
7260–7269 Nucleic Acids Research, 2015, Vol. 43, No. 15 Published online 17 July 2015

doi: 10.1093/nar/gkv708

Elastic network models for RNA: a comparative
assessment with molecular dynamics and SHAPE
experiments

Giovanni Pinamonti, Sandro Bottaro, Cristian Micheletti and Giovanni Bussi*

Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 265, Via Bonomea

I-34136 Trieste, Italy

Received April 08, 2015; Revised June 23, 2015; Accepted June 30, 2015

ABSTRACT

Elastic network models (ENMs) are valuable and ef-

ficient tools for characterizing the collective inter-

nal dynamics of proteins based on the knowledge of

their native structures. The increasing evidence that

the biological functionality of RNAs is often linked

to their innate internal motions poses the question

of whether ENM approaches can be successfully ex-

tended to this class of biomolecules. This issue is

tackled here by considering various families of elas-

tic networks of increasing complexity applied to a

representative set of RNAs. The fluctuations pre-

dicted by the alternative ENMs are stringently val-

idated by comparison against extensive molecular

dynamics simulations and SHAPE experiments. We

find that simulations and experimental data are sys-

tematically best reproduced by either an all-atom or

a three-beads-per-nucleotide representation (sugar-

base-phosphate), with the latter arguably providing

the best balance of accuracy and computational com-

plexity.

INTRODUCTION

Characterizing the functional dynamics of RNA molecules
is one of the key standing issues in molecular biology. The
interest in this topic is spurred by the ongoing discovery of
ever new biological roles that RNAs can have in different
contexts (see, e.g. (1) for a recent review) and, at the same
time, by the realization that the structure → function re-
lationship of these molecules is often related to their in-
ternal dynamics (2). In this respect, theoretical approaches
hold much potential for complementing experiments and
provide valuable quantitative insight into the functional dy-
namics of RNAs. For instance, molecular dynamics (MD)
simulations with atomistic force �elds have been used to re-
produce experimental measurements and aid their interpre-
tation (see, e.g. (3–9)). However, it may be argued that one

of the most important limitations to the systematic use of
atomistic MD simulations for characterizing the behavior
of RNA is their intensive computational demand. In fact,
most if not all current MD studies are still limited to the �s
timescale.
For this reason, several efforts are being spent toward

developing coarse-grained approaches capable of striking
a good balance between accuracy and computational ef�-
ciency (see, e.g. (10–17)). In this respect, it should be noted
that coarse-grained models are valuable not only because
they are amenable to extensive numerical characterization,
but precisely because their simpli�ed formulation can offer
important insight into the main physico-chemical mecha-
nisms that underpin the behavior and properties of a given
biomolecule.
For proteins, a successful class of such simpli�ed mod-

els are elastic networks. These models were originally moti-
vated by the seminal work of Tirion (18) who showed that
the Hessian of the potential energy of a globular protein
computed from an atomistic force �eld could be reliably
reproduced by replacing the detailed inter-atomic forces
by spring-like, harmonic interactions. This remarkable fact
was rationalized a posteriori in terms of the large-scale char-
acter that low-energy �uctuations have in proteins, which
makes them amenable to be captured with models that are
oblivious of the details of the potential (19–23). This ob-
servation, in turn, prompted further development of sim-
pli�ed harmonic models where the structural descriptions
themselves were simpli�ed by reducing the number of inter-
action centers, also termed beads. In their simplest formula-
tion, elastic networkmodels (ENMs) incorporate harmonic
interactions between pairs of C� beads (19,21–22,24) while
two-beads amino acid representations, e.g. for the main-
and side-chains (22), can predict structural �uctuations in
very good accord with atomistic MD simulations (25).
By comparison with proteins, the development and ap-

plication of elastic networks aimed at nucleic acids is still
relatively unexplored. Bahar and Jernigan �rst applied net-
work models to the conformational dynamics of a trans-
fer RNA using a model with two beads per nucleotide (26).
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Several authors further simpli�ed this model using a sin-
gle bead placed on the phosphorus atom (27–33). More re-
cently, Setny and Zacharias suggested that the best candi-
date to host a single ENM bead is the center of the ribose
sugar in the backbone (34). Other ENMs with more beads
per nucleotide have also been used (24,28,33,35). Most of
these studies assessed the validity of different representa-
tions by focusing on their capability to reproduce either
the structural variability observed across experimental con-
formers or the Debye–Waller factors from X-ray experi-
ments. ENM�uctuations were also compared with accurate
atomistic MD simulations, but the comparison was either
limited to short timescales (29) or to model simple double
helices (34).

