defects just decreases. A further assumption which
goes into the entropy model is the ad hoc assumption that
the activation energy is proportional to the region volume.

When it comes to comparing the entropy model to
experiments one may have concerns about some of the evi-
dence reported in the literature [5]. Thus Johari [6] has crit-
ically examined the assumptions usually made in the
experimental validation of the model, and the predicted
identity of the Kauzmann temperature with the tempera-
ture where the Vogel–Fulcher–Tammann expression for
the viscosity diverges, was recently questioned by Tanaka
[7]. Another problem is that the regions calculated from
the model often contain only 3–4 molecules. This is incon-
sistent with the assumption of a region which is largely
unaffected by its surroundings. Moreover, the configura-
tional entropy is usually identified with the so-called excess
entropy, i.e., liquid minus crystal entropy at the given tem-
perature [6]. The justification for this is ostensibly that the
phonon (vibrational) contribution to the entropy is the
same in liquid and crystal. Consequently, since a crystal
has virtually zero configurational entropy, the vibrational
entropy of the liquid is equal to the crystal entropy at
any given temperature. This assumption is common, but
it seems to be at variance with the following: The high-fre-
quency sound velocity usually has significantly stronger
temperature dependence in the viscous liquid than in the
crystal. Since the vibrational entropy is determined by the
phonon spectrum which also determines the high-fre-
quency limit of the elastic constants and sound velocities,
it seems that the vibrational entropy of the liquid cannot
be identified with the crystal entropy.

Worries along the lines indicated above some time ago
led us to re-examine the question of the origin of the
non-Arrhenius viscosity. Thus an alternative model, the
‘shoving’ model, was proposed in 1996 [8]. In this paper,
we briefly summarize the reasoning behind the model and
present new data supporting it. Related models are
reviewed and two new arguments for the shoving model
and similar models presented – a solid-state defect argu-
ment and an ‘Occam’s razor’ argument.

2. The shoving model

The starting point is a belief that viscous liquids are to
be viewed more as ‘solids which flow’ than as less-viscous
liquids like ambient water. This appears to have been the
views of both Kauzmann [9] and Goldstein [10]. The ‘solid-
ity’ point of view is justified as follows [11]. A glass-forming
liquid close to the calorimetric glass transition has extre-
mely large viscosity. Thus most molecular motion goes into
vibrations, just like in a solid. Only rarely does anything
happen in the form of a flow event, a molecular rearrange-
ment. As Goldstein emphasized in his classical 1969 paper
[10], the barrier for a flow event must be considerably lar-
ger than the thermal energy kBT – this is why the viscosity
is large. Thus a viscous liquid is most of the time indistin-
guishable from a (disordered) solid. This is confirmed by
numerous computer simulations.

A forced solid also flows by sudden, rare, and localized

molecular rearrangements – for a crystal in thermal equi-
librium flow proceeds via motion of vacancies or intersti-
tials, because there are no extended dislocations. The
conclusion is that

Viscous liquid ffi solid which flows:

The basic idea of the shoving model is the same as that of
the free volume model, namely that extra volume is needed

for a flow event to occur. The work done in creating this
extra volume is identified with the activation energy. This
is how the name of the model arose: in order to rearrange,
the molecules must shove aside the surrounding molecules.

A flow event, like any barrier crossing, happens on a
very fast time scale (picoseconds) by an unlikely thermal
fluctuation. The fact that the fluctuation is unlikely

accounts for the long time between two flow events (which
in turn is the reason for the large viscosity). The fact that
thermal fluctuations are fast means that the surrounding
liquid behaves as a solid during a flow event. Thus stan-
dard solid-state elasticity theory may be used for calculat-
ing the ‘shoving’ work.

