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ELASTIC PLASTIC ANALYSIS OF GROWING CRACKS*

by J. R. Rice, W. J. Drugan and T. L. Sham

Division of Engineering, Brown University, Providence, RI 02912

May 1979

Abstract

In an extension of earlief studies by Rice and Sorensen, we discuss the
elastic-plastic stress and deformation fields at the tip of a crack which grows
in an ideally plastic solid under plane strain, small scale yielding conditions.
The results of an asyﬁptotic analysis suggest the existence of a crack tip
stress state similar to that of the classical Prandtl field, but containing
a zone of elastic unloading between the céntered fan region énd the trailing
constant stress plastic region; The near tip expression for the rate of open-
ing displacement & at distance r from the growing tip is found to have the

same form suggested by Rice and Sorensen,
§=ad/o, + B(o /E) & n(R/T)

but now the presence of the elastic wedge causes B8 -to have the revised value
of 5.08 (for Poisson ratio v = 0.3). Here, a = crack length , o, = yield
strength, E = elastic modulus, and J denotes the far-field value, namely
(1-v2)K2/E for the small scale yielding conditions considered. The parameters
a and R cannot be determined from the asymptotic analysis, but comparisons

with finite element solutions suggest that, at least for small amounts of growth,

*Presented at ASTM 12th Annual Symposium on Fracture Mechanics,
Washington University, St. Louis, 21-23 May 1979; submitted to ASTM
for publication.
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o 1is approximately the same for stationary and grpwing cracks, and R
scales approximately with the size of the plastic zone, being about 15% to
30% larger. For large scale yielding it is argued that a similar form applies
with possible variations in « and B8 , at least in cases which maintain

" triaxial constraint at the crack tip, but in the fully yielded case R 1is
‘expected to be proportional to the dimension of the uncracked ligament. The
model crack growth criterion of Rice and Sorensen, requiring a critical ¢
at some fixed r from tﬁe tip, is re-examined in light of the more accurate
solution. The results suggest that the J versus Aa relation describing
growth will be dependent on the extent oflyielding, although it is suggested
that this dependency might be small for highly ductile materials, provided

that a similar triaxial constraint is maintained in all cases.
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Introduction

The aim of the papef is to describe recent studies on the stress and
deformation fields at growing plane strain crack tips in elastic-ideally
plastic solids, and to interpret the results 'in terms of criteria for stable
crdack growth.‘ In both respects the work is an extension of a recently pub-
Iished study by Rice and Sorensen [1] (henceforth denoted RS for brevity).

In the.next section we present the principal results of a recent
ahalysis [2] of the asymptotic stress field at a growing crack tip where we
find, contrary to the assumption of RS, that a full Prandtl field cannot
exist at the tip but, rather, its ''centered fan" and trailing ''‘constant stress"
sectors are divided by an elastic unloadinglzone. The net stress triaxiglity
in front of the crack and, indeed, the entire near tip stress distribution
differs little from that of the Prandtl field, which may explain why the effect
was not revealed in previous finite element simulations of crack growth [3,1].
We find the same expression as RS did for the asymptotic form of the near tip
openingé, but with a revised value of their parameter B (see eqs. 19,21).

The following section analyzes recent finite element studies [4] of
(l1imited amounts of) stable crack growth under small scale yielding conditions,
based on a refinement of mesh size as suggested in RS to more accurately deter-
mine parameters such as R .and o (again, see eqs. 19,21) in their expression
for the near-tip crack openings. The asymptotic and finite‘element results
seem to be conéistent with one another, and together they provide a reasonably
complete understanding of the near tip field, at least for limited amounts of
stable growth, although numerical re;ults still leaye some uncertainties in
the determination of o and R .

Subsequent portions of the paper examine a criterion for crack

growth, in the form suggested in RS, requiring that a fixed crack surface




opening §_ be maintained at a small characteristic distance T (intendeq
to coincide approximately with a "fracture process zone' size) from the tip
for continuing-growth. Crack growth, under sméll scale yielding, is discussed
based on the criterion and, in addition, we discuss some possible implications
of the criterion for large scale yielding (but in geometries like deeply-cracked
bend specimens, maintaining a crack tip triaxial constraint similar to that of
the Prandtl field even under fully yielded conditions).

Our considerations suggest a dependence of the J versus crack growth (Aa)
relation on the extent of yielding, although for highly ductile materials
(iarge values of the Paris tearing modulué T [5,6]) these dependencies
might somet imes bé relatively small. An Appendix to the paper compares some

possible definitions of J for fully plastic specimens.
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Asymptotic Near-Tip Fields for Stationary and Growing Cracks

Rice [7,8] and Hutchinson [9] have constructed asymptotic plane strain
crack tip stress states for ideally plastic solids bf slip line methods, aﬁd
héve analyzed the ﬁature of the strain singularities within 'centered fan"
sectors for loading of a stationary crack. Similar methods have been adopted
for growing crécks; where the nature of the elastic-plastic strain siﬁgularity

in centered fan sectors moving with the tip has been discussed by Rice [8,10],

Cherepanov [11], and by RS.