Toward the goal of identifying the most suitable RNA
ENM, here we assess the performance of an extensive reper-
toire of ENMs which are all equally viable a priori. These
models, in fact, differ for the speci�c single- or multi-bead
representations used for each nucleotide, as well as for the
spatial range of the pairwise elastic interactions. As strin-
gent term of reference we perform �s timescale atomistic
MD simulations on RNA molecules containing canonical
A-form double helices as well as nontrivial secondary and
tertiary structures. Additionally, we introduce a procedure
to compare �uctuations with selective 2′-hydroxyl acyla-
tion analyzed by primer extension (SHAPE) experiments
(36,37). SHAPE reactivity is empirically known to corre-
late with base dynamics and sugar pucker �exibility at the
nucleotide level (38) and hence is, in principle, well suited
for validating predictions of RNA internal dynamics. Re-
cently, Kirmizialtin et al. have proposed a link between �uc-
tuations of selected torsional angles and SHAPE reactiv-
ity and used SHAPE data as an input to improve the ac-
curacy of force-�eld terms in an atomistic structure-based
(Go-like) model (39). However, to the best of our knowl-
edge, the present study is the �rst attempt of using SHAPE
reactivity measurements to assess the predictive accuracy of
three-dimensional coarse-grained models or atomistic MD
simulations.
We �nd that the best balance between keeping the model

complexity to a minimum and yet have an accurate descrip-
tion of RNAs’ internal dynamics is achieved when each nu-
cleotide is described by three beads representing the sugar,
the base and the phosphate (SBP) groups. Slightly better
results can be obtained using the much more computation-
ally demanding all-atom (AA) model. As a matter of fact,
the SBP and AA ENMs can reproduce to a very good accu-
racy the principal structural �uctuations as predicted from
�s-long atomistic MD simulations, both in their directions
and relative amplitudes. Additionally, they provide a satis-
factory proxy for the nucleotide-level �exibility as captured
by experimental SHAPE data.

MATERIALS AND METHODS

RNA dataset

We performed atomistic MD simulations on four different
RNAmolecules (Figure 1). These systemswere chosen so as
to cover a variety of size and structural complexity and yet
be amenable to extensive simulations, as detailed in Table 1.

Figure 1. Secondary structures of the four molecules studied: A: eight-
base-pairs duplex; B: sarcin-ricin domain; C: hammerhead ribozyme; D:
add adenine riboswitch.

Table 1. RNA dataset: details and length of MD simulations

System PDB code
Chain
length

Simulation
time (�s)

Duplex 1EKA 16 1.0
Sarcin-ricin domain 1Q9A 25 0.9
Hammerhead ribozyme 301D 41 0.25
add riboswitch 1Y26 71 0.25
thiMriboswitch 2GDI 78 N.A.

For the thiM riboswitch, no MD was performed.

The �rst entry is the NMR-derived model of the GAGUGCUC

CUCGUGAG

RNA duplex, featuring two central G-UWobble pairs (40).
As a second system, we considered the sarcin-ricin domain
(SRD) from Escherichia coli 23S rRNA, which consists of a
GAGA tetraloop, a �exible region with a G-bulge and a du-
plex region (41). TheU nucleobase at the 5′ terminal was ex-
cised from the high-resolution crystal structure. We further
considered two more complex molecules: the hammerhead
ribozyme (42) and the add adenine riboswitch (43). Both
systems are composed of three stems linked by a three-way
junction. In the add riboswitch, two hairpins are joined by
a kissing loop interaction. All these systems, except for the
duplex, were previously characterized by various computa-
tional means, including atomistic MD simulations (29,44–
49).

MD simulations

All MD simulations were performed using GROMACS
4.6.7 (50) with the AMBER99 force �eld (51) including
parmbsc0 (52) and �OL3 (53) corrections. GROMACS pa-
rameters can be found at http://github.com/srnas/ff. The
trajectories were obtained in the isothermal-isobaric ensem-
ble (T= 300K,P= 1 atm) with stochastic velocity rescaling
(54) and Berendsen barostat (55). Long range electrostat-
ics were treated using particle-mesh-Ewald summation (56).
The equations of motion were integrated with a 2 fs time
step. All bond lengths were constrained using the LINCS
algorithm (57). Na+ ions were added in the box in order
to neutralize the charge, and additional Cl− and Na+ at a
concentration of 0.1M. AMBER-adapted parameters were
used for Na+ (58) and Cl− (59). The adenine ligand bound
to the add riboswitch was parametrized using the general
Amber force �eld (gaff) (60) and partial charges were as-
signed as discussed in reference (48). The analyses of the
hammerhead ribozyme and of the add riboswitch trajecto-
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ries were performed after discarding the �rst 10 ns and 5 ns,
respectively.