The shoving model assumes the simplest possible flow
event, one of spherical symmetry. Contrary to intuition,



Fig. 1a. Imaginary part of the frequency-dependent shear modulus
divided by temperature normalized by the highest measured temperature
(TM = 254 K) for 5-polyphenyl-ether measured by the piezo-ceramic
transducer [14]. This liquid obeys time-temperature superposition for the
shear modulus, a fact which implies that the maximum value of the loss is
proportional to the instantaneous shear modulus. The shoving model thus
predicts that the maxima extrapolate linearly to zero at a physically
reasonable ‘attack’ frequency (identified with the attempt frequency).

Fig. 1b. Imaginary part of the frequency-dependent shear modulus
divided by temperature normalized by the highest measured temperature
(TM = 210 K) for triphenyl phosphite measured by the piezo-ceramic
transducer [14]. This liquid also obeys time–temperature superposition for
the shear modulus.
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perhaps, the expansion of a sphere into a larger sphere in
an elastic solid does not result in any compression of the
surroundings. This fact comes from solving the equations
of solid-state elasticity theory which show that the radial
expansion varies with radius as 1/r2, thus inducing a
zero-divergence displacement vector field (implying no den-
sity change). Consequently, the elastic constant determin-
ing the shoving work is the shear modulus. And since
this all happens on a fast time scale, the shoving work is
proportional to the instantaneous shear modulus, G1.

In glass-forming liquids G1 increases as temperature
decreases, and G1 is much more temperature dependent
than, e.g., in crystals and glasses. We define the activation
(free) energy E from the viscosity relative to its high-tem-
perature limit by ln(g/g0) = E/kBT (the same definition is
used in the entropy model; the activation energy is not to
be confused with the apparent activation energy which is
defined as the tangential slope in the Arrhenius plot). In
general, the activation energy depends on temperature. A
convenient measure of how much E changes with tempera-
ture is the ‘index’, I = �dln E/dlnT [12], which for glass-
forming liquids typically is between 2 and 6. The index is
defined at any temperature; its value at the glass transition
determines the fragility, m, by the equation: m = 16(1 + I)
[12] where the number 16 is the logarithm of the ratio
between the time scale defining the calorimetric glass tran-
sition (1000 s) and a typical molecular vibration time
(10�13 s).

The final expression for the temperature-dependent acti-
vation energy in the shoving model is [8]

EðT Þ ¼ V CG1ðT Þ; ð2Þ
where VC is a characteristic microscopic volume which is
assumed to be temperature independent.

To summarize, the basic assumptions behind Eq. (2) are:

(1) The activation energy is (mainly) elastic energy.
(2) This elastic energy is located in (mainly) the surround-

ings of the rearranging molecules.
(3) The elastic energy is (mainly) shear elastic energy, i.e.,

not associated with any density change.

As shown elsewhere [5], if the contribution to the activa-
tion energy from the rearranging molecules decreases
strongly as function of the volume of the energy barrier
maximum (the transition state), the main contribution to
the activation energy is indeed mainly located in the sur-
roundings. Thus the activation energy is mainly elastic
energy. Moreover, although the elastic energy for a general
non-spherical flow event also has a contribution from vol-
ume changes, even for highly anisotropic flow events this
contribution is never more than 10% of the total elastic
energy [13].

The experiments reported below utilize a three-disc
piezo-ceramic transducer making it possible to measure
the shear modulus of highly viscous liquids at frequencies
ranging from 1 mHz to 50 kHz [14]. Fig. 1a gives the imag-
inary part of the frequency-dependent shear modulus
divided by temperature for 5-polyphenyl-ether at different
temperatures. Fig. 1b presents the same plot for triphenyl
phosphite. The dashed lines show that there is a linear rela-
tionship between maximum loss over temperature and the
logarithm of the loss-peak frequency. The line extrapolates
to zero at 1012 Hz, close to a typical attempt frequency.
These data support the shoving model because the mechan-
ical loss obeys time-temperature superposition for these
two liquids; thus the maximum shear mechanical loss is
proportional to the instantaneous shear modulus with a
temperature-independent proportionality constant (this,
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of course, applies only if there are no further relaxation
processes at frequencies higher than the ones probed).
We conclude that the logarithm of the shear mechanical
loss peak frequency is proportional to the instantaneous
shear modulus over temperature, which is Eq. (2).

