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Abstract: For least squares regression, Efron et al. (2004) proposed an efficient

solution path algorithm, the least angle regression (LAR). They showed that a

slight modification of the LAR leads to the whole LASSO solution path. Both the

LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended

the LAR to generalized linear models and the quasi-likelihood method. In this work

we extend the LAR further to handle Cox’s proportional hazards model. The goal

is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie

(2005)) in Cox’s proportional hazards model. This goal is achieved in two steps.

First we extend the LAR to optimizing the log partial likelihood plus a fixed small

ridge term. Then we define a path modification, which leads to the solution path

of the elastic net regularized log partial likelihood. Our solution path is exact and

piecewise determined by ordinary differential equation systems.

Key words and phrases: Cox’s proportional hazards model, elastic net, LARS,

LASSO, ordinary differential equation, solution path algorithm.

1. Introduction

The main goal of survival analysis is to characterize the dependence of the
survival time Y on a covariate vector X = (X1, . . . , Xp)T . Cox’s proportional
hazards model (Cox (1972)) assumes that the hazard function h(y|x) of a subject
with covariate vector x takes the form

h(y|x) = h0(y) exp(xT β), (1.1)

where h0(y) is a completely unspecified baseline hazard function and β = (β1, . . .,
βp)T . In practice, it is not necessary that all covariates contribute to predicting
survival outcomes. Thus, another goal of survival analysis is to identify important
risk factors and quantify their risk contributions. As survival data with many
predictors prevail in clinical trial studies, risk factor identification becomes more
important than ever for analyzing high-dimensional survival data. The problem
is to select a submodel of (1.1) by providing a sparse estimate of β.

There are many model selection techniques in the literature and most of them
have been successfully extended to survival analysis. They include such classi-
cal methods as the best-subset selection and stepwise selection. More recently,

http://dx.doi.org/10.5705/ss.2010.107


272 YICHAO WU

Tibshirani (1996) proposed to use the L1 penalty to regularize least squares re-
gression; sparse estimate of the regression parameter is made possible due to the
L1 penalty’s singularity at the origin. This technique was named the least ab-
solute shrinkage and selection operator (LASSO), and later extended to the Cox
proportional hazards model in Tibshirani (1997). However the LASSO penalty
leads to biased estimates for true non-zero coefficients. To alleviate this bias
issue, Fan and Li (2001) proposed the SCAD penalty, which is symmetric and
piecewise quadratic. It is linear around the origin and flattens out near the two
ends; in between, it is smoothly connected by two quadratic pieces. They showed
that asymptotically the SCAD penalized estimate behaves like the oracle esti-
mate were the true sparsity pattern known a priori. The oracle property of the
SCAD was later extended to survival models in Fan and Li (2002). The adaptive-
LASSO was proposed for least squares regression by Zou (2006), and for Cox’s
proportional hazards model by Zhang and Lu (2007), and its oracle properties
were established as well. There are many other techniques available for variable
selection, including the elastic net (Zou and Hastie (2005)). See Fan and Lv
(2010) and references therein for an overview of variable selection methods.

A novel least angle regression (LAR) solution path algorithm was proposed
in Efron et al. (2004). The LAR produces a piecewise linear solution path for the
least squares regression. They showed that slight modifications of the LAR lead
to the LASSO and Forward Stagewise linear regression solution paths. Together
they are called LARS. For data {(yi,zi), i = 1, . . . , n} with zi = (zi1, . . . , zip)T ∈
IRp, ordinary least squares (OLS) regression solves

min
w

1
2

n∑
i=1

(yi − zT
i w)2 (1.2)

to estimate w = (w1, . . . , wp)T . Applying location and scale transformations if
necessary, we assume without loss of generality that

∑n
i=1 zij = 0,

∑n
i=1 z2

ij = 1
for j = 1, . . . , p, and

∑n
i=1 yi = 0.

For OLS, the LAR provides a solution path w(t) indexed by t ∈ [0,∞).
It starts at the origin with w(0) = 0; for large enough t, w(t) is the same as
the full solution to (1.2). The intermediate solution path is piecewise linear;
over each piece, it moves along the direction that keeps the correlation between
the current residuals and each active predictor equal in absolute value. Denote
the jth predictor vector by z(j) = (z1j , . . . , znj)T , and define the residual vector
at t by e(w(t)) = (e1(w(t)), . . . , en(w(t)))T with ei(w(t)) = yi − zT

i w(t) for
i = 1, . . . , n. Then along the LAR solution path w(t), the current correlation
e(w(t))T z(j) has the same absolute value for each active predictor j. Note that

e(w(t))T z(j) = −1
2

(
∂

∂wj

n∑
i=1

(yi − zT
i w)2

)∣∣∣∣∣
w(t)

.
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This implies that the objective function has the same absolute value of the first-
order partial derivatives for each active predictor along the LAR solution path.
Mathematically,∣∣∣∣∣∣

(
∂

∂wj

n∑
i=1

(yi − zT
i w)2

)∣∣∣∣∣
w(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(

∂

∂wj′

n∑
i=1

(yi − zT
i w)2

)∣∣∣∣∣
w(t)

∣∣∣∣∣∣ (1.3)

for any j and j′ among the active set at t. For the diabetes data in the R
package LARS, we plot the LAR solution path in the top left panel of Figure
1. The first-order partial derivatives along the LAR solution path are shown
in the top right panel of Figure 1. The derivatives in absolute value, namely∣∣∣∣( ∂

∂wj

∑n
i=1(yi − zT

i w)2
)∣∣∣

w(t)

∣∣∣∣, are given in the bottom panel of Figure 1. One

sees that, at the end of each LAR step, a new predictor joins the group of
active predictors, sharing the honor of having the same largest absolute value
of the first-order partial derivatives. The LAR algorithm terminates at the full
OLS estimate of (1.2) when all the first-order partial derivatives are exactly
zero. Based on this observation, Wu (2011) proposed an extension to handle
generalized linear models and more generally the quasi-likelihood method.

In this work, we extend the LAR to the Cox’s proportional hazards model.
With the elastic net penalty in mind, we add a fixed small ridge term to the
log partial likelihood function and call this extension CoxLAR-ridge. When the
ridge term is exactly zero, we have the original log partial likelihood and call the
corresponding algorithm CoxLAR. As in Efron et al. (2004) and Wu (2011), we
show that the CoxLAR-ridge can be slightly modified to get the corresponding
whole solution path for the LASSO regularized counterpart; it is called CoxEN as
the LASSO penalty with a small ridge term leads to the elastic net penalty. By
setting the ridge term to be zero the CoxEN includes the CoxLASSO, the LASSO
regularized log partial likelihood, as a special case. Together, we use CoxLARS
in the same spirit as LARS in Efron et al. (2004). In addition to considering
different models, another difference from Wu (2011) is that we include a ridge
penalty term to consider the more general elastic net penalty. The elastic net
penalty is highly desirable in that it is capable of selecting more predictors than
the sample size, while it is known that the number of predictors selected by the
LASSO can be at most equal to the sample size. See more discussion on this
issue in Zou and Hastie (2005).