Elastic Networks

In ENMs a simpli�ed structural representation is achieved
by representing anymonomeric unit of the biopolymer with
one or more beads. Accordingly, the model potential en-
ergy is equivalent to the one of a set of N beads connected
by pairwise harmonic springs which penalize deviations of
inter-bead distances from their typical, reference values.
Thus, the elastic network does not directly restrain the ab-
solute positions of the beads but only their distances. In the
simplest formulation, the spring constant of the harmonic
pairwise interaction is set equal to a master spring constant
k whenever the reference distance between the two beads is
smaller than a pre-assigned interaction cutoff (Rc), and set
to zero otherwise.
The potential energy of the system can be approximated

to second order as

U(δri,µ, δr j,ν) ≈
1

2
δri,µMi j,µνδr j,ν (1)

where the 3N × 3N symmetric matrix,M, is the Hessian of
U, and �ri, � is the � Cartesian component of the deviation
of bead i from its position in the reference structure.

Repertoire of possible elastic networks for RNAs. In pro-
tein contexts, the standard formulation of ENMs is based
on the intuitive amino acid representation with primary
interaction centers located on the mainchain (e.g. the C�

atoms) and possibly auxiliary ones for the sidechains (22).
By analogy with the case of proteins, one may expect that
the primary ENM interaction centers could be the phos-
phate groups, which provide the backbone connectivity for
single RNA strands (27–33). Besides this possibility, we
here investigated alternative representations considering all
possible ENM combinations based on the use of one or
more interaction centers representing the three chemical
groups of each nucleotide: the SBP (in short S, B and P, re-
spectively). Each group is represented by a speci�c atom,
namely C1′ for the sugar, C2 for the base and P for the
phosphate group. This selection follows from the customary
coarse-graining choices previously adopted in various con-
texts (10), including elastic networks (24,33–35). For each
model the interaction cutoff distance, Rc, is varied in the
3–30 Å range with 1 Å increments so as to assess the depen-
dence of the predictions on the degree of connectivity of the
elastic network.

Reference structure. For each RNA dataset entry, the ref-
erence structure for ENM calculations is set equal to the
centroid structure of the associated MD trajectory. This is
the conformer with the lowest averagemean square distance
from all MD-sampled structures after an optimal rigid
structural alignment (61). In the case of the add riboswitch,
the adenine ligand atoms are included in the ENM calcula-
tion.

Comparison of ENMs and MD

For a detailed and stringent comparison of ENM and MD
we shall consider the covariance matrix, which provides
information on the structural �uctuations at equilibrium.
The MD covariance matrix entries are de�ned as CMD

i j,µν =

〈δri,µδr j,ν〉 , with δri,µ = (ri,µ − 〈ri,µ〉) where i and j run
over the N indexed interaction centers, µ and ν run over
the Cartesian components and 〈〉 denotes the time average
over the sampled conformations after an optimal structural
superposition over the reference structure. When compar-
ing with a coarse-grained ENM, the structural alignment
and the calculation of CMD are both performed by exclu-
sively considering the same atom types used as beads in the
ENM. For ENM, the covariance matrix is obtained from
the pseudoinverse M̃−1 of the interaction matrix de�ned in

Equation (1), as CENM
i j,µν = kBTM̃

−1
i j,µν . Here kB is the Boltz-

mann constant and T is the temperature. We observe that
the kBT term is here required to allow the absolute covari-
ance matrix to be properly related to the spring stiffness k.
However, since in all the comparisons discussed below we
always consider a multiplicative term in the covariance ma-
trix as a parameter for the �tting procedures, the values of
both kBT and k are never used in practice.

Effective Interaction Matrix. When comparing different
ENMs onemust consider only themodes related to the �uc-
tuations of the degrees of freedom in common between the
models. To achieve this, it is necessary to separate the de-
grees of freedom of the beads of interest (with subscript
a in the following) from the others (with subscript b in
the following) and compute the effective interaction ma-
trix of the former (23,62–64). This is accomplished by for-
mally recasting the interaction in the following block form

M=

(

Ma W
WT Mb

)

whereMa andMb are the interaction ma-

trices of the two subsystems, while W represents the inter-
actions between them. The effective interaction matrix gov-
erning the dynamics of subsystem a alone is

Meff
a = Ma − WM−1

b WT (2)

For a detailed derivation of this equation see (63).Using this
effective matrix one can compute the �uctuations relative to
the subsystem considered.