Other data supporting the model are given in Fig. 2 [8].
The figure shows viscosity as a function of temperature for
several molecular liquids (full symbols) – clearly non-
Arrhenius – and the same data plotted as function of the
variable X / G1/T normalized to one at the glass transi-
tion (open symbols). There is good agreement with the
model with a physically reasonable prefactor (left endpoint
of the diagonal line). Some of these data refer to liquids
also studied by Barlow and co-workers in 1967 by ultrason-
ics in the MHz region [15]; our measurements reproduce
theirs, confirming the assumption of no significant losses
above the highest frequency accessible by the piezo-ceramic
shear transducer.

The shoving model may also be applied to structural
relaxation. This was done in 1998 utilizing the Tool-Naray-
anaswami (TN) formalism with the reduced time defined
by scaling with the relaxation time expression of the shov-
ing model where, however, the instantaneous shear modu-
lus changes with time as the liquid approaches equilibrium
(‘ages’). This version of the TN formalism was applied to
describe relaxation of the instantaneous shear modulus
itself of the silicone oil tetramethyl-tetraphenyl-trisiloxane
(DC704) measured by means of the piezo-ceramic method
in the resonance mode [16]. Recently, the shoving model
was successfully applied to describe structural relaxation
of bulk metallic glasses [17].

A new application of the shoving model is that it pro-
vides a simple framework for quantitatively understanding
Fig. 2. Data first published in Ref. [8] showing the viscosity for five
molecular liquids (4-methylpentan-2-ol, dioctyl phthalate, phenyl salicy-
late, dibutyl phthalate, tetramethyl-tetraphenyl-trisiloxane) as function of
inverse temperature (full symbols) and as function of the variable X which
is defined as the quantity G1(T)/T normalized to one at the glass
transition temperature (open symbols), where the latter is defined as the
temperature where the equilibrium liquid viscosity is 1013 Poise (1012 Pa s).
The shoving model predicts that the viscosity as function of X lies on the
diagonal line starting at the lower left corner, corresponding to a typical
high-temperature viscosity and thus a physically reasonable prefactor.
the so-called decoupling between different relaxation pro-
cesses often observed in viscous liquids [18]. Decoupling
means that some relaxation processes are much faster than
the dominant (alpha) process, the one with characteristic
time related to viscosity via the Maxwell relation Eq. (1).
The decoupling phenomenon was studied extensively in
the 1990s and several models have been proposed which
are able to explain it qualitatively and sometimes quantita-
tively [19–24]. As a typical example, ionic conductivity
often decouples from viscosity in the liquid phase, a decou-
pling that makes ion conduction in glasses practically pos-
sible. An intriguing empiricism referred to as the ‘fractional
Debye–Stokes–Einstein relation’ usually applies [25]. It
states that upon temperature/pressure variations the con-
ductivity r varies as r / g�C where C < 1 is a constant.
Usually only temperature is varied, but recently Bielowka
et al. in a study of two molecular liquids showed that the
fractional Debye–Stokes–Einstein relation applies also
when pressure is varied with the constant C being pressure
and temperature independent [26]. In terms of the activa-
tion energies of conductivity, Er, and viscosity, Eg, the
Debye–Stokes–Einstein relation reads