Previously Park and Hastie (2007) provided a solution path algorithm for
L1-regularized generalized linear models and Cox’s proportional hazards model.
Their algorithm is based on the predictor-corrector method of convex optimiza-
tion. In their R package “glmpath”, one may choose an extreme small bound
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Figure 1. LAR path of diabetes data: the top left panel plots the
LAR path wj(t) against the relative one-norm |w(t)|/|w(∞)| for each
predictor j = 1, 2, . . . , 10; the top right panel and the bottom panel
plot the derivative

(
∂

∂wj

∑n
i=1(yi − zT

i w)2
)∣∣∣

w(t)
and its absolute value∣∣∣∣( ∂

∂wj

∑n
i=1(yi − zT

i w)2
)∣∣∣

w(t)

∣∣∣∣, respectively, along the LAR path, for dif-

ferent predictors.

for arc length (L1 norm) of each step to obtain an exact solution path. In this
case, it essentially uses a warm start each time to compute the exact solution at
a fine grid of the tuning parameter and connects these exact solutions by straight
lines. They still need to solve many optimization problems, one at each tuning
parameter point. They did not address how the solution changes when the tuning
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parameter changes. Our new algorithms CoxLAR and CoxLASSO answer this
question, the solution path propagates according to ordinary differential equa-
tion (ODE) systems. Thus the commonly used fourth-order Runge-Kutta method
can be used to solve these ODE systems to obtain the whole CoxLARS solution
paths. Other papers on solution path algorithms include Hastie et al. (2004),
Rosset and Zhu (2007), Zou (2008), Friedman, Hastie, and Tibshirani (2008),
Yuan and Zou (2009), and references therein. In particular, Zou (2008) proposed
an efficient adaptive shrinkage method for the Cox’s proportional hazards model
and adapted the LARS to provide a piecewise linear solution path.

The rest of the article is organized as follows. Section 2 presents our new
algorithm CoxLARS. Properties of the CoxLARS are given in Section 3. Numer-
ical examples in Section 4 illustrate how our new algorithm works with data sets.
A summary is given in Section 5. The appendix gives all technical proofs.

2. Extension of LARS: CoxLARS

Consider a sample of n subjects. Let Ti and Ci be the failure time and cen-
soring time, respectively, for subject i = 1, . . . , n. Write Yi = min(Ti, Ci) and
let the censoring indicator be δi = I(Ti ≤ Ci). Denote the covariate vector of
the ith subject by xi = (xi1, . . . , xip)T . Assume that Ti and Ci are condition-
ally independent given covariate vector xi, and that the censoring mechanism is
noninformative. Our data set is {(xi, yi, δi), i = 1, . . . , n}.

Assume the data come from model (1.1). For simplicity, we suppose there
are no ties in the observed failure times, otherwise techniques in Breslow (1974)
may be used. The log partial likelihood is given by

Lpl(β) =
n∑

i=1

δix
T
i β −

n∑
i=1

δi log

( ∑
j∈Ri

exp(xT
j β)

)
, (2.1)

where Ri = {j = 1, . . . , n : yj ≥ yi} denotes the risk set just before the time yi.
Note that when the elastic net penalty (Zou and Hastie, 2005) is considered,

we are solving

min
β

n∑
i=1

δix
T
i β −

n∑
i=1

δi log

( ∑
j∈Ri

exp(xT
j β)

)
+

γ

2

p∑
j=1

β2
j + λ

p∑
j=1

|βj |, (2.2)

where γ ≥ 0 and λ ≥ 0 are two regularization parameters. In order to incorporate
the elastic net into our consideration, we include a small ridge penalty term and
set

L(β) ≡ Lγ(β) ,
n∑

i=1

δix
T
i β −

n∑
i=1

δi log

( ∑
j∈Ri

exp(xT
j β)

)
+

γ

2

p∑
j=1

β2
j (2.3)
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for some fixed small γ ≥ 0. Note that this reduces to the LASSO penalized
counterpart when γ = 0. It is known that the LASSO penalty can select at most
n predictors for the p > n case. However as long as γ > 0, we can select more
than n predictors by solving (2.2) when p > n. Our consideration is similar to the
LARS-EN algorithm proposed in Zou and Hastie (2005) in that the LARS-EN
adapted the LARS algorithm to obtain elastic net solution path for each fixed
ridge term.

We use t to index our solution path. As motivated by (1.3), our extension
CoxLAR-ridge seeks a solution path β(t) of (2.3) that satisfies∣∣∣∣∣ ∂

∂βj
L(β)

∣∣∣∣
β(t)

∣∣∣∣∣ =

∣∣∣∣∣ ∂

∂βj′
L(β)

∣∣∣∣
β(t)

∣∣∣∣∣ (2.4)

for any two predictors j and j′ that are active at t.
For L(β), denote its vector of first-order partial derivatives by b(β) =

(b1(β), . . . , bp(β))T and its matrix of second-order partial derivatives by M(β) =
(mjk(β))1≤j,k≤p , where

bj(β) =
∂

∂βj
L(β) =

n∑
i=1

δixij −
n∑

i=1

δi

∑
l∈Ri

exp(xT
l β)xlj∑

l∈Ri
exp(xT

l β)
+ γβj

and mjk(β) = ∂2

∂βj∂βk
L(β) is given by

−
n∑

i=1

δi

[∑
l∈Ri

exp(xT
l β)xljxlk∑

l∈Ri
exp(xT

l β)
−

(
∑

l∈Ri
exp(xT

l β)xlj)(
∑

l∈Ri
exp(xT

l β)xlk)

(
∑

l∈Ri
exp(xT

l β))2

]
+γI{j=k}

for 1 ≤ j, k ≤ p, where I{j=k} = 1 if j = k and 0 otherwise.
At t with solution β(t), denote the corresponding active index set by A(β(t))

and, interchangeably, by At. For any two index sets A and B, vector b, and matrix
M , let bA be the sub-vector of b consisting of those elements with index in A,
and MA,B be the sub-matrix of M consisting of those elements with row index in
A and column index in B. When A = {j} is a singleton, we write Mj,B, similarly
MA,k when B = {k}. Denote the complement of A by Ac = {1, . . . , p} \ A.