Measures of similarity between essential spaces. The com-
parison of the essential dynamical spaces of ENM and
MD simulations is here carried out by considering two
quantities, namely the Pearson correlation of mean square
�uctuation (MSF) pro�les and the similarity between the
eigenspaces of covariance matrices.
The MSF of a given center, i, can be obtained in the

MD simulation by time-averaging the mean square dis-
placements. Similarly, in ENMs they are given by MSFi =

〈δr 2i 〉 = kBT
∑3

µ=1 M̃
−1
i i,µµ. We remark that the amplitudes

of �uctuations are known to be inversely correlated to the
local density, that is the number of neighboring centers (65).
We also recall that the MSF pro�le is computed after car-
rying out an optimal global structural superposition of all
sampled conformers. As a consequence, the MSF of any
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given center depends not only on the local structural �uc-
tuations but on the global intra-molecular ones too.
The accord of two covariance matrices, A and B, can be

measured more directly by comparing their essential dy-
namical spaces, identi�ed by the set of their eigenvectors
{vA} and {vB} and eigenvalues {�A}, {�B}. A stringent mea-
sure of this consistency is the root weighted square inner
product (RWSIP) (66)

RWSIP =

√

√

√

√

∑3N
i, j=1 λA,iλB, j (v

i
A · v

j
B)

2

∑3N
i=1 λA,iλB,i

(3)

which takes on values ranging between 1, when the two
ranked dynamical spaces coincide, and 0, when they are
completely orthogonal.
The statistical signi�cance of both the MSF correlation

and the RWSIP is assessed by using two terms of reference.
The �rst one is given by the degree of consistency of the
MSF or RWSIP for �rst and second halves of the atom-
istic MD trajectories. This sets, in practice, an upper limit
for very signi�cant correlations of the observables. The sec-
ond one is the degree of consistency of the random elastic
network of Setny et al. (34) with the reference MD simu-
lations. This is a fully connected elastic network where all
pairs of beads interact harmonically though, for each pair,
the spring constant is randomly picked from the [0, 1] uni-
form distribution. Because this null ENM does not encode
properties of the target molecule in any meaningful way, it
provides a practical lower bound for signi�cant correlations
between ENMs and MD simulations.

Comparison with SHAPE data

To compare the �uctuations frombothENMs andMDsim-
ulations with data from SHAPE experiments we here scru-
tinize several order parameters that, a priori could be vi-
able proxies for SHAPE reactivity data, namely: i) the vari-
ance of the distance between selected pairs of beads and ii)
the variance of the angle between selected triplets of beads.
The variance of each distance and angle as obtained from
MDwas compared with the SHAPE reactivity of the corre-
sponding nucleotide for the add riboswitch taken from (67).
Distances and angles were computed using PLUMED (68).
In the ENM framework, the variance of the distance be-

tween two beads can be directly obtained from the covari-
ance matrix in the linear perturbation regime as

σ 2
di j

=

3
∑

µ,ν=1

d̃
µ

i j d̃
ν
i j

d̃2
(Ci i,µν + C j j,µν − Ci j,µν − C j i,µν) (4)

where d̃
µ

i j is the � Cartesian component of the reference dis-

tance between bead i and j.
When comparing ENM and SHAPE we also considered

the experimental data relative to the thiM thiamine py-
rophosphate riboswitch published in (67). For this molecule
no reference MD simulation was performed and ENMs
were computed directly on the crystal structure (PDB code:
2GDI) (69).

Figure 2. Schematic representation of the beads used to construct the
ENM. The three atoms used as beads are the C2 carbon in the base, the
C1′ carbon in the sugar ring and the P atom in the phosphate group, as
indicated by labels.

Table 2. Summary of the tested ENMs

ENM C1′ C2 P Others Best Rc (Å)
Number of
neighbors

P � 20 15.3
S � 15 9.9
B � 17 14.8
SP � � 19 30.4
BP � � 18 29.9
SB � � 11 15.4
SBP � � � 9 12.0
AA � � � � 7 52.9

For each model, the adopted beads are marked. AA include all heavy
atoms. Values of the cutoff radius (Rc) that maximize the RWSIP and av-
erage number of neighbors are also shown.

RESULTS

For the comparative validation against MD and SHAPE
data we consider eight different types of elastic networks, as
summarized in Table 2. A subset of the considered models
have been previously used in different contexts (24,33–35).
With the exception of the AA model, all other ENMs will
be referred to with the one-, two- and three-letter acronyms
corresponding to which of the phosphate (P), sugar (S)
or base (B) interaction centers are used, see Figure 2. We
also tested ENMs with a higher number of beads (see Sup-
plementary Figure S1 for an example). All the considered
ENMs feature a sharp-cutoff interaction scheme (as ex-
plained in the Materials and Methods section). Using a
distance-dependent elastic constant yields similar results
(Supplementary Figure S2 for details).