Erðp; T Þ ¼ CEgðp; T Þ: ð3Þ

How can this be understood? The decoupling phenomenon
is hard to understand within the Adam–Gibbs entropy
model where the basic concept is that of a cooperatively
rearranging region. The shoving model, on the other hand,
provides a possible explanation: It is reasonable to assume
that there are only a finite number of types of flow event.
Each type has an activation energy which is given by the
shoving model expression with some characteristic volume.
Of the different types of flow events a certain subset is
needed for the system to ‘percolate’ in the energy land-
scape, i.e., to obtain ergodicity. Among these, at low tem-
peratures the flow event with largest characteristic volume
has largest activation energy; this becomes the bottleneck
which determines the activation energy of viscosity. For
ion motion a parallel reasoning applies, except that the
number of flow events involving ions is a subset of the total
number of flow events. Dc conduction decouples from vis-
cosity whenever the conducting ions need some, but not all
of the flow events involved in viscous flow, in order to per-
colate. Of those needed for conduction the one with largest
characteristic volume determines the dc conductivity acti-
vation energy. To summarize: viscous flow has one charac-
teristic volume, dc conduction has another, smaller
characteristic volume. The ratio between these two is the
constant C of Eq. (3). This constant is temperature and
pressure independent, if all characteristic volumes are af-
fected by pressure and temperature in the same way.

3. Related ‘elastic’ approaches for explaining the non-

Arrhenius viscosity

Several other models lead to the shoving expression Eq.
(2) or to expressions which experimentally are hard to
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distinguish from it. We summarize these models in chrono-
logical order.

(a) The first reference to Eq. (2) seems to be that of a lit-
tle known work by Tobolsky et al. from 1943 [27]. These
authors discussed viscosity by adopting a harmonic
approximation to the intermolecular potential. The idea
was to ‘relate the curvature of the potential within which
the atoms move to the elastic constants’ whereby ‘the
viscous flow process can be described by calculation of
the rates with which molecules move from one equilib-
rium position to the next’. Assuming a cosine potential
for the molecule in question this led to Eq. (2). Tobolsky
and co-workers did not discuss frequency dependence of
the shear modulus, but clearly their ‘shearing modulus’
must be the instantaneous shear modulus of the liquid.
If one assumes a constant Poisson ratio, shear and bulk
moduli are proportional. As pointed out by Tobolsky
et al., in this case the model predicts proportionality
between the viscosity activation energy and the bulk
modulus, which is consistent with a relationship postu-
lated earlier by Gemant who showed that both quanti-
ties are proportional to the energy of vaporization [28].
(b) A model related to the shoving model, but for a dif-
ferent phenomenon, is the 1954 Anderson–Stuart model
for ion conduction in glass [29]. These authors argued
that the barrier to be overcome for an ion jumping
between two minima has two contributions: the electro-
static attraction between an ion and its neighboring non-
bridging oxygen atom and the elastic work needed for
the ion to expand the structure during the jump. The lat-
ter contribution was estimated using solid-state elasticity
theory, leading to Eq. (2). In the ionic case the Coulomb
contribution usually cannot be ignored, though.
(c) Mooney [30] in 1957 argued that ‘a liquid not only
could be but perhaps should be treated as an elastic con-
tinuum with a stress relaxation mechanism’. He pro-
posed a theory according to which, whenever the local
deformation in any region exceeds a certain critical
value, the structure in the region loses its rigidity result-
ing in molecular rearrangements. From a rather intricate
reasoning Mooney predicted that the viscosity activa-
tion energy is proportional to the square of the ‘thermal
longitudinal’ sound velocity. If this is denoted by c and
the mass of one molecule by m, Mooney’s expression for
the activation energy is