Note that, at any t with active predictor set A, the corresponding solution
component is set to zero for any inactive predictor, namely βj(t) = 0 for any
j 6∈ A. Thus it is enough to find how the solution coefficient components, cor-
responding to active predictors βj(t) with j ∈ A, are updated. Recall that our
desired solution path should be such that the active predictors have the same
absolute value of the first-order partial derivatives as at (2.4). Thus, as t grows,
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|bj(β(t))| decreases at the same speed for j ∈ A. Assume that in a small neigh-
borhood of t, the active set At remains the same as A, say. Note that

d

dt
bA(β(t)) = MA,A(β(t))

d

dt
βA(t), (2.5)

since the active set At remains the same as A and thus βAc(t) = 0 in a small
neighborhood of t.

According to (2.4),

d

dt
bA(β(t)) = c(t) {−sign(bA(β(t)))} (2.6)

for some c(t) > 0. Here the negative sign on the right hand side ensures that
|bj(β(t))| is decreasing in t for each j ∈ A. Furthermore (2.6) guarantees that
the |bj(β(t))|, j ∈ A, decrease at the same speed. Note that we can think of t

as a function of τ with the solution path indexed by τ . With an appropriate
choice of t(τ), (2.6) holds with t replaced by τ and the c(t) term replaced a
constant. Different c(t) lead to different indexing systems of the solution path.
Thus, without loss of generality, we set c(t) ≡ 1 in (2.6) and write

d

dt
bA(β(t)) = −sign(bA(β(t))). (2.7)

In fact this turns out to be a good choice in that t here is simply related to the
maximum absolute value of the first-order derivatives at t, as we shall see later.

Based on (2.5) and (2.7), the solution path should satisfy

d

dt
βA(t) = −(MA,A(β(t)))−1sign(bA(β(t))). (2.8)

Recall that βAc(t) = 0. These completely define the path updating direction
d
dtβ(t). Thus for any t∗ > t, we may take a tentative solution path piece

β̃A(t∗) = βA(t)−
∫ t∗

t
(MA,A(β̃(τ)))−1sign(bA(β̃(τ)))dτ and β̃Ac(t∗) = 0. (2.9)

With this tentative solution path piece, we implicitly assume that the active set
remains the same between t and t∗. Assume that, at the start with t, |bj(β(t))| =
|bj′(β(t))| for any j, j′ ∈ A. Then (2.9) guarantees that |bj(β̃(t∗))| = |bj′(β̃(t∗))|
for any j, j′ ∈ A along the tentative solution path piece β̃(t∗) for t∗ > t and,
further, that |bj(β̃(t∗))| is decreasing in t∗ for j ∈ A. Thus, as t∗ increases,
some inactive predictor m 6∈ A may have |bm(β̃(t∗))| ≥ |bj(β̃(t∗))| for j ∈ A.
Whenever this happens, the active predictor set has changed and we cannot use
(2.9) any more. For any j 6∈ A, define

Tj = min
{

t∗ > t :
∣∣∣bj(β̃(t∗))

∣∣∣ ≥ ∣∣∣bm(β̃(t∗))
∣∣∣} , (2.10)
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where m is any member of the active predictor set A. Then the active set changes
at T = minj 6∈A Tj from A to A ∪ {j∗}, where j∗ = argminj 6∈A Tj .

2.1. Algorithm CoxLAR(-ridge)

The previous discussion leads us to our extension CoxLAR(-ridge) algorithm
that is systematically presented next.

We initialize our solution path by identifying the predictor j so that the
objective function L(β) changes fastest with respect to βj beginning at β = 0;
set

t0 = − max
j=1,...,p

|bj(0)| . (2.11)

This specially defined t0 together with (2.7), leads to t = −maxj |bj(β(t))| along
our solution path. Our solution path begins with β(t0) = 0; the corresponding
initial active predictor set is At0 =

{
argmax
1≤j≤p

|bj(0)|
}

.

Given t0, β(t0), and At0 , we update our solution path using (2.9) until a
new variable joins the active set at some t1(> t0) to be determined. We may
temporarily update the solution using

β̃At0
(t) = βAt0

(t0) −
∫ t

t0

(MAt0 ,At0
(β̃(τ)))−1sign(bAt0

(β̃(τ)))dτ and β̃Ac
t0

(t) = 0

(2.12)
for t > t0. Here β̃(t) is a temporary solution path defined for any t > t0. For
any j 6∈ At0 , let

Tj = min
{

t > t0 :
∣∣∣bj(β̃(t))

∣∣∣ ≥ ∣∣∣bm(β̃(t))
∣∣∣} , (2.13)

where m ∈ At0 . Then
t1 = min

j 6∈At0

Tj (2.14)

is a transition point because the set of active predictor variables changes there.
The CoxLAR-ridge algorithm updates by setting

βAt0
(t) = βAt0

(t0) −
∫ t

t0

(MAt0 ,At0
(β(τ)))−1sign(bAt0

(β(τ)))dτ and βAc
t0

(t) = 0

(2.15)
for all t ∈ [t0, t1]. The active predictor set stays the same for t ∈ [t0, t1), namely
At = At0 . At t1, we update the active predictor set by setting At1 = At0 ∪ {j 6∈
At0 : Tj = t1}.

At t = t1, the number of active predictors is two. Due to (2.5), (2.8), (2.12),
(2.13) and (2.14), solution β(t1) satisfies |bj(β(t1))| =

∣∣bj′(β(t1))
∣∣ > |bk(β(t1))|

for any k 6∈ At1 and any j, j′ ∈ At1 .
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The CoxLAR-ridge algorithm continues with the updated t1, β(t1), and At1 ,
proceeding according to Algorithm 1. Note that at the end of the mth CoxLAR-
ridge step, the transition point tm, solution β(tm), and active predictor set Atm

satisfy tm = − |bj(β(tm))| for any j ∈ Atm , and |bj(β(tm)| =
∣∣bj′(β(tm)

∣∣ >
|bk(β(tm)| for any k 6∈ Atm and any j, j′ ∈ Atm .

At the end of the (p− 1)th CoxLAR-ridge step in Step 2 of Algorithm 1, all
predictors are active. Then, in Step 3, the CoxLAR solution path moves along
a direction such that the absolute values of the first-order partial derivatives
decrease at the same speed until all the first-order partial derivatives are exactly
zero, which happens at t = 0. The solution at t = 0 exactly corresponds to
the full solution argminβ L(β), just as the LAR solution ends at the full OLS
estimate. This completes our CoxLAR-ridge solution path. When the ridge term
in L(β) is exactly zero by setting γ = 0, we are essentially working directly with
the original log partial likelihood function and the CoxLAR-ridge is also the
CoxLAR in this case.

Remark 1. Note that the instantaneous path updating direction is given by
−(MAt,At(β(t)))−1sign(bAt(β(t))). For least squares regression, the objective
function is exactly quadratic and thus MAt,At depends only on the active set At,
but not on the current solution βAt(t). Note that sign(bAt(β(t))) does not change
in a small neighborhood of t. This implies that, within a small neighborhood of t,
the instantaneous path updating direction is the same for least squares regression.
This leads to the piecewise linearity of the LAR path (Efron et al. (2004)) and
in a more general setting (Rosset and Zhu (2007)).