Comparison of ENMs and MD

The consistency of ENM andMD simulations was assessed
by computing the Pearson correlation coef�cient (R) for the
MSF pro�les and the RWSIP for the essential dynamical
spaces. To keep the comparison as simple and transparent
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as possible, each measure was computed separately for the
S, B and P interaction centers. For multi-center ENMs this
required the calculation of the effective interaction matrix
(Equation (2)). Using as a reference the experimental struc-
ture in place of the MD centroid introduces only minor dif-
ferences in the results, see Supplementary Figure S3. Each
measure was then averaged over the four systems in Ta-
ble 1 (see Supplementary Figure S4 for non-averaged val-
ues). The results, shown in Figure 3, are pro�led as a func-
tion of the elastic network interaction cutoff distance, Rc.
The smallest physically viable value for Rc, that is the ab-
scissa of the left-most point of the curves, is the minimum
value ensuring that the ENMzero-energymodes exclusively
correspond to the six roto-translational modes.
The main feature emerging from Figure 3 is that, across

the various models, the highest consistency with MD is at-
tained when Rc is marginally larger than its smallest physi-
cally viable value. It is also noted that the minimum value of
Rc varies signi�cantly across the models: for the AAmodel,
which is the most detailed ENM, it is as low as 4 Å, while
for the single-bead ones it is often larger than 10 Å. The
MSF andRWSIP accord both decrease systematically asRc

is increased starting at the optimal value. This fact, which to
our knowledge has not been reported before, can be ratio-
nalized a posteriori by considering that upon increasing Rc,
one endows the network with harmonic couplings among
nucleotides that are too far apart to be in direct physical
interaction, and this brings about a degradation in model
performance.
Furthermore, it is noted that the detailed, but also com-

putationally more onerous, AAmodel is consistently in bet-
ter accord with MD data than any of the coarse-grained
ENMs. For this model, the degree of ENM–MD consis-
tency is practically as high as the internal MD consistency
at the optimal value Rc ≈ 7 Å, or even higher in some cases.
As a general trend, we notice that the accord between MD
and ENMs decreases for coarser models (see also Supple-
mentary Figure S5 for models including two beads per nu-
cleotide). Importantly, the AA and SBP models perform
well not only on average but for each considered struc-
ture, whereas the performance ofmodels with fewer interac-
tions centers is less consistent across the repertoire of RNA
molecules, see Supplementary Figure S4. For all models,
considering the optimal value of Rc both MSF and RWSIP
accord are signi�cantly higher than for the null model, indi-
cating that all the ENMs are overall capable to capture the
salient physical interactions of the system.
It is important to mention here that in the MD simula-

tion of the duplex we observed a fraying event at time ≈670
ns (see Supplementary Figure S6), followed by a re-zipping
into the native structure. As a matter of fact, fraying events
are expected at RNA termini on the �s timescale covered
by our simulations (70). In spite of the fact that these events
are clearly out of the linear perturbation regime where one
would expect ENMto properly predict �uctuations, the cor-
relation between MD and ENM is reasonably high. By re-
moving from the analysis the highly �uctuating terminal
base pairs, the correlation is further improved (Supplemen-
tary Figure S7).
In Table 2 we summarize all the results for the optimal

cutoff radius, determined as the radius that maximizes the

Table 3. RWSIP between 100 ns trajectories at different NaCl concentra-

tions and the 500 ns trajectories at 0.1 M

Molecule 0.0 M 0.1 M 0.5 M 1.0 M

Duplex 0.938 0.998 0.991 0.990
SRD 0.983 0.983 0.982 0.993

For the duplex, only the �rst half of the 1�s trajectorywas considered, thus
discarding the contribution of the base fraying event (see Supplementary
Figure S6).

RWSIP. The last column of the table reports the average
number of neighbors of a bead, that is the number of other
beads at distance smaller than Rc from it.

Effect of ionic strength. One standing question for RNAs,
that is relevant also for ENM development (33), is whether
and how the internal dynamics of these biomolecules is af-
fected by the concentration and type of counterions in solu-
tions. These parameters, in fact, modulate the screening of
the electrostatic self-repulsion of RNA backbone and are
indeed often used to arti�cially induce RNA unfolding. Be-
cause current formulations of ENMs, including those con-
sidered here, do not explicitly account for electrostatic ef-
fects, and thus intrinsically provide results that are inde-
pendent of the ionic strength, it is important to ascertain
to what extent changes of ionic strength would affect the
collective internal dynamics of the considered RNAs.
To clarify this point, we carried out MD simulations