For our present discussion it is convenient to follow a development of
Rice and Tracey [12] which anaiyzed directly, within conventional ''small strain"
assumptions, the stress state oij = oij(el resulting as r » 0 at the tip
of a crack in an ideally plastic solid under plane strain conditions (r,® are
polar coordinates centefed on the tip as in fig. la). They observe first
that since the stress at the tip must be bounded, terms of the form r Boij/Br
in the stress equilibrium equations must vanish as r »+ 0 , and hence the
equilibrium equations reduce to the two ordinary differential equations

o - + do_ /o = 0, | )

rr ~ %0
20 o * dcee/de =0 . (2)
Also, they assume that the plastic yield condition in highly strained material
at the tip reduces to.the form

= g2 .
= 02/3 ; (3)

(990

2 2
T Oy /4 * %ro

that is, that the maximum shear stress in the plane of straining is limited to
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the‘yield in shear, oo//g (where, uSing the Mises shear to tension
conversion, o, is the tensile yield strength).

Equation (3) can either be accepted as an approximate criterion of
plane strain yielding or can be motivated in the following way. The three-

dimensional Prandtl-Reuss-Mises theory is based on the plastic flow rule

DP. = As.,  where A=/DPoP /s s 0, (4)
ij ij ij7ij" mn mn
-sij is the deviatoric part of 955 and ng is the plastic part of the
strain rate tensor Dij . The latter is defined (relétiVe to Cartesian

coordinates xl R x2 , xz) by
2Dij = Bvi/axj + ij/axi s (5)

where vy is the velocity Gi (ui is the displacement and the superposed
dot means time derivative), and consists of elastic and plastic parts such

that
§..0 - + As, . (6)

for isotropic elastic response. For elastic loading or unloading the term
with A is deleted. In the ideally plastic case A 1is not determined
directly by the stress rates, but variations in stress during plastic response

must satisfy the yield condition

= 2
Sijsij/Z =0, /3 . 7
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In plane strain, if S,z = 0 (where the 1z axis is perpendicular to
the x,y plane of deformation), eq. (7) reduces to eq. (3). Now, by eq. (4)

it is clear that whenever

1j71j

P,/ P P - :
b // .0k =0, 8)

S,, = 0 , so that eq. (3) results. But since the plane strain crack'tip is
expected to be the site of a plastic strain singularity;'whi}e the plastic
strain in the z-direction is bounded (since total z strain and its elastic
portions are bounded), we expect eq. (8) to be asymptotically valid asl T ; o,
so that eq. (3) becomes the appropriate form of the yield condition at the tip.
This argument is suggestive but not fully satisfactory because, as will be seen,
the assumption of eq. (3) leads to the possibility of '"constant stress' angular

sectors at the tip, which do not produce unbounded plastic strain. Nevertheless,
we continue by assuming that eq. (3) is valid within plastically deforming zones
at the tip, noting that .it must be valid within singular sectors and that the
arguments based oﬁ it lead to fields in agreement with numerical finite
element solutions [12] for the now well-documented case of loading of a sta-
tionary crack.

Rice and Trécey I12] showed that the only solutions of the equilibrium
equations (1,2), falid within plastic regions at the tip for which eq. (3)
is met are of the following types:

(a) Centered fan sectors, in.which

= = = ¥ - /_
O =% 00//3 » 9. = %4 constant +(20°/ 3)e , (9)

and which have the interpretation in terms of slip lines shown in fig. la;




-

or

(b) Constant stress sectors, in which stresses ¢ s O y O
XX Xy Yy

(i.e., referred to Cartesian coordinates) are independent of 6 and meet

eq. (3); these have the interpretation in terms of slip lines shown in
fig. 1b.

Hence the crack.tip stress state consists of an array of plastic angular
sectors of type (a) and/or‘(b), among or between which there may be sectors
that respond elastically (or currently respond elastically, but may pre-
viously have been yielded).

If we seek a solution of the equilibrium equations (1,2) corresponding'J

to plastic response at all angles @ about the tip, then the only solution

_corresponding to Mode I loading for which all stresses are continuous (note:

equilibrium considerations alone require continuity of . o and O ° but

66 0
not Urr) is that of the Prandtl field shown in fig. lc. This field was
 hypothesized by Rice [7,8] as the near tip solution for well-contained yield-
ing; it is known to result as the non-hardening limit of the Hutchins&n-Rice-
Rosengren [13,14] singularities and seems to be well substantiated by numer-
ical solutions for small scale yielding at a stationary crack tip [12]. (On
the other hand, it is known that fully plastic solutions for non-hardening
materials show a wide variety of crack tip stress fields, some of which
involve discontinuities in o.r and angular sectors that are stressed below
yield).