Algorithm 1. CoxLAR(-ridge) for the Cox’s proportional hazards model.
1. Initialize by setting t0 = − max

j=1,...,p
|bj(0)|, β(t0) = 0, and At0 =

{
argmax1≤j≤p

|bj(0)|
}

.

2. For m = 0, 1, . . . , p − 2, take the tentative solution path using

β̃Atm
(t)=βAtm

(tm)−
∫ t

tm

(MAtm ,Atm
(β̃(τ)))−1sign(bAtm

(β̃(τ)))dτ and β̃Ac
tm

(t)

=0

for t ≥ tm. Let tm+1 = minj 6∈Atm
Tj , where

Tj = min
{

t > tm :
∣∣∣bj(β̃(t))

∣∣∣ ≥ ∣∣∣bk(β̃(t))
∣∣∣ for some k ∈ Atm

}
for j 6∈ Atm .

Update the solution path with

βAtm
(t)=βAtm

(tm)−
∫ t

tm

(MAtm ,Atm
(β(τ)))−1sign(bAtm

(β(τ)))dτ and βAc
tm

(t)

=0
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for t ∈ [tm, tm+1]. Set At = Atm for t ∈ [tm, tm+1) and Atm+1 = Atm ∪ {j 6∈
Atm : Tj = tm+1}.

3. At the end of Step 2, Atp−1 is {1, 2, . . . , p}. Next take

β(t) = β(tp−1) −
∫ t

tp−1

(MAtp−1 ,Atp−1
(β(τ)))−1sign(bAtp−1

(β(τ)))dτ,

and At = {1, 2, . . . , p} for t between tp−1 and tp = 0.

2.2. Cox-LASSO modification

Efron et al. (2004) showed that the whole LASSO regularized least squares
regression solution path can be obtained by a slight modification of the LAR. This
is confirmed by Wu (2011). Next we define our Cox-LASSO modification, and
prove that the CoxLAR-ridge with the Cox-LASSO modification produces the
whole elastic net regularized solution path for the Cox’s proportional hazards
model by noting that adding another LASSO penalty into L(β) leads to the
elastic net penalized log partial likelihood function in (2.2).

Consider the LASSO regularized counterpart of (2.3),

min
β0,β

L(β) + λ

p∑
j=1

|βj | (2.16)

which is exactly the same as (2.2), and is equivalent to

min
β0,β

L(β) subject to
p∑

j=1

|βj | ≤ s, (2.17)

where two regularization parameters λ ≥ 0 and s ≥ 0 are in some one-to-one
correspondence.

Let β̂ be a LASSO solution to (2.16). We can show that the sign of any
nonzero component β̂j must disagree with the sign of the current derivative bj(β̂),
see Lemma 2 in Section 3.

Suppose t = t∗ at the end of a CoxLAR-ridge step and that we have a new
active set A∗. At the next CoxLAR-ridge step with t ∈ [t∗, T ] for some T to be
determined, our solution path moves along the tentative solution path

β̃A∗(t) = βA∗(t∗) −
∫ t

t∗
(MA∗,A∗(β̃(τ)))−1sign(bA∗(β̃(τ)))dτ and β̃(A∗)c(t) = 0

(2.18)
for t ≥ t∗. The end point T is given by T = minj 6∈A∗ Tj , where

Tj = min
{

t > t∗ :
∣∣∣bj(β̃(t))

∣∣∣ ≥ ∣∣∣bk(β̃(t))
∣∣∣ for some k ∈ A∗

}
for j 6∈ A∗.
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For some j ∈ A∗, β̃j(t) may have changed sign at some point between t∗

and T , in which case the sign restriction given in Lemma 2 must have been
violated. We set Sj = min{t ∈ (t∗,∞) : β̃j(t) = 0} for j ∈ A∗, where β̃j(t)
is the jth component of β̃(t) defined by (2.18). If S = minj∈A∗ Sj < T , β̃(T )
defined by (2.18) cannot be a LASSO regularized solution to (2.16) since the sign
restriction in Lemma 2 has already been violated. The Cox-LASSO modification
can be applied to ensure that we can get the LASSO regularized solution to
(2.16).
Cox-LASSO modification: If S < T , stop the ongoing CoxLAR-ridge step at
S and remove j̃ from the active set A∗ by setting AS = At∗ \ {j̃}, where j̃ is
chosen such that Sj̃ = S. At the new transition point S, the new path updating
direction d

dtβ(t) is calculated using (2.8) based on the new active predictor set
A∗ \ {j̃}.

Theorem 1 guarantees that the Cox-LASSO modification leads to the LASSO
regularized solution path to (2.16), which is the LASSO regularized log partial
likelihood (CoxLASSO) when γ = 0, and the elastic net regularized log partial
likelihood (CoxEN) when γ > 0. We use CoxLARS to refer to CoxLAR, CoxLAR-
ridge, CoxLASSO, and CoxEN.

Note that at each transition point of our CoxLARS solution path, two kinds
of event can happen: either an inactive predictor joins the active predictor set
or an active predictor is removed from the active predictor set. As in Efron
et al. (2004), we assume a “one at a time” condition holds. With the “one at
a time” condition, at each transition point t∗ only a single event can happen,
namely, either one inactive predictor variable becomes active or one currently
active predictor variable becomes inactive.

Theorem 1. Under the Cox-LASSO modification, and assuming the “one at
a time” condition, the CoxLAR-ridge algorithm yields the LASSO regularized
solution path to (2.16).

Remark 2. For simplicity we make the “one at a time” assumption. But, even
when the “one at a time” condition does not hold, a CoxLASSO/CoxEN solution
path is still available. The same discussion in Efron et al. (2004) applies. In
applications, some slight jittering may be applied, if necessary, to ensure the
“one at a time” condition holds.

2.3. Updating via ODE

Our CoxLARS algorithm involves an essential piecewise updating step

β̃At∗ (t) = βAt∗ (t∗) −
∫ t

t∗
(MAt∗ ,At∗ (β̃(τ)))−1sign(bAt∗ (β̃(τ)))dτ and β̃Ac

t∗
(t) = 0

(2.19)
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beginning at a transition point t∗ with solution β(t∗) and active predictor set
At∗ .

Note that the piecewise solution path (2.19) can be easily obtained by setting
β̃j(t) = 0 for j 6∈ At∗ and t > t∗, and solving the following ordinary differential
equation (ODE) system

d

dt
β̃At∗ (t) = −(MAt∗ ,At∗ (β̃(t)))−1sign(bAt∗ (β̃(t)))

with initial value condition β̃At∗ (t)|t=t∗ = βAt∗ (t∗). This is a standard initial-
value ODE system and there are many efficient methods to solve it, for example
Euler method, backward Euler method, midpoint method, and the family of
Runge-Kutta methods, among many others. The commonly used member of
the Runge-Kutta method family is the fourth-order Runge-Kutta method. See
Atkinson, Han, and Stewart (2009) for a comprehensive introduction to the meth-
ods for solving ordinary differential equations. Our numerical examples employ
the Matlab ODE solver “ODE45”, which exactly implements the fourth-order
Runge-Kutta method.