at different nominal concentrations of monovalent salt
Na+/Cl−. The consistency of the essential dynamical spaces
observed in simulations based on different salt concentra-
tions wasmeasured with theRWSIP. Only the C2, C1′ and P
atoms were considered for computing the essential dynam-
ical spaces.
As summarized in Table 3, the essential dynamical spaces

are very consistently preserved over a wide range of ionic
strengths. This �nding complements a recent study of Virta-
nent et al. (71) where the electrostatic free energy was shown
to be minimally affected by ionic strength. In the present
context, the result justi�es the use of RNA elastic networks
with no explicitly treatment of the ionic strength. It is how-
ever important to note that our test was limited to mono-
valent cations. The treatment of divalent cations is known
to be very challenging because of force-�eld limitations and
sampling dif�culties.
We �nally notice that in our simulations with standard

AMBER ions we did not observe any ion-crystallization
event (72). For maximum robustness we tested the alterna-
tive ion parameterization by Joung and Cheatham (73), ob-
taining very similar results.

Comparison with SHAPE data

To complement the validation of ENM against MD, we as-
sessed their consistency with experimental data too. To this
purpose we considered data obtained from SHAPE experi-
ments, which probe RNA structural �uctuations at the nu-
cleotide level (38). One standing challenge is that it is not
yet settledwhich simple structural or dynamical observables
can be used as viable proxies for the SHAPE intensities. To
tackle this elusive problem, we �rst set out to analyze the
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Figure 3. Agreement betweenMD simulations and ENM for different radii of cutoff. Correlation betweenMSF (upper panels) and RWSIP (lower panels).
Values at the optimal cutoff values are represented by circles. A: phosphate beads; B: sugar beads; C: nucleobase beads. The gray regions correspond to
values below the random-network model or above the MD self-agreement.

MD simulations so as to identify the local �uctuations that
best correlate with SHAPE data. Speci�cally, we compared
our MD simulation and available SHAPE data for the add
riboswitch (67). A related comparison based on B-factor
pro�les, which are commonly used to validate ENM pre-
dictions (albeit with known limitations (25)) is provided in
Supplementary Figure S8.
As it emerges from Figure 4A, the best correlation with

experimental SHAPE reactivity was found for the �uctua-
tions of the distance between consecutive C2 atoms (R =
0.88). This is remarkable, since the SHAPE reaction does
not explicitly involve the nucleobases. These �uctuations
are shown, as a function of the residue index, in Figure 5.
The result can be interpreted by considering that most of
the structural constraints in RNA originate from base–base
interactions, and �uctuations in base–base distance are re-
quired for backbone �exibility. The �uctuations of the an-
gle O2′-P-O5′ instead showed a poor correlation with ex-
perimental SHAPE data (R = 0.05). We notice here that
the value of this angle has been shown to correlate with
RNA stability related to in-line attack (74), and its �uc-
tuations were recently used in the SHAPE-FIT approach
to optimize the parameters of a structure-based force �eld
using experimental SHAPE reactivities (39). We also ob-
serve that the �uctuations of the distance between consec-
utive C2 atoms could be correlated with ribose mobility,
which in turn depends on sugar pucker (75,76). Interest-
ingly, C2′-endo conformations have been shown to be over-
represented among highly reactive residues in the ribosome
(38). A histogram of C2-C2 distances for selected sugar
puckers is shown in Supplementary Figure S9, indicating
that C2′-endo conformations correspond to a larger vari-

ability of the C2-C2 distance. In conclusion, although the
scope of the present SHAPE pro�les comparison could be
affected by the limited accuracy or precision of both exper-
imental and MD-generated data, the obtained results sug-
gest that a good structural determinant for SHAPE reactiv-
ity is arguably provided by base–base distance �uctuations.
In Supplementary Figure S10 we show this comparison us-
ing a non-parametric measure of correlation.
Based on this result, we next quanti�ed to which extent

the ENMs are able to reproduce the pro�le of �uctuations
of the C2-C2 distance. This test complements the assess-
ment made using MSF and RWSIP, which mostly depends
on the agreement of large-scale motions and does not im-
ply a good performance in the prediction of local �uctua-
tions. This comparison is presented in Figure 4B where the
ENM–MDPearson correlation coef�cients for each consid-
ered ENM are summarized.
We remark here that the duplex (1EKA) is undergoing

a base fraying, so that MD exhibits very large �uctuations
at one terminus (see Supplementary Figure S6). The over-
all accord between MD and ENM is moderately good, al-
though signi�cantly worse than the accord with the large-
scale motions presented before. Overall, it is seen that the
both the SBP model and the AA models provide the best
agreement.
In the following, we thus test whether the SBP and AA

models are capable of reproducing SHAPE reactivities di-
rectly, without the need for an expensive MD simulation to
be performed. ENM and SHAPE data were compared for
two different molecules, namely the aforementioned add ri-
boswitch and the thiM riboswitch.
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Figure 4. A: Pearson correlation coef�cientR, computed between SHAPE
reactivities and the �uctuations of different distances (light grey), and an-
gles (dark grey), computed from the MD trajectory of the add riboswitch.
Residue indexes are shown in Supplementary Figure S10; B: correlation
between the �uctuations of the distance of consecutive C2 atoms, from the
MD simulation and from the different ENMs.