It was assumed in RS and previous studies of growth [8,10,11] that the
same Prandtl field of fig. lc provides the stress state at a growing crack
tip. However, as we shall show, this cannot be the case. It is still true

that the stress field within plastic regions must consist of a combination of

centered fan and constant stress sectors, but we find that there must be a



sector of elastic unloading between the fan and the trailing constant stress

region as shown in fig. 1d. The details of fhe analysis are complicated and,

since our emphasis here is on the interpretation of results in terms of

stable crack growth, we report them separately [2], outlining here only the

major ideas and.results.

First, RS have presented the form of the velocity field in a centered
fan stress field, of type in eq. (9), which moves with the crack. This is
obtained by integrafion of the rr and 66 components of (6), noting that
S.r = Sgp © 0 in a fan zone. For example, if é is crack length and the
fan begins at 6 = wn/4 as in figs. lc and d (it cannot begin at any smaller
angle, nor at any larger angle, if the angular sector ahead of the tip is to.
be plastic, this due to the fequirement of continuous shear stress), then
[1] as T >0

. . R 1
a sinb &n T + £ (8)

m|°°

(10)

o _
v, = - 22-v) 1;-5[5; - cos&][%n[%] - %%; - £(8) + g(r)

where the functions f£(8) and g(r) , and length R , are undetermined by

the asymptotic analysis, except that g(0) = 0 . The functions £ and g,

in addition to being functions of 6 and r , respectively, will be homogeneous

functions of degree one (and possibly linear) in a and in the rate of
whatever parameter describes the intensity of the applied load. One may

. e .
compute the components of Dij and, since the Dij are known in terms of

&ii , of 'ng . The only non-vanishing component of ng referred to the




polar coordinate system is, as r =+ 0 ,

ag
pP 2

2-v
o /e E

gn[g] + f (9) + f(B) (11)

T 2r

Hipe.

[Observe that since the rate quantit;es are referred to a moving polar
coordinate system, one cannot write V. = dur/dt , Dre = dere/dt , etc.,
although similar equations are valid for Cartesian components. ]

| Owing to the path-dependence (in strain space) of plastic stress-strain
relations, the nature of the near tip displaéement and strain field is funda-
mentally different for a stationary versus a growing crack. For the sta-

L]
tionary crack, a = 0 , under monotonic load increase the only non-vanishing

plastic strain in the fan is &P

6 and this is given by an expression of

the form

ege = F(8)/r , as r+0, (12)

where F(6) is undetermined by the asymptotic analysis. Further, the dis-.

placements at T = 0 vary with 8 in the fan so that a discrete opening
displacement results at the tip (the field on the size scale of this opening
must be determiﬁed'by a finite strain analysis). But when the crack length a
is increasing continuously with the level of applied loading, asymptotic
integration of eq. (11) in the manner described by Rice [10] (in the fan) and

including the strain discontinuously accumulated by the velocity discontinuity

at the leading edge of the fan leads to [2]

g

P o Rl . > :
E G.j(e) in[ ] Hij(e) , as r 0, (13)

2-v
g, . = ——
1] /6

1 T




where, referred to Cartesian coordinates as in figs. lc and d,

G, (6) = -Gy;(el - -2 sine
ny(el = G (8) = «n[tan(6/2)/tan(n/8)] (14).
+ 2

(cosd - 1/vY2) ,

and where the functions Hij(ﬁl are undetermingd by the analysis but will
depend, in a presumably monotonically increasing manner, on the ratio
d(applied load)/da . Further, for thé growing crack the displacements in the
fan vanish at r = 0 and hence there is no discrete tip_open;ng displacement.

Now, the difficulty with assuming the full Prandtl field of fig. lc for
the growing crack is that the;e is a non-removable discontinuity of velocity
v, at the boundary between the fan C and back constant stress zone B .

Such discontinuities are permissible within an ideally plastic model, but only
if they correspond to positive plastic work. Such is not the case here because,
from eq. (10), V. > +® as r > 0 along the fan side and V. ‘is necessarily
bounded along the constant stress side. Since ore.is positive, it does
negative work on this discontinuity.