3. Properties of CoxLARS

In this section, we establish some properties of our CoxLARS path, and
prove Theorem 1.

With the “one at a time” condition, at each transition point t∗ either one
inactive predictor becomes active or one active predictor becomes inactive. For
the first type, the active set changes from A to A∗ = A ∪ {j∗} for some j∗ 6∈ A.
We show in Lemma 1 that this new active predictor joins in a “correct” manner.
Lemma 1 applies to CoxLARS.

Lemma 1. For any transition point t∗ during the CoxLARS solution path, if
predictor j∗ is the only addition to the active set at t∗ with β(t∗) and active set
changing from A to A∗ = A∪{j∗}, then the path updating direction d

dtβA∗(t) at t∗

has its j∗th component disagreeing in sign with the current derivative bj∗(β(t∗)).

Lemma 1 is a key property for showing that the Cox-LASSO modification
leads to the LASSO or elastic net regularized log partial likelihood solution path
in that Lemma 1 ensures that, at any transition point, the new predictor variable
enters in a “correct” manner. This “correct” manner is required by the LASSO
penalty as is seen in Lemma 2.

Next we extend Lemmas 7-10 of Efron et al. (2004) to the Cox’s proportional
hazards model. Our Lemmas 2-5 concern properties of the LASSO regularized
solution path for (2.16) or equivalently (2.17), and as a result they lead to the
proof of Theorem 1. For any s ≥ 0, we denote the unique solution of (2.17)
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by β̂ = β̂(s), which is continuous in s; uniqueness is due to the convexity of∑p
j=1 |βj | and the strict convexity of L(β). Throughout, we use the hat notation

to designate a solution of (2.16), equivalently (2.17). For any s ≥ 0, let Ns ≡
N (β̂(s)) , {j : β̂j(s) 6= 0} denote the index set of nonzero components of β̂(s).
Our goal is to show that the nonzero set Ns is also the active predictor set that
determines the CoxLARS path updating direction.

Let β̂ be a solution of (2.16). We show that any non-zero component β̂j

must disagree in sign with the current first-order derivative.

Lemma 2. A LASSO regularized solution β̂ to (2.16) satisfies sign(β̂j) = −sign
(bj(β̂)) for any j ∈ N (β̂).

Let S be an open interval of the s axis, with infimum s, within which the
nonzero set Ns of β̂(s) remains constant, Ns = N for s ∈ S and some N .

Lemma 3. For s ∈ {s} ∪ S, the LASSO regularized estimate β̂(s) of (2.17)
updates along the CoxLARS path updating direction.

Lemma 4. For an open interval S with a constant nonzero set N during the
LASSO regularized path β̂(s) of (2.17), let s = inf(S). Then for s ∈ S ∪{s}, the
first-order derivatives of L(β) at β̂(s) satisfy |bj(β̂(s))| = maxl=1,2,...,p |bl(β̂(s))|
for j ∈ N and |bj(β̂(s))| ≤ maxl=1,2,...,p |bl(β̂(s))| for j 6∈ N .

Let s denote such a point, s = inf(S) as in Lemma 4, with the LASSO
regularized solution β̂ to (2.17), current derivatives bj(β̂) for j = 1, 2, . . . , p,
and maximum absolute derivative D̂(β̂) = maxj=1,2,...,p |bj(β̂)|. Let A1 = {j :
β̂j 6= 0}, A0 = {j : β̂j = 0 and |bj(β̂)| = D̂(β̂)}, and A10 = A1 ∪ A0. Take
β(θ) = β̂ + θd for some vector d ∈ IRp, T (θ) = L(β(θ)), and S(θ) =

∑p
j=1 |β

(θ)
j |.

Let Ṡ(θ) = d
dθS(θ), Ṫ (θ) = d

dθT (θ), and T̈ (θ) = d2

dθ2 T (θ).

Lemma 5. At s, we have

R(d) = − Ṫ (0)
Ṡ(0)

≤ D̂(β̂), (3.1)

with equality only if dj = 0 for j ∈ Ac
10 and sign(dj) = −sign(bj(β̂)) for j ∈ A0.

If so,
T̈ (0) = dT

A10
MA10,A10(β̂)dA10 . (3.2)

Lemma 5 implies that, at any transition point, the active predictor set of
the LASSO regularized solution to (2.17) is a subset of A10. With the LASSO
regularization, we are minimizing L(β) subject to a constraint on the one norm of
β. In a small neighborhood β̂+θd around β̂, we are minimizing T (θ) subject to an
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upper bound on S(θ). The first part of Lemma 5 implies that the instantaneous
relative changing rate of T (θ) and S(θ) is ≥ −D̂(β̂). For β(θ), its one-norm S(θ)
is increasing in θ as long as −

∑
j∈A1

sign(bj(β̂))dj+
∑

j∈A0
|dj |+

∑
j∈Ac

10
|dj | > 0,

and the best instantaneous relative changing rate is achieved for moving along
β̂ + θd as long as dj = 0 for j ∈ Ac

10 and sign(dj) = −sign(bj(β̂)) for j ∈ A0.
In particular, sign(dj) = −sign(bj(β̂)) for j ∈ A0 requires that the coefficient of
any new active predictor variable should disagree in sign with the corresponding
current first-order partial derivative. This is ensured by Lemma 1 and the “one
at a time” condition.

The second part of Lemma 5 provides second-order information on the rel-
ative change of T (θ) with respect to S(θ). As we only care about direction,
assume Ṡ(0) = −

∑
j∈A1

sign(bj(β̂))dj +
∑

j∈A0
|dj | = 4 for some 4 > 0. Note

that T (θ) ≈ T (0) + Ṫ (0)θ + 1
2 T̈ (0)θ2 + o(θ2). Then we need to find the most

efficient direction d to decrease T (θ) among all possible direction d satisfying∑
j∈A1

sign(bj(β̂))dj +
∑

j∈A0
|dj | = 4 and sign(dj) = −sign(bj(β̂)) for j ∈ A0.

In terms of the second-order information, we need to solve

min dT
AT

10
MA10,A10(β̂)dA10 (3.3)

subject to −
∑
j∈A1

sign(bj(β̂))dj +
∑
j∈A0

|dj | = 4,

sign(dj) = −sign(bj(β̂)) for j ∈ A0

with a fixed 4 > 0 to select the optimal solution updating direction d. It turns
out that the optimal solution to (3.3) is exactly given by our CoxLARS path
updating direction as proved next.