As we can see from Figure 5 the predictions of ENM are
in qualitative agreement with the SHAPE data. In partic-
ular, high SHAPE reactivity in the loop and junction re-
gions correspond to highly �uctuating beads, both for the
add and thiM riboswitch.We notice that this agreement goes
beyond the mere identi�cation of the residues involved in
Watson–Crick or wobble pairings (77), as there appear sev-
eral unpaired bases with a low SHAPE reactivity. This fea-
ture seems to be often correctly reproduced by the C2-C2
�uctuations pro�le. By visual inspection, it can be seen that
non-reactive, non-paired bases often engage non-Watson–
Crick base pairs as well as stacking interactions, as shown
in Supplementary Figure S11. The Pearson correlation co-
ef�cients are summarized in Table 4. In this case too, it
is found that the AA ENM performs better than the SBP
ENM which, nevertheless, is much less demanding compu-
tationally because of its simpler formulation.

DISCUSSION

The development and performance assessment of elastic
networks for RNAs have so far been pursued in two main
directions. On one hand, Zimmermann and Jernigan (33)
have recently shown that the essential dynamical spaces of
ENMs based on the phosphate representation of RNAs can

Figure 5. Comparison of the �exibility of the add riboswitch (upper panel)
and the thiM riboswitch (lower panel). The SHAPE reactivities (black)
are compared with the C2-C2 �uctuations predicted by the SBP and the
AAmodels. For the add riboswitch, also �uctuations fromMD are shown.
Regions corresponding to residues forming Watson–Crick or wobble base
pairings are shown in gray.

Table 4. Pearson correlation coef�cients between C2-C2 �uctuations pre-

dicted by ENM/MD and SHAPE reactivities

Molecule SBP AA MD

add 0.64 0.76 0.88
thiM 0.37 0.59 N.A.

satisfactorily account for the structural variability observed
across crystal structures homologs. On the other hand,
Setny and Zacharias (34) have considered ENMs where dif-
ferent atoms of the RNA backbone (i.e. sugar and phos-
phate groups only) are alternatively used to represent nu-
cleotides in short RNA duplexes.Within this class of single-
bead ENMs and target RNA structures, it was found that
those based on the sugar-group representation yielded the
structural �uctuations with the best consistency with MD
simulations or nuclear magnetic resonance ensembles (34).
Here, we tackle this standing challenge by searching for

the simplest and yet accurate RNA ENM. We analyze a
comprehensive combinations of (i) interaction centers, or
beads, for each nucleotide and (ii) spatial range of the elas-
tic interaction. In total, we considered eight different types
of ENMs, which are listed in Table 2. For the critical as-
sessment of their performance, we validated the predicted
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structural �uctuations against data from �s-long atomistic
MD simulations as well as from experimental SHAPEmea-
surements. Finally, toward ensuring model transferability,
we considered the four different types of RNA molecules
listed in Table 1 and represented in Figure 1. These sys-
tems cover a signi�cant repertoire of different structural el-
ements such as non-canonical base pairs, bulges, junctions
and tertiary contacts and were selected with two main crite-
ria, namely: �rst, they natively adopt a speci�c fold (i.e. have
a stable tertiary structure, which is a prerequisite for ENM
applicability) and, secondly, they are amenable to extensive
numerical characterization with�s-longMD simulations in
explicit solvent. We notice that the size of the studied sys-
tems is limited only by the MD computational cost, while
the ENM method is straightforwardly applicable to larger
molecules, as it has been done for instance in (28).
In the following we discuss the performance of the vari-

ous models listed in Table 2 starting from those employing
a single-bead nucleotide representation and thenmoving on
to the more detailed, multi-bead ones.
Among the one-bead models the best accord with MD

data is obtained for the S model, where a nucleotide is rep-
resented with the C1′ atom of the sugar moiety. In this case,
when the most appropriate elastic interaction range is used
(see Table 2), the accord of ENM and MD is signi�cantly
larger than the statistical reference (null) case, and not too
much behind the accord of the �rst and second halves of
the MD simulations. This result is consistent with the con-
clusions of the aforementioned recent study of (34) and re-
inforces them from a signi�cantly broader perspective. In
fact, the present assessment is carried out for a wider range
of RNAmotifs and the search of the optimal representative
atom is not limited to the RNA backbone but encompasses
the base too.
In this regard, we note that the model with a single bead