Several possible remedies were exploréd [2]. One could try to continue
the field beyond the back boundary of C , in fig. lc, by assuming an elastic
zone throughout B and enforcing full continuity of velocities at the back
boundary,lbut it -is then found impossible to find a solution which does not
violate yield and which meets crack surface boundary conditions. It was
therefore attempted to terminate the fan at some initially unknown angle 91 s
as shown in fig. 1d, necessarily bordering on an elastic sector, and to admit

the possibility that there may be a trailing plastic region B as shown in

fig. 1d, necessarily a constant state region. Alternatively, it is easily shown
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da

that a plastic region B must exist, in the sense that the entire region

e > 91 ~cannot be elastic, since by eqs. (13,14) material points emerge from
the fan with a negatively infinite eix as 1 -+ 0 , requiring further yield
to avoid unbounded 'residual' stresses. The full details are given in [2]

where it is found, for v = 0.3 , that

6. ~ 115° ,

) 6, ~ 163° (15)

and fig. 1d has been drawn to correspond to these angles. The corresponding

angles are approximately 112° and 162° for v = 0.5 .

The resulting Cartesian stress components-naxx(e) ,.cyy(e) , ny(e)

are plotted in fig. 2 for this field and for the full Prandtl field of fig. lc.

What is remarkable is how little they differ, oyy and oxy being barely
distinguishable from the Prandtl values (the maximum value of Oy occurring

in the front constant stress sector F , is approximately 1% less than the:

* Prandtl value of L2+w)00//§ ) , and %x showing only a slight dip below the

Prandtl value in the elastic sector. Presumably, this closeness has obscured
the differences between the actual and the Prandtl fields for a growing crack

in previous numerical simulations [1,3,4] where, to the accuracy expectable

of such methods, the results were interpreted as verifying the presence of

the Prandtl field.
The form of the crack opening rate $ (here & is the opening between
upper and lower crack surfaces) very near the tip has also been obtained in

[2]. The result has the same form as in RS, namely,

- 0 - ﬁ -
§. =8 T§'a zn[—] +A ,as >0, - (16)
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where
B =5.083 for v = 0.3 . a7

The value is B = 4.385 for v = 0.5 . (In RS, the value B = 4(2-v)/Y3 = 3.93,
for v =.0.3 , was obtained based on the analysis of velocities within the
unapplicable full Prandtl field of fig. 1lc), and where ﬁ- is undetermined

by the asymptotic analysis but is homogeneous of degree one in a and in the
rate of applied load increase. Indeed, for rates of applied load ﬁhich do not
finitely change the elastic-plastic boundary (e.g., a negative load rate,
inducing elastic responsé in large portions of the previously plastic zone),
we expect A to be linear in a and the load rate. Any convenient parameter
may be used to measure the applied load and, without loss of generality, we
may use the far-field value of the J integral, noting that it is well-defined
for contained yielding (and may be essentially so for some general yielding
cases) since the far-field is elastic, and that our use of J in this case
carries no implication that it‘is path-independent or has any meaning what-

ever in the near-tip plastic region. Accordingly, we write
A= uJ/co + pa , (18)

with o and p undetermined by the asymptotic analysis, and then absorb u

into the first term of eq. (16) to write, finally,

. J % « [R
§ =« St B 1?-3 zn[—] , as r >0, ' (19)
A o

where now R has been replaced by a new length parameter R , also undetermined




~
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by the asymptotic-analysis. In the next section we discuss the approximate
determination of o and R , by fitting numerical results from finite element
studies [4] to the theoretical results.

It is of interest to compare near tip crack openings for stationary
versus growing cracks. Setting a =0 in eq. (19), we obtain for monotonic

loading of a stationary crack

(ﬁ)r=0 = J adJ/c0 = aJ/oo for o constant . (20)
(Note that by dimensional analysis o is constant in the small scale yield-
ing limit; it is thought to be approximately constant up to the general
yielding range for geometries such as a deeply-cracked bend specimen).

But when the crack is growing so that a increases continuously with J ,

asymptotic integration of eq. (19) in the manner of RS yields

ar dJ Cro eR
T

——J , as r =20, (21)
where e 1is the natural logarithm base. We see that & = 0 at the tip,
but a well-defined crack tip opening angle does not exist since dé/dr » =
at r =20 .

With future discussion in mind, we may rewrite this expression as

ES§ o eR T '
= = =|| = 22
BUOR B T+ Rn[r] R (22)

-

where T = (E{coz)dJ/da is the Paris tearing modulus. Now, as will be seen

in the next section, and as is suggested in RS, R 1is found to be comparable
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in size to the maximum plastic zone radius, at least under small scale yielding
conditions, and a/8 1is of the order 0.1. Hence in high T materials, where
. 0.1 T greatly exceeds the logarithmic term everywhere except for values of r
that.are-minute fractions of the plastic zone dimension, the near tip crack
opening ig almost linear in r and the concept of a crack opening angle has
approximate validity. For example, if T = 200 (in the range of reported values
[S] for the ﬁore ductile structural metals) the term 0.1 T is more than
5 times ‘the logarithmic term for all values of r greafer than approximately
5% of the maximﬁm plastic zone radius. At the other end of th; ductility
specérum, say T = 20 , the logarithmic Eerm exceeds 0.1 T out to distances
T offépproximately 40% of the plastic zone radius (probably_beyond the range
of validity of the asymptotic result) and no meaningful definition of an opening
angle could be given. | |