Lemma 6. Our CoxLARS path updating direction (2.8) solves (3.3).

4. Numerical Examples

In this section, we use numerical examples to demonstrate how the extension
CoxLARS works. In our implementation we first calculate t0, then set δt =
−t0/K, where K is some large positive number. In our examples we use K =
2,000. In addition to the transition points tks, we evaluate the solution over
our solution path at a grid of size δt. More specifically, for each piece of our
solution path over [tk, tk+1], we calculate our solution β(t) at t = tk + mδt for
m = 1, 2, . . . , b(tk+1 − tk)/δtc, where bac denotes the integer part of a, even
though the CoxLARS solution paths are defined for any t ∈ [t0, 0].

Example 1. We use a simulated dataset to demonstrate that the true LASSO
regularized solution path is not piecewise linear. We set p = 3 and n = 40. The
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predictor covariates were generated as X ∼ N(0, Σ), where Σ is the variance-
covariance matrix with (i, j)th element 1 if i = j, and 0.9 otherwise. Conditional
on X = (x1, x2, x3)T , the lifetime was generated from model (1.1) with a constant
baseline hazard function h0(y) = 1 and true regression coefficient vector β =
(2,−2, 2.5)T . The censoring time was uniformly distributed over [0, 8] and the
corresponding censoring rate is 32.3%. We applied the CoxLASSO (with a ridge
term γ = 0).

The CoxLASSO solution path is shown by the solid lines in the top left panel
of Figure 2. The dashed straight lines are obtained by connecting the solutions
at the transition points. The true LASSO regularized solution path is clearly
not piecewise linear. The first-order partial derivatives along the CoxLASSO
solution path are shown in the top right panel of Figure 2. The absolute value of
the first-order partial derivatives along the CoxLASSO solution path are shown
in the bottom two panels of Figure 2. with different horizontal axis scales. The
bottom left panel is plotted with respect to the one-norm of β(t) while the right
panel uses t. A straight diagonal line is observed in the bottom right panel since
our CoxLARS ensures that t = −maxj=1,...,p |bj(β(t))|.

Example 2. Here we demonstrate how the Cox-LASSO modification leads to the
CoxLASSO path when γ = 0 and the CoxEN path when γ > 0. We chose n = 200
and p = 12. The predictor covariates X were generated from N(0, Σ), with (i, j)
element of Σ being 1 when i = j, 0.3 when 1 ≤ i, j ≤ 11 and |i−j| = 1, (−0.18)i+1

when j = 12 and 1 ≤ i ≤ 11, and (−0.18)j+1 when i = 12 and 1 ≤ j ≤ 11. Condi-
tional on covariates, the lifetime was generated from model (1.1) with h0(y) = 1
and true coefficient vector given by (−0.8, 1.6,−0.8, 1, 0, 1.5,−1.2, 3, 0, 0, 0, 0.5)T .
The censoring time was generated from Uniform[0, 10] leading to a censoring
rate of 30.5%. In general, the Cox-LASSO modification may not have any effect
and conseqently the CoxLAR and CoxLASSO paths are exactly the same. We
designed Example 2 to show the effect of the Cox-LASSO modification.

CoxLARS solution paths are shown in Figure 3. When γ = 0, solution paths
of the CoxLAR and CoxLASSO are given in the top left and bottom left panels,
respectively. The CoxLAR path shows that coefficient of variable X12 switches
sign between the 9th and 10th transition points. Thus a new transition point is
added to the CoxLASSO solution path, in which the coefficient corresponding to
X12 is kept at zero between the 10th and 13th transition points. When we add
a small ridge term by setting γ = 0.2, the corresponding paths are shown in the
right panels of Figure 3. A similar phenomenon is observed.

Example 3. The primary biliary cirrhosis data were collected in the Mayo Clinic
trial on primary biliary cirrhosis of liver conducted between 1974 and 1984, see
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Figure 2. CoxLASSO path of Example 1: the top left panel plots the
CoxLASSO path β(t) with respect to the one-norm |β(t)|; the top right
panel plots the first-order derivatives bj(β(t)) with respect to |β(t)|; the
bottom left and right panels plot |bj(β(t))| along the CoxLASSO path with
respect to |β(t)| and t, respectively.

Therneau and Grambsch (2001). This study included a total of 424 patients.
Clinical, biochemical, serological, and histological parameters were collected for
each patient. Before the end of the follow-up, 125 patients died. We study
the dependency of the survival time on seventeen covariates: continuous vari-
ables are age (in years), albumin (albumin in g/dl), alk (alkaline phosphatase in
units/litre), bili (serum bilirubin in mg/dl), chol (serum cholesterol in mg/dl),
copper (urine copper in g/day), platelets (platelets per cubic ml/1,000), pro-
thrombin (prothrombin time in seconds), sgot (liver enzyme in units/ml), and
trig (triglycerides in mg/dl); categorical variables are ascites (0 denotes absence
of ascites and 1 denotes presence of ascites), edema (0 denotes no oedema, 0.5
denotes untreated or successfully treated oedema, and 1 denotes unsuccessfully
treated oedema), hepatom (0 denotes absence of hepatomegaly and 1 denotes
presence of hepatomegaly), sex (0 denotes male and 1 denotes female), spiders (0
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Figure 3. CoxLARS paths of Example 2.

denotes absence of spiders and 1 denotes presence of spiders), stage (histological
stage of disease, graded 1, 2, 3, or 4), and treatment (1 for control and 2 for
treatment). See Dickson et al. (1989) for more detailed information.

After excluding patients with any missing value, there are 276 patients. Out
of these 276 patients, 111 died before the end of the follow-up. We standardized
each predictor variable to have mean zero and variance one. CoxLARS was
applied to the standardized data with all seventeen variables included. With
ridge parameter γ = 0, the CoxLAR and CoxLASSO gave the same solution
path, see Figure 4.

5. Discussion

In this work, we have proposed the extension CoxLAR(-ridge) of the LAR to
handle Cox’s proportional hazards model. Our CoxLAR(-ridge) solution paths
are based on ODE systems. Results show that a Cox-LASSO modification on
CoxLAR(-ridge) leads to the exact solution of the corresponding LASSO regular-
ized solution path. As the solution path propagates according to ODE systems,
it allows us to develop a solution path package using efficient ODE solvers.
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Figure 4. CoxLARS path of the PBC data with γ = 0.