E / mc2: ð4Þ
Since sound velocities squared are proportional to
mechanical moduli, Eq. (4) is equivalent to Eq. (2) if
the shear and bulk moduli are proportional (in their
temperature and pressure variations).
(d) The model of Bueche from 1959 [31] also relates the
relaxation time to elastic properties of the surroundings,
now based on an argument involving concentric shells of
surrounding molecules. The idea is that, ‘if these shells
vibrate outward in phase, the innermost shell would
expand greatly, leaving the central molecule in a rather
large hole so it could move to a new position’. Bueche’s
calculation of the probability of this happening leads to
an expression that differs somewhat from Eqs. (2) and
(4), but the physical picture is obviously close to that
suggested by Mooney.
(e) Nemilov in 1968 arrived at Eq. (2) from a completely
different line of reasoning [32]. He noted that for several
glasses there is proportionality between the glass shear
modulus and the glass transition temperature. To
explain this he combined Eyring’s expression for the vis-
cosity prefactor with Dushmann’s expression for the
rate prefactor (barrier energy divided by Planck’s con-
stant), leading via the Maxwell relation to Eq. (2). Eq.
(2) explains the proportionality between the glass transi-
tion temperature and the glass shear modulus for chem-
ically related liquids where there is reason to expect the
characteristic volume is the same, because the glass
shear modulus is equal to the instantaneous shear mod-
ulus of the liquid at the glass transition temperature.
(f) Hall and Wolynes [33] in 1987 reasoned along lines
similar to those of Tobolsky, Powell, and Eyring, by bas-
ing their argument in the simplest version on a harmonic
approximation around energy minima. This led to the
prediction that the logarithm of the viscosity (or average
relaxation time) is proportional to 1/hx2i, where hx2i is
the mean-square displacement of the molecules in their
vibrations around a potential energy minimum. We shall
refer to this prediction as the ‘harmonic approximation’:

E
kBT
/ a2

hx2i : ð5Þ

Here a is the intermolecular distance which is usually
regarded as constant, while the vibrational mean-
square displacement depends on temperature as well
as on pressure. A similar reasoning was applied long
ago by Flynn [34] for the calculation of activation
energies of point defect mobilities in metals [12]. Of
course, at high pressure the intermolecular distance
does change; in this case Eq. (5) may be expressed
in terms of the density q as follows:

E
kBT
/ q�2=3

hx2i : ð6Þ

After Hall and Wolynes many authors discussed and
used the harmonic approximation for describing the
dynamics of glass-forming liquids (see, e.g., the refer-
ences of Ref. [12]); recently Eq. (5) was connected to
the free volume model by Starr et al., who confirmed
it by computer simulations [35]. The crucial point is that
in viscous liquids the vibrational mean-squared displace-
ment is generally quite temperature dependent, often
increasing much more rapidly with temperature than
in a classical elastic solid where it is proportional to
temperature.
(g) In the approximation where all contributions to
vibrations come from longitudinal and transverse
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phonons, the harmonic approximation Eq. (5) is equiv-
alent to Eq. (2) if the shear modulus is replaced [12] by a
combination of shear and (isothermal) longitudinal
instantaneous moduli. It was recently shown, however,
that the temperature dependence of the relevant combi-
nation of these elastic constants is dominated by that
of the shear modulus since at most 8% comes from the
bulk modulus [12].
(h) Ngai recently [36] argued that the coupling model
also implies the harmonic approximation.

This survey shows that the idea of connecting fast and
slow dynamics – vibrations and viscous flow – has been
around almost as long as glass science has been an aca-
demic discipline. At first it may seem puzzling that dynam-
ics on time scales which differ 12–15 orders of magnitude
could be connected. However, while the long time scale
of viscous flow is determined by the time between two flow
events, the short time scale (the picosecond time scale) is
more or less that of the barrier transition itself. In view
of this, properties on the short time scale may very well
be relevant for determining the actual barrier height and
thus ‘setting the clock’ for the long time scale.

Finally, it should be mentioned that recently two inter-
esting correlations between fast and slow dynamics were
reported. To appreciate these, recall that glass properties
correspond to fast properties of the liquid just above the
glass transition. Scopigno et al. [37] showed that the
vibrational properties of the glass well below the glass tran-
sition correlate with the fragility of the liquid, while
Novikov and Sokolov [38] showed that the degree of
non-Arrhenius behavior of the liquid correlates with the
Poisson ratio of the glass [39]. How these intriguing find-
ings may relate to the above discussed models is not clear
at present.