For purposes of illustration, we compare near-tip crack opening prbfiles
in fig. 3 for a stationary crack and for growing cracks with various values
of T , taking for simplicity a = 0.65, B =5, and R = 0.2 EJ/oo2 (close to
the value estimated in the next section for small scale yielding), so that the
left side of eq. (22)_15 just 6/(Jfo°] . Hence, fig. 3 compares, approximately,
the near tip profiles which would result at a given J level under small scale |
yielding. The curve marked T = 0 might be thought of as a crack growing under

environmental influences with negligible change in J.
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Comparison with Finite Element Results for Growing Cracks

In RS an attempt was made to identify the parameters o and R appear-
ing in eqs. (19,20) for the crack opening, by correlating the theoretical result
against a finite element solution by Sorensen [3] for plane strain crack
growth under small scale yielding conditions. It was remarked in RS that a
numerical solution with a much finer mesh would be needed to determine more
definitively the above parameters. But the tentative conclusions were
reached that R scales approximately with the size of the plastic zone and
that a is approximately the same for a growing crack as for monotonic
loading of a stationary crack. Further, two attempts were made in RS to
check the theroetical B8 value agaiﬁst values inferred from the numerical
results. Both inferred values were too large compared to what was then thought
to be the theoretical value (3.93, for v = 0.3). However, as remarked, the
true value of B based on the field of fig. 1d is found to be 5.08 for v = 0.3,
and this is not far from the inferred value of 4.8 in RS, based on displace-
ment increments at the second node back from the tip.

A refined mesh finite element solution of the kind advocated in RS has
now been carried out by Sham [4]. We discuss some of the results here. The
formulation of the small scale yielding problem, type of elements used, and
general features of the mesh layout are in all respects similar to those of
[3] except the mesh is finer, so that the plastic zone size in the range for
which crack growth is studied is of the order 50 times the side length of
the smallest elements. These smallest elements are of uniform size along
and adjacent to the path of crack growth, and consist of squares laid out
in a rectangular array, with each square made up of 4 constant-strain trian-
gular.finite elements sharing a common node at its center. The material is

an ideally plastic Mises solid with v = 0.3 and the loading, as appropriate
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for small scale yielding, is specified in terms of the far field Mode I
stress intensity factor K . Some of Sham's results will be reported in
terms of J , where it is to be understood that J has the 'far-field"”
value appropriate for contours in the elastic region, namely . (1-v2)K?/E .
The load versus crack length history is shown in the inset diagram
in fig. 4, where KO is the load required to yield the first element.
The load is first increased without crack growth to slightly below 10 Ko s
then 3 one-element crack growth steps are simulated (by incremental unloading
of crack tip nodes at fixed K ) , each followed by an increase in K at
fixed crack length, and then 8 further one-element crack growth steps are
simulated at fixed K 7‘
Sham [4] reported the near tip stress fields for both the stationary
and growing crack cases to be éonsistent with the full Prandtl field of
fig. lc. But as shown in fig. 2, the differences between the full Prandtl
field and its modification with the elastic sector of fig. ld are small. The
numerical results for stresses are not accurate enough (presumably because
they are based on a mesh with non-singular elements at the tip; compare [12])
to distinguish between the two, and can equally be regérded as being consistent
with the field associated with fig. 1d for the growing crack. Nevertheless,
Sham reports that all crack growth steps are accompanied by elastic unloading
of some elements behind the tip, of locations coiﬁciding roughly with the
location of the elastic sector in fig. 1d. Further, elements adjoining the
~crack surfaces near the tip are found‘to yield in a direction corresponding
to extension in the x-direction of fig. 1d, as predicted within region B, and
which is expected since material points emerge from tﬁe fan with a value of
egx which becomes negatively infinite at the tip. Thus these features as
well as the element stresses near the tip are consistent with the theoretical

analysis [2] of the field at a growing crack tip.
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For small load increase at fixed crack length, eq. (19) suggests a

variation A8 1in crack tip opening displacement given by
(AG)r=0 = a aJ/c0 . (23)

Thus we are able to estimate the dependence of a on the amount of crack
growth by estimating (ad}r=o from the numerical results for the various
load increases at fixed crack length shown in fig. 4. This is accomplished
in fig. 4a for the three load steps following growth, by plotting aaf(anao)
at the crackline nodes as a function of 'r/(K/oolz . The results suggest
that at least for the rather modest amounts of crack growth considered, the
incremental openings for load increase at fixed crack length are unaffected
by growth; i.e., that a 1is essentially constant during growth. To determine
._the relation between 6 and J for monotonic loading of a stationary crack,
we obsefve that by dimensional considerations a is constant during mono-
tonic loading under small scale yielding conditions, but that its value is
most accurately estimated from numerical solutions by using data from the
range in which the plastic zone size is large compared to element size.
Accordingly, in fig. 4b we show ﬁG/(ﬂJ/co) versus r/(l(/co)2 from data
based on the last few increments of loading of the stationary crack, as
indicated.