LARS is very attractive due to its speed that is possible because the corre-
sponding path is piecewise linear. However when it comes to the Cox’s propor-
tional hazards model, the solution path is not piecewise linear due to the nature
of the log partial likelihood, as demonstrated by Example 1. This makes the im-
plementation of the CoxLARS more difficult. Currently we have implemented the
primitive version of our algorithm using the fourth-order Runge-Kutta method,
which works fairly well. In addition, it is commonly assumed that the regression
coefficients are sparse in the high dimension variable selection literature. Conse-
quently there is not much need for us to compute the whole solution path. A BIC
criterion may be combined as we progress along the solution path to identify an
optimal solution and terminate our solution path algorithm thereafter, as done
in Wu (2011).
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Appendix

Proof of Lemma 1. The new path updating direction defined using the new ac-
tive predictor set A∗ is given by d

dtβA∗(t) = −MA∗,A∗(β(t∗))−1sign(bA∗(β(t∗))).
Using the formula for inverting a block matrix, the j∗th component of our path
updating direction

(
d
dtβ(t)

)
|t∗ is given by

1
η

[
Mj∗,A(β(t∗))MA,A(β(t∗))−1sign(bA(β(t∗))) − sign(bj∗(β(t∗)))

]
, (A.1)

where η = Mj∗,j∗(β(t∗)) − Mj∗,A(β(t∗))MA,A(β(t∗))−1MA,j∗(β(t∗)) > 0 in
that M(β) is positive definite when n > p, and x(j), j = 1, 2, . . . , p are linearly
independent. The first term in (A.1) involves MA,A(β(t∗))−1sign(bA(β(t∗))),
which is exactly the opposite of the path updating direction calculated at t∗

using the old active set A by ignoring the addition of predictor variable j∗.
Consider ignoring the new active variable j∗ and updating path along the

path updating direction evaluated by the old active predictor set A. This leads
to another solution path piece β̄(t) defined by

β̄A(t) = βA(t∗) −
∫ t

t∗
MA,A(β̄(τ))−1sign(bA(β̄(τ)))dτ and β̄Ac(t) = 0

when t is inside a small neighborhood [t∗ − 4t, t
∗ + 4t]. The neighborhood

is chosen such that both solution component β̄j(t) and the first-order partial
derivative bj(β̄(t)) do not change sign for t ∈ [t∗ − 4t, t

∗ + 4t] and j ∈ A.
Consequently when t ∈ [t∗ −4t, t

∗ + 4t],

d

dt
bj(β̄(t)) = −sign(bj(β̄(t))) = −sign(bj(β̄(t∗)))

for j ∈ A due to (2.5) and (2.8). Note that, for t ∈ [t∗ −4t, t
∗ + 4t],

d

dt
bj∗(β̄(t)) =

p∑
j=1

mj∗j(β̄(t))
d

dt
β̄j(t)

= −Mj∗,A(β̄(t))MA,A(β̄(t))−1sign(bA(β̄(t))) (A.2)

due to the definition of β̄(t) (because β̄j(t) = 0 for j 6∈ A and t ∈ [t∗−4t, t
∗+4t]).

Recall that for t ∈ [t∗ − 4t, t
∗], β(t) = β̄(t), and our CoxLARS solution

matches β̄(t) exactly. Note that our CoxLARS definition implies that

|bj∗(β̄(t))| < |bj(β̄(t))| (A.3)
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for any j ∈ A and t ∈ [t∗−4t, t
∗). This means that the predictor variable j∗ has

a smaller absolute value of the first-order partial derivative than active predictors
in A for t ∈ [t∗ −4t, t

∗) and that it catches up with active predictors in A at t∗,
noting the definition of j∗.

Lemma 1 can be proved by contradiction. If our claim is wrong, then[
Mj∗,A(β(t∗))MA,A(β(t∗))−1sign(bA(β(t∗))) − sign(bj∗(β(t∗)))

]
sign(bj∗(β(t∗)))

> 0

due to (A.1) and the fact that η > 0. This means that

Mj∗,A(β(t∗))MA,A(β(t∗))−1sign(bA(β(t∗)))sign(bj∗(β(t∗))) > 1.

The fact that β̄(t) = β(t) for t ∈ [t∗ − 4t, t
∗] implies that there exists some

0 < ε < 4t such that

Mj∗,A(β̄(t))MA,A(β̄(t))−1sign(bA(β̄(t)))sign(bj∗(β̄(t))) > 1 for t ∈ (t∗ − ε, t∗)
(A.4)

due to continuity. By noting (A.2) and d
dtbj(β̄(t)) = −sign(bj(β̄(t))) for j ∈ A

and t ∈ (t∗ − ε, t∗), (A.4) contradicts the conclusion that the predictor variable
j∗ has a smaller absolute value of the first-order partial derivative than active
predictors in A for t ∈ [t∗ −4t, t

∗) and that it catches up with active predictors
in A at t∗. This completes our proof.

Proof of Lemma 2. For any j ∈ N (β̂), taking differentiation of the objective
function in (2.16) with respect βj , we get

∂

∂βj
L(β) + λsign(βj) (A.5)

which has to be equal to zero at β̂ because β̂ is the corresponding optimal
solution. This completes the proof by noting that λ ≥ 0 and, when λ = 0,

∂
∂βj

L(β) = 0 for all j.

Proof of Lemma 3. Note that β̂(s) is the optimal solution to (2.17) and has a
nonzero set Ns that is constant for s ∈ S, say N . Then β̂N (s) also minimizes

L(β̂N ) ,
n∑

i=1

δix
T
iN β̂N −

n∑
i=1

δi log
( ∑

m∈Ri

exp(xT
mN β̂N )

)
+

γ

2
β̂T
N β̂N (A.6)

subject to
−sT

N β̂N = s and sign(β̂j) = −sj for j ∈ N , (A.7)

where sj = sign(bj(β̂(s)), j = 1, 2, . . . , p, denotes the sign of the current first-
order partial derivatives, s = (s1, s2, . . . , sp)T , and the second sign constraint is
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due to Lemma 2. Here xiN is the sub-vector of xi with index in N . Note that the
inequality constraint in (2.17) can be replaced by the constraint

∑p
j=1 |βj | = s

as long as s is less than the one-norm of the full solution argminβ L(β). This
justifies (A.7). Note further that the optimal solution β̂N (s) is strictly inside
the simplex (A.7) since β̂j(s) 6= 0 for j ∈ N and s ∈ S. This, in combination
with the strict convexity of the object function L(β̂N ), implies that the condition
sign(β̂j) = −sj for j ∈ N can be dropped. Consequently β̂N (s) solves

minL(β̂N ) subject to − sT
N β̂N = s.

By introducing a Lagrange multiplier λ, we get

∂

∂β̂N
L(β̂N ) − λsN , (A.8)

which is equal to 0 at β̂N = β̂N (s) because β̂N (s) is the corresponding optimal
solution.

