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Abstract—Varying the symbol rate is an alternative 

or complementary approach to varying the 

modulation format or the channel spacing, in order 

to turn optical networks into elastic networks. We 

propose to allocate just-enough bandwidth for each 

optical connection by adjusting the symbol rate such 

that penalty originating from long cascades of optical 

filters is contained. This helps reducing over-

provisioning for lightpaths where full capacity is not 

needed, by (i) eliminating unnecessary regenerators 

and (ii) reducing the power consumption of 

terminals, when the clock rate of electronics is 

reduced along with the Baud rate. We propose a 

novel architecture for an elastic optical interface 

combining a variable bitrate transceiver, paired with 

an elastic aggregation stage, with software-defined 

control. We then report a real-time FPGA-based 

prototype, delivering flexible transport frames to be 

sent with a PDM-QPSK modulation format. We 

interconnect this prototype with a commercial OTN 

switch and a centralized controller. We demonstrate 

fast and hitless reconfiguration of the interface and 

measure the reconfiguration time of hardware logic 

(<450µs) as well as end-to-end control and data plane 

(<0.9s). 

 
Index Terms—Elastic Optical Networks; Optical 

communication; Software Defined Networking; 

Flexgrid 

 

I. INTRODUCTION  

he commercial availability of 100G/200G and 400G 

transponder cards answers to the need for high 

transported capacity [1]. To achieve this, higher order 

modulation formats and faster symbol rates are two popular 

means which are often combined. Therefore intermediate 

regenerations are more and more required and are not only 

used for long distance links [2]. To further lower the cost per 
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bit, optical networks have to be rethought and in particular 

have to adapt to traffic demands and transmission 

impairments.  

 Flexible networks are a promising way to improve the 

network resource utilization in wavelength division 

multiplexed optical networks. A first mean is the usage of 

Optical Transport Network (OTN) switching to improve the 

wavelength utilization, hence spectrum resources, up to an 

ideal matched of a fully utilized wavelength [3]. Elastic 

Optical Networks (EON) is another popular mean with 

several degrees of freedom [4][5][6]. In particular, the use of 

flexible frequency spacing between channels is 

advantageous for saving scarce optical spectrum and for 

improving network capacity [7]. This is usually referred to 

as a flexgrid scenario [8]. Variable symbol rate could also be 

used with fixed channel spacing such as 37.5GHz grid to 

contain filtering issue. With Nyquist WDM, signal is much 

less sensitive to crosstalk but still suffers from tight 

filtering and laser frequency detuning [9]. With OFDM, 

filtering impact and guard band were investigated in [10]. 

Recent works proposed to mitigate the filter penalty cascade 

with spectral engineering [11][12]. In this work, we rather 

consider that the real filling of channels is far from 

approaching 100%. We thus proposed a just-enough 

bandwidth allocation by varying the symbol rate, hence the 

optical spectrum of each connection. 

Typical application examples are inter-datacenter or 

metro networks which exhibit variable aggregated traffic for 

back-up services or between day and night operations. 

Along this path, in 2011 a real-time bandwidth-variable 

transponder (BVT) prototype was proposed in [13] and 

reduced the power consumption proportionally to the 

effective traffic load thanks to a flexible aggregation of 

Ethernet frames. Alternatively, a real-time board in [14] 

aggregating Ethernet traffic was demonstrated for an 

adaptive-modulation format transmission. To make 

reconfigurable EON a reality, hitless BVT becomes an 

important feature. In [15] a hitless code rate change was 

introduced to change the optical line net bit rate according 

to OSNR conditions, but no previous works have tackled the 

symbol rate variation which is of key interest for next 

generation of networks with more and more intermediate 

regenerations. 

 In this paper, we detail how a real-time hitless elastic 

optical interface is capable of aggregating the incoming 
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We see directly the impact on the spectral occupancy. 

 

Fig. 5: Optical spectrum at BVT output after electro-optical 

modulation for different OTU2 client numbers and Baud rates. 

 

Fig. 6 represents the electronic eye diagrams for two 

different configurations. With 10 OTU2 clients at the input 

of the transmitter, the total output bitrate is maximum with 

107 Gbit/s corresponding to a one I/Q electrical signal at 

26.7 GBauds (Fig. 6a). Fig. 6b shows the eye diagram when 

4 OTU2 clients are multiplexed byte by byte, resulting in a 

42.8 GBauds electrical signal on one I/Q arm of the 

modulator. 

 

a) b) 
Fig. 6: BVT electrical outputs before E/O conversion for 10 clients 

(a) and 4 clients (b). 

 

The BVT has been then characterized in terms of quality 

of transmission and switching time when a new frequency 

command arrives at the restful server. The switching time 

displayed in Fig. 7 is the measured time of the total reset 

sequence of high speed output serializer/deserializer 

interfaces (GTZ in Xilinx Virtex 7), in which the serializer is 

aligned, reconfigured and no data is transmitted. This 

switching time includes ~2 µs guard time, in which the 

reference clock for the data is unstable [23]. It is technology 

dependent and may be improved with the most recent 

programmable electronic technologies and ASIC progress. 

Fig. 7 illustrates all combinations of any starting bitrate to 

ending bitrate, both from 10.7 Gbit/s to 107 Gbit/s, 

corresponding to the number of multiplexed OTU2 clients, 

which is an integer in the range [1:10]. In all 100 

configurations the switching time is below 450 µs and 

mainly depends of the ending bitrate. For example, case a 

(423µs) in Fig. 7 is the measured time of the switching from 

75 Gbit/s to 107 Gbit/s. Case b (432 µs) is the switching time 

from 107 Gbit/s to 53.5 Gbit/s. During the reconfiguration 

phase, the high speed transmitters are reset, and when it’s 

finished, notification signal is sent to the local controller, 

which can start again the packets transmission. A 

maximum pause time of 450 µs on the data flow corresponds 

to a maximum of 37 OTU2 frames to be stored and delayed 

in on-chip memories, which represents 74% of the total 

available block memories in this FPGA whitout need of 

external memory.  

 

Fig. 7: Switching time for all starting and ending bitrates 

combinations (10x10 in total). 

 
When the configuration for the new frequency request is 

done, the stored frames can be sent again, avoiding the lost 

of any data, but with additional latency due to the traffic 

interruption. This latency is temporary because it can be 

absorbed after reconfiguration by a real-time adjustment of 

the buffer emptying and a synchronization with the 

knowledge of the real traffic load. Latency variation is also 

limited to the reconfiguration time and the buffer reading, 

and can be then cancelled due to synchronous and 

deterministic processing inside the FPGA. With the 

management of the QoS of the traffic inside the OTN switch 

and an accurate monitoring of the OTU2 frames number to 

be multiplexed and transported, service continuity can be 

performed without any packet loss. 

The quality of the elastic optical signal has been 

measured with the Bit Error Rate vs the OSNR in 0.1nm for 

different transmitted bitrates (Fig. 8). The OSNR penalty 

for a Q-Factor of 8.5 dB (HD-FEC limit) remains below 

1.1dB for the bitrates of 107 Gbit/s and 75 Gbit/s, compared 

to the theoretical limit for a PDM-QPSK signal. This is 

partially due to the skew between the IQ lines of the two 

polarizations which are not easy to tune in this FPGA 

prototype. The constellation after offline processing for the 

two polarization states is inserted in Fig. 8 for the 

maximum transmitted bitrate of 107 Gbit/s and has been 

recorded in the laboratory clear and open for all 

combinations of bitrates. 
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