The points of figs. 4a and b superpose on one another everywhere except
in the region of upturn. If the upturn region is ignored and the data is
extrapolated to the tip, as shown by the dashed line, we obtain ﬁGZ(&J/oO) =
0.53 in both cases, i.e., a = 0.53, the value being the same for both the

stationary and growing crack. This value of a 1is somewhat smaller than the
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accepted value of approximately 0.65 for the stationary crack (see RS for a
summary of results), whereas o = 0.65 is consistent with the opening at the
first node back from the tip in fig. 4b. If we use similarly the opening
at the first node in fig. 4a to estimate o for the growing crack, then the
values of o are higher (0.69, 0.71, 0.72 at the end of the three growth
steps) than for the stationary crack, i.e., by amounts ranging from 6% to 11%.
The interprétation of these results is further clouded by the upturns in A§ ,
" which occur within a region for which the finite element mesh of [4] under-
goes a reduction by a factor of 2 in element size (starting 3 elements behind
the original crack tip), and may indicate inadequacies of the numerical
treatment.

The last 8 one-element steps of growth (release steps 4 to 11) at
fixed K grow the crack away from the region of discontinuity in mesh size.
Observing from eq. (21) that for growth at constant K (hence constant J)

the near tip opening is
o
6=8-2r zn{gﬂ] , (24)

comparison of the finite element results for & with this formula provides
a means of estimating R and of seeing to what extent the numerical results
are consistent with the theoretical value of B . To do so, the formula is
rewritten as
: 2
ES R e(K/o )

=_ =g tn|——m—| + B8 Ln|——— (25)

and E§/c r is plotted against ﬂn[e(K/co)Z/r] , so that B is given by the
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slope and R is determined from the axis intercept. This is done in fig. 5 for
the finite elemeﬁt openinés along the path of growth at constant K , using
data at the end of each of the release steps 6 to 11. The data for each
release step forms a straight line, confirming the logarithmic dependence in

eq. (24), and the slopes are very close to one another; B8 = 5.4 can be

taken as a representative value. This is close to, but somewhat larger than,
the theoretical value of 5.08. The corresponding values of R as determined

from axis intercepts are shown in fig. 5, and these cluster about the value
R = 0.21 Kzfcoz ~ 0.23 EJ/OOZ . (26)

which seems to be essentially independent of the amount of growth. Further,
Sham [4] estimates a maximum plastic zone radius which is approximately
0.16 (K/oolz for the stationary crack and which increases slightly with
growth, to approximately 0.18 (Kfco)z at.the end of the 11 growth steps.
Thus the value estimated above for R essentially scales with the plastic
zone size but is about -15% to 30% larger.
Again, however, the interpretation of numerical results is not unambiguous.
For example, if lines with the theoretical slope B = 5.08 are fit to the data
of fig. 5, the value of R is found to decrease with crack growth, from
R =~ 0.35 (,I(/co)2 at release step 6 to R = 0.21 (Kfco]z at release step 11.
Clearly, much remains to be done to determine expressions for the
parameters o, and R and for their dependence on crack growth, not only for
the small scale yielding case examined here but also for larger scale yield-
ing. Lacking»ﬁdre definitive information, we will assume tentatively for the
subsequent diseussion of crack growth that o is approximately constant and
that R scales with the plastic zone size (in the form R = 0.2 EJ/oo2 for

small scale yielding).
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Speculations on Large Scale Yielding

The numerical results just surveyed, as well as those in the original
RS study, were for the small scale yielding limit, in which the plastic response
is fully determined by the surrounding elastic K field. However, the results
of the asymptotic analysis should be valid for larger scale containéd yielding
of ideally plastic solids, although R and o« must then be expected
to depend on the extent of yielding. For example, the tentative relation
R~ 0.2 EJ/002 cannot be expected to persist at large scale yielding because
the dimensions of the plastic region no longer scale directly with J.

Finally, for fully yielded ideally plastic specimens, of a geometry
that retains constraint comparable to that of the Prandtl field (e.g., deeply-
cracked bend specimens [15]), growfh of the crack still requires that centered
fan sectors of near tip stresses be moved through the material. This introduces
logarithmic singularities of the type multiplying a in expressions like those
of eqs. (10) for the near tip velocities, and leads, ultimately, to an expression
in the form of eq. (16) for the near tip opening rates, namely

o, . R .
§ =B T? a ﬁn[—] + A, as r > 0.