4. A solid-state defect argument

The physical picture of a viscous liquid as a ‘solid which

flows’ is based on the fact that on time scales much shorter
than the Maxwell relaxation time virtually no molecules
have moved away from their initial position, where they
simply vibrate just as in a solid. Thus, e.g., a viscous liquid
with Maxwell relaxation time equal to 1 s simulated on the
fastest computer available today is indistinguishable from a
solid, albeit a non-crystalline solid. A flow event takes the
molecules of the ‘solid’ from one potential energy mini-
mum to another, just like an activated process in a genuine
solid, and just like in a solid these events are extremely rare.

The ‘liquid ffi solid’ viewpoint invites one to comparing
viscous liquid flow events to defect motion in crystals. In
equilibrium a crystal contains no extended dislocations,
so virtually all defects are point defects. In an interesting
book by Varotsos and Alexopoulos (VA) from 1986 [40]
the main message is that point defect creation free energies
– as well as the free energies of activation for self-diffusion
– quite generally are proportional to the isothermal bulk
modulus (with proportionality constant equal to some
microscopic volume). If it is assumed that bulk and shear
moduli are proportional in their temperature/pressure vari-
ations, the VA prediction becomes equivalent to the shov-
ing model prediction Eq. (2). This shows that the shoving
model and related models – most of which, as we have seen,
are based on the harmonic approximation in some form –
should be viewed in a more general setting than so far has
been done: Viscous flow is like other diffusion processes in
solids, the only new ingredient is that the relevant elastic
constants are the high-frequency moduli which are gener-
ally much more temperature dependent in viscous liquids
than in crystals or glasses.

A simple way to understand why point defect energies
are proportional to mechanical moduli is by reference to
the ‘strain-energy model’, where a defect is regarded as a
distortion of a continuum having the properties of the mac-
roscopic crystal. This model was proposed by Zener in
1942 to account for the decrease of density of heavily
cold-worked metals [41]. The model was later shown to
explain the activation volumes derived from pressure effects
on solid-state diffusion [42]. It is the same reasoning that is
used in the shoving model, except that here it is used for
calculating a barrier height, not a defect creation energy.

5. An Occam’s razor argument

Several authors have compared Eq. (4) or equivalent
formulations in terms of Einstein or Debye temperatures
or mechanical moduli to experiment on the viscosity of
glass-forming liquids. A straightforward way to make this
comparison is to utilize the fact that the liquid relaxation
time has a definite value at the glass transition. Thus the
glass transition temperature is proportional to the activa-
tion energy of the liquid at this temperature with a univer-
sal proportionality constant, and the glass transition
temperature may be estimated by probing properties of

the glass (moduli, sound velocities, etc.), which vary rela-
tively little below the glass transition.

Generally, there is good agreement. Some authors use
the longitudinal sound velocity of the glass, sometimes
the transverse sound velocity is used. Examples of compar-
isons to experiment for various classes of glass-forming liq-
uids include Nemilov’s 1968 paper [32], a paper from 1994
by Heuer and Spiess [43], or more recent works by Sandi-
tov et al. [44] and by Wang et al. [45].

Heuer and Spiess [43] presented an interesting argument
for the glass transition temperature being proportional to
mc2. Inspired by the standard Lennard-Jones potential
often used for computer simulation of simple liquids, which
has just one energy scale, they argued that there is only one

relevant energy scale also for real liquids. This energy scale
is identified in the combination of molecular mass and
sound velocity of Eq. (4). Comparing to data for oxide
glass formers, polymers, molecular liquids, ionic solutions,
and chalcogenide glasses, Heuer and Spiess concluded that
kBTg / mc2 is always obeyed, which indeed must be the
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case if there is only one relevant energy scale (for a more or
less universal intermolecular potential). This implies Eq. (4)
at Tg because, as mentioned, the activation energy at the
glass transition is a universal constant times kBTg.