on the C2 atom of the base (B model) reproduces struc-
tural �uctuations less accurately than the S model and the
optimal interaction cutoff is more dependent on the spe-
ci�c molecule, a fact that impairs the transferability of the
model. These shortcomings are even more evident in the P
model, where a nucleotide is represented with the sole phos-
phorous atom. In fact, both the S and B models are better
performing than the P one. The result may be, at �rst, sur-
prising because of the apparent analogy between the phos-
phate representation in RNA and the C� representation
in proteins. The latter is virtually used in all single-beads
ENMs for proteins. However, one should keep in mind a
fundamental distinction of backbone and side-group roles
for the structural organization and stability of these two
types of biopolymers. In fact, whereas for proteins the back-
bone self-interaction (e.g. hydrogen bonding) contributes
signi�cantly to the structural stability, for RNAs the anal-
ogous role is, in fact, played by the bases and not by the
phosphate groups (78,79). In this regard, it is interesting to
recall that RNAs have, in fact, been interpreted as adopt-
ing an ‘inside-out’ organization compared to proteins (80).
This distinction might help rationalize why the P represen-
tation does not serve for RNAENMs equally well as the C�

representation for proteins.
Moving on to two-beads models, we observe that ENMs

employing beads both in the bases and in the backbone

(SB, BP) perform systematically better than any single-bead
model with only a modest increase in the computational
complexity. SB and BP models also outperform the SP
model. We also stress that being able to reproduce the �uc-
tuations of the bases is by itself an advantage because their
functional role is of primary importance in nucleic acids and
their dynamics can affect different aspects of the behavior
of RNA molecules (see, e.g. (3,70,79)).
Increasing the number of beads featured in the ENM

models (see also Supplementary Figure S1 for 5/6-beads
model) improves the agreement with MD, consistently with
what had been observed for proteins (81). The best over-
all accuracy is indeed observed for the AA ENM. We fo-
cused our attention on this model, as well as on the the SBP
model, that uses one bead for each of the sugar, base and
phosphate groups. In fact, the consistency of both models
with MD data is practically as high as the internal consis-
tency of MD itself. We also note that the optimal perfor-
mance of the SBP model is attained when the interaction
cutoff distance is about equal to 9 Å. This is a convenient
feature, as this interaction range falls in the same viable in-
teraction range of elastic networks for proteins (22,25). Fur-
thermore, the typical density of beads in protein ENM is
very similar to the SBPmodel (Table 2). In principle, this al-
lows for the perspective of integration of proteins and RNA
elastic networks to study protein/RNA complexes.

The viability of the SBP and AA models is indepen-
dently underscored by the comparison against experimental
SHAPE data, which are notoriously challenging to predict.
The challenge is at least partly due to the dif�culties of iden-
tifying from a priori considerations structural or dynamical
observables that correlate signi�cantly with SHAPE data.
As a �rst step of the analysis we therefore considered vari-
ous observables computed from atomistic MD simulations
against SHAPE data, and established that the relative �uc-
tuations of consecutive nucleobases provide a viable proxy
for SHAPE data. Our comparative analysis showed that
such �uctuations can be captured well using the SBP ENM,
and to an even better extent with the AA ENM. Possibly,
this is a step in the direction of de�ning a model able to di-
rectly correlate three-dimensional structures with SHAPE
reactivities. Interestingly, both the ENMs are completely in-
dependent from the dihedral potentials and thus should not
be directly affected by the pucker conformation of the ri-
bose. The fact that they can provide a reasonable estimate
of the backbone �exibility as measured by SHAPE reactiv-
ity suggests that the backbone �exibility is mostly hindered
by the mobility of the bases.
In conclusion, ENMs were here compared systematically

with fully atomistic MD simulations and with SHAPE re-
activities. We found that, in spite of their simplistic na-
ture, the three-center (SBP) and AA elastic networks are
capable of properly reproducing both MD �uctuations and
chemical probing experimental data. Of these two accurate
ENMs, the three-centermodel (SBP) provides an ideal com-
promise between accuracy and computational complexity,
given that retaining the full atomistic detail when model-
ing large structures, such as the ribosome and other macro-
molecular RNA/protein complexes, can be computation-
ally very demanding.
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A module that implements the ENM for RNA discussed
in this paper has been included in the baRNAba analysis
tool (http://github.com/srnas/barnaba).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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