For a geometry like that of the tensile specimen with deep double edge cracks,

for which the full Prandtl field provides the near tip state for the stationary

crack case, the construction of fig. 1d is exp

cted to apply during growth so
that & has the same value as given ear;;;;,';q. (17). For a geometry like
that of the-deeply-cracked bend specimen, the stress field for a stationary
crack is very close to that of the full Prandtl field [15], and hence a similar

value of B 1is expected in that case (we leave open the question of whether

the value would be identical).




Regardless of the extent of yielding, A in eq. (16) will be homogeneous

of degree one in a and in some loading parameter such as the imposed dis-
placement (say, q) at the load point. For reasons discussed earlier, we believe

it may be appropriaté to regard the dependence as being linear in a and ﬁ , say

where £ and p are parameters undetermined by the asymptotic analysis.
Now, suppose a quantity J , to be associated in an as yet imprecise way with
the J integral, is defined in some way, for all extents of yielding, such that

J is linear in ﬁ and a . Then we can write, analogously to eq. (18),

e
n

aJ/o  + pa
/ o T ¥

where, again, a and u are undetermined by the asymptotic analysis. In the
‘ Appendix we discuss two different ways of defining J: one (Jf) based on a
far field contour; another (Jd) based on a 'deformation theory' definition,
i.e., Jcl is the same function of a and q as for monotonic loading to
q with a fixed. Different definitions of J will lead to different values
of u (and perhaps a). Thus, when we follow the steps from eqs. (16) and (18)
“to eqs. (19), (20) and (21), which are now seen to apply to all extents of
yielding, it must be recognized that R will depend on the way that J is
defined, since it incorporates the pa part of the expression for A .

To apply dimensional considerations in order to understand the behavior
of R, say, as a function of J , it is now necessary to be more precise about

the definition of J at large scale yiélding. In particular, in the limit

of a fully yielded specimen of rigid-ideally plastic material, it is obvious
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that & at the tip must take the form 8§ = w& where ® 1is some parameter
(possibly dependent on the geometry of the cracked body) and, further, we
observe that for rigid-plastic materials this expression for & is equally
valid for stationary or for growing cracks (i.e., it is independent of a).
Now, if R is to remain well defined in the rigid-plastic limit, as

oOZE + 0 , it is necessary that whatever expression we adopt for J be such
- that in this limit J depends only on é and not on a . Otherwise the
term R in eq. (19) would have to contain a factor exp[(constant) x E/oo]
to cancel out the UO/E ;n front of the &n term of (19), and thus annul
the a dependence of J , as UO/E + 0 . We show in the Appendix, for the
rigid-plastic bend specimen, that Jf , the value of the J integral associated

with an appropriate far field contour, has this property, whereas J, does not.

d
We do not, however, suggest that Jf will haye this property for all specimen

_geometries and, indeed, we find that J. has the appropriate property in the

d

case of a tension specimen with deep double edge cracks.

With the understanding that J has been appropriately defined so that
R has no spurious dependence on a term like exp[(const.) x E/ool s wé now
observe that the terms containing R in eqs. (19,21) arise from moving a
centered fan stress distribution through an elastic-plastic material. Thus
R should scale approximately with the size of the region over which such
fan-like stress fields prevail. Hence, with reference to the deeply-cracked
bend specimen of fig. 6, R should saturate in size to some fraction of the
ligament dimension b as fully plastic conditions are attained. Hence, as
shown in fig. 6, we expect R to increase linearly with J at first, as
appropriate to the small scale yielding regime, but then to saturate as J

further increases. The saturation level of R =~ b/4 is only a guess and
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much further correlation of the asymptotic analysis against numerical results
will be necessary to establish this level and, indeed, the full dependence of
R on J. N

There is, of course, already an approximation built into the notion
that R should depend on J (and, of course, on geometric dimensions such as
crack depth and ligament size): R should have at least some dependence on
the amount of prior crack growth. However, as suggested by results for small
scale yielding, this dependence seems to be minor, probably because the shape
and size of the currently active piastic zone is not strongly affected by
prior growth. The point needs further clarification, but is neglected in our

subsequent discussion of crack growth criteria.
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Investigation of a Ductile Crack Growth Criterion

Here we investigate implications of- the ductile crack growth criterion
proposed in RS. This is based on the opening & at a small characteristic
distance fpom the tip, but, as will be seen, thg criterion is similar in
form to other criterié which might be proposed based on other parameters of
the near tip deformation field, e.g., on local plastic strain.

It is important to remember, however, that the criterion is based on
the deformation field, and makes no reference to the stféss distribution.

Such might be considered reasonable in the sense that the maximum tension
immediately at the crack tip is always essentially the same (equal to the
Prandtl value or a percent or so lower) for the highly constrained geometries
that we éonsider, so that the only variable features of the near tip field

are the levels of strain and opening displacement. But it is possible that the
critical levels of deformation could, in some cases, be influenced by the
“pre-conditioning'" (e.g., microcrack or cavity nucleation) of material
elements by high stress levels expefienced before the crack arrives. This
pre-cqnditioning could be more severe when the region of triaxially elevated
stresses extends over larger versus smaller size scales ahead of the crack.

On the other hand, for cases of ductile rupture in which cavity nucleation

is limited to the immediate vicinity of the crack tip (say, over a size scale
comparable to the tip opening displacement for a stationary crack), the .

size scaie over which the triaxially elevated étress state extends ahead of
the crack is expected to be unimpbrtant, and a growth criterion based on local
deformations seems appropriate. |

The model criterion of RS assumes that growth initiates by large plastic
strains associated with opening at the stationary crack tip, and that once

growth has thereby occurred over a distance comparable to the fracture process
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zone, subsequent growth continues in a mode for which a geometrically

similar (in a sense to be made precise) profile of crack opening is maintained
very near the tip. Now, the eqﬁation for the near tip profile, eq. (21),

does not admit a solution with non-zero dJ/da in which 3§ , as a function
of r , is strictly similer. Therefere, the criterion for growth is stated
in RS as the requirement (fig. 7) that a critical openihg § = Gc be main-
tained at a small cheracteristic distance o (called A2 in RS) behind

the tip. Thus, from eq. (21), the criterion for continuing crack growth is

that

H'oo»
ﬂ-'ﬂ.
[N ™

=&
g
o

T

g R )
+ B -—EE zn[e—] . (27)
m

]

Since R 1is regarded as a function of J (though specimen dependent; i.e.,
dependent also on a , at large scale yielding (fig. 6)), eq. (27) can be

. regarded as a first order differentiallequation which determines the manner in
which J must vary.with a in order to continue to meet the crack growth
criterion. The initial condition is that J = JIC (the initiation value)

at a = a (the initial crack length).

It seems appropriate to regard r, asa size comparable to that of the
"fracture process.zone," although this is, of course, not a sharply-defined
size. It is tempting to identify Gc with the crack tip opening displacement,
GIC = aJIC/oo , at the onset of growth, but experimental observations are
well known to reveal crack profilesgﬁpring Qrowth that suggest much less near
tip onening than at inifiation; Thus Gc is regarded as an independent empiri-
cal parameter, sometimes much smaller than § . Indeed, as discussed in RS, -

IC

GIC might more sensibly be regarded as a measure of the fracture process zone
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size, and hence of T

Now; ihe solutions to éﬁ.'{Z?) 'shoﬁ the manner in which J must vary
with a , beyond the JIC point, to meet the crack growth criterion. In some
cases, e.g:, sufficiently law Sc/rm and high_ OO/E , it may happen that the
value of dJ/da calculated from eq. (27) at the JIC point is negative.
In such cases, immediately unstable crack'growth-is expected. For more ductile
materials (i.e., sufficiently large Gc/rm and small oo/E), the calculated
dJ/da 1is positive and integration of the equation leads to a J vs. a-a_ relation
which must be followed for stable growth. It may happen, however, that the
predicted dJ/da at some point in the growth history fallé below what thé
loading system can supply, and at that point unstable crack growth occurs.

\

Specifiqally, let JA(Q,a] be the "applied" J where Q 1is a monotonically
increasing measure of the intensity of loéding. In different cases Q may -
* represent an imposed force or stress, or an imposed load-point displacemen£
# (or a displacement imposed on a compliant loading system attached to the cracked
~~body). Then, if J(a) represents the solution of eq. (27) for the given“crackéd
body and initial conditioné J = JIC when a = aol, the variation of Q with

a satisfies
ERCIS i@ s
and instability ~ (dQ/da - 0) occurs when,simulfaneously, this equation and
3J,(Q,a)/0a = élJ(la)/da | ' | (29)

are met. These equations have a well-known graphical solution in terms of

tangential contact of the curves J = J(a) and J = JA(Q,a) , for fixed Q ,




-26-

on a J versus a diagram, although our work carries no implication that
the '"resistance' curve J(a) 1is invariant to specimen geometry at large
scale yielding.

For crack growth under small scale yielding we can write

R = AEJ/GOZ where, eq. (26), A= 0.2, (30)

and thus (27) becomes

a dJ _ ¢ 0 on|EAEJ . (31)

We present the integrals of this equation in a somewhat different way than

RS, rewriting it as

E
o 2
[o]

T =

ﬂ-lD-
|
[}
-]

'

En[—g—i . ' (32)

Here ‘I‘0 is