We now extended the Heuer–Spiess line of reasoning
into an ‘Occam’s razor’ argument for the shoving model/
harmonic approximation. First, note that the Heuer–Spiess
focus on the possibly of just one relevant energy, as empha-
sized by the authors, is consistent with the Lindemann
melting criterion and the well-known empirical 2/3 rule
which gives the ratio between glass transition temperature
and melting temperature Tm: The Lindemann melting crite-
rion states that melting of a crystal takes place when the
vibrational displacement is 10% of the interatomic dis-
tance; this translates into a proportionality between kBTm

and mc2 where c is the crystal sound velocity. Assuming
that the crystal and glass sound velocities are roughly equal
and only weakly temperature dependent, the Lindemann
melting criterion and the 2/3 rule imply Eq. (4) for the acti-
vation energy at the glass transition, where c is now the
glass sound velocity.

Turning the argument on its head, the 2/3 rule and the
Lindemann melting criterion taken together strongly indi-
cate that effectively just one energy scale is relevant for vis-
cous liquids – otherwise, it is hard to understand why the
glass transition temperature is never much smaller or much
larger than the melting temperature. Returning to the
problem of understanding the origin of the non-Arrhenius
viscosity, we note that by this argument the activation
energy must be given by Eq. (4). A logical consequence is
that, if the liquid really has just one relevant energy scale,
one would expect an almost Arrhenius viscosity. Real vis-
cous liquids, however, are much more complex than Len-
nard-Jones liquids, and one expects ‘renormalization’ of
the effective energy scale, in other word the effective energy
scale may very well depend on temperature. In this spirit,
the simplest would be that Eq. (4) applies not only at the
glass transition but in the whole range of temperatures
above it as well. This is where Occam’s razor enters.
Finally, since the glass sound velocity is identical to the
liquid high-frequency sound velocity at the glass transition,
in order for Eq. (4) to apply in the liquid phase c is to be
identified with a high-frequency sound velocity (and not
for the low-frequency sound velocity).

If c is replaced by the transverse high-frequency sound
velocity of the liquid, Eq. (4) as already mentioned is
equivalent to the shoving model [8]. If, however, c is the
high-frequency longitudinal sound velocity, a somewhat
different prediction is arrived at which gives an activation
energy that generally does not vary enough with temper-
ature to account for the non-Arrhenius viscosity. In view
of the models discussed above this may be because the
longitudinal sound velocity involves the adiabatic longitu-
dinal modulus, not the isothermal, and thus does not
properly reflect the mean-square displacement of Eq. (5)
(of course, for the shear deformations the adiabatic and
isothermal moduli are equal).
6. Concluding remarks

Based on the above overview we would like to suggest
that the shoving model and several related models should
be referred to collectively as ‘elastic models’. The common
idea of elastic models is that flow events in a viscous liquid
are similar to point defect motion in solids, and that the
non-Arrhenius viscosity of glass-forming liquids is caused
by temperature variations of the short-time elastic
constants.

To many researchers glass science is attractive in large
parts because of the intriguing possibility of an infinite
relaxation time at the Kauzmann temperature. This beauty
is lost if elastic models prevail. On the other hand, there
may be important practical consequences if elastic models
are correct. Thus the activation energy may be monitored
directly by measuring the instantaneous shear modulus
(via a piezo-ceramic transducer, standing wave ultrasonic
techniques, ordinary or stimulated transverse Brillouin
scattering, etc.), and this opens up a new and direct way
of monitoring and thus optimizing annealing processes
below the glass transition. It is straightforward to adopt
the Tool-Narayanaswami formalism with a reduced time
definition based on the Eq. (2) expression for the activation
energy (which itself changes with time during annealing),
and it would certainly be a novel development if one, as
predicted by the elastic models, were able to directly mon-
itor the reduced time.
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