Now consider two different values s(1) and s(2) in S with s < s(1) < s(2). The
corresponding Lagrange multiplier are denoted by λ(1) and λ(2), and they satisfy
λ(1) > λ(2). Putting them into (A.8) and differencing, we get

∂

∂β̂N
L(β̂N )

∣∣∣
β̂N (s(2))

− ∂

∂β̂N
L(β̂N )

∣∣∣
β̂N (s(1))

= (λ(2) − λ(1))sN . (A.9)

Note that β̂N c(s) = 0 for any s ∈ S. Thus (A.9) is the same as

bN (β̂(s(2))) − bN (β̂(s(1))) = (λ(2) − λ(1))sN . (A.10)

Dividing both sides of (A.10) by s(2) − s(1) and letting s(2) → s(1), we get

d

ds
bN (β̂(s))

∣∣∣
s(1)

= λ′(s(1))sN , (A.11)

where λ′(s) = d
dsλ(s) < 0. Noting that d

dsb(β̂(s)) = M(β̂(s)) d
ds β̂(s), β̂N c(s) = 0

for s ∈ S, (A.11) becomes MN ,N (β̂(s(1))) d
ds β̂N (s)

∣∣
s(1) = λ′(s(1))sN , which leads

to d
ds β̂N (s)

∣∣
s(1) = λ′(s(1))(MN ,N (β̂(s(1))))−1sN . Noting that λ′(s) < 0, this

shows that for any s ∈ S, the solution of (2.17) progresses along the CoxLARS
path updating direction. It also holds for s due to continuity.

Proof of Lemma 4. Due to (A.5), |bj(β̂(s))| = |bj′(β̂(s))| for any j, j′ ∈ N .
Thus it is enough to prove that |bl(β̂(s))| ≤ |bj(β̂(s))| for any l 6∈ N , j ∈ N ,
s ∈ S ∪ {s}. We this first for s ∈ S, by contradiction. Suppose there is some
j∗ 6∈ N and some s∗ ∈ S such that

|bj∗(β̂(s∗))| > |bj(β̂(s∗))|. (A.12)
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Let d = (d1, d2, . . . , dp)T with dj = −sign(β̂j(s∗))(= sign(bj(β̂(s∗))), due to
Lemma 2) for j ∈ N , dj∗ = −nN sign(bj∗(β̂(s∗))), and dj′ = 0 for j ∈ (N∪{j∗})c,
where nN denote the size of N .

Consider L(β̂(s∗) + ud) as a function of u. Its derivative is given by

d

du
L(β̂(s∗) + ud) =

p∑
j=1

bj(β̂(s∗) + ud)dj + O(u). (A.13)

When u = 0, the right side of (A.13) becomes

nN |bj(β̂(s∗))| − nN |bj∗(β̂(s∗))| < 0, (A.14)

where j ∈ N , and negativity is due to (A.12). Note that minj∈N |β̂j(s∗)| > 0 since
s∗ ∈ S. When 0 < u < minj∈N |β̂j(s∗)|,

∑p
j=1 |β̂j(s∗)| =

∑p
j=1 |β̂j(s∗) + udj |,

noting the above definition of d. However, (A.14) contradicts the fact that β̂(s∗)
is an optimal solution to (2.17). This proves our claim for s ∈ S. Our claim
holds at s simply due to continuity.

Proof of Lemma 5. Note that Ṡ(0) = −
∑

j∈A1
sign(bj(β̂))dj +

∑
j∈A0

|dj | +∑
j∈Ac

10
|dj | due to Lemma 2 and Ṫ (0) =

∑
j∈A1

bj(β̂)dj +
∑

j∈A0
bj(β̂)dj +∑

j∈Ac
10

bj(β̂)dj . Thus, due to Lemma 4 and the above definition of A0, we have

R(d) , − Ṫ (0)
Ṡ(0)

=D̂(β̂)
−

∑
j∈A1

sign(bj(β̂))dj −
∑

j∈A0
sign(bj(β̂))dj −

∑
j∈Ac

10
djbj(β̂)/D̂(β̂)

−
∑

j∈A1
sign(bj(β̂))dj +

∑
j∈A0

|dj | +
∑

j∈Ac
10
|dj |

,

which is analogous to Equation (5.40) of Efron et al. (2004). It is enough to
consider all d satisfying −

∑
j∈A1

sign(bj(β̂))dj +
∑

j∈A0
|dj | +

∑
j∈Ac

10
|dj | > 0,

which corresponds to Ṡ(0) > 0. Thus we need djsign(bj(β̂)) ≤ 0 for j ∈ A0∪(Ac
10)

in order to maximize R(d). In this case we have

R(d) = D̂(β̂)
−

∑
j∈A1

sign(bj(β̂))dj +
∑

j∈A0
|dj | +

∑
j∈Ac

10
|dj | |bj(β̂)|

D̂(β̂)

−
∑

j∈A1
sign(bj(β̂))dj +

∑
j∈A0

|dj | +
∑

j∈Ac
10
|dj |

, (A.15)

which is < D̂(β̂) unless dj = 0 for j ∈ Ac
10, since |bj(β̂)| < D̂(β̂) for j ∈ Ac

10.
This proves (3.1). In this case a second order Taylor expansion leads to (3.2).

Proof of Lemma 6. The positive definiteness of MA10,A10 implies that (3.3) is
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equivalent to

min dT
AT

10
MA10,A10(β̂)dA10 (A.16)

subject to −
∑
j∈A1

sign(bj(β̂))dj +
∑
j∈A0

|dj | ≥ 4

sign(dj) = −sign(bj(β̂)) for j ∈ A0.

For (A.16), we combine the two constraints and solve the simpler version

mindT
AT

10
MA10,A10(β̂)dA10 subject to −

∑
j∈A1

sign(bj(β̂))dj −
∑
j∈A0

sign(bj(β̂))dj

≥ 4. (A.17)

Afterward, we show that the solution to (A.17) satisfies the sign constraint in
(A.16). By introducing a Lagrange multiplier for (A.17), we solve

mindT
AT

10
MA10,A10(β̂)dA10 + λ

(
−

∑
j∈A1

sign(bj(β̂))dj −
∑
j∈A0

sign(bj(β̂))dj −4

)
.

(A.18)
Differentiating the objective function in (A.18) with respect to dA10 and solving
for dA10 , we get the optimal solution (λ/2)(MA10,A10(β̂))−1sign(bA10(β̂)), which
is exactly the same as our CoxLARS path updating direction, noting that the
Lagrange multiplier λ < 0. Note that the “one at a time” condition implies that
A0 is a singleton. Consequently, this optimal solution satisfies the sign constraint
in (A.16) due to Lemma 1.

Proof of Theorem 1. Theorem 1 can be proved by induction as in Efron et al.
(2004), by noting that Lemmas 2−5 are extensions of Lemmas 7−10 of Efron et al.
(2004), which are the key results for establishing that the LASSO modification
leads to the LASSO solutions, and parallel extensions of their Constraints 1−4
on page 437 are straightforward. We skip these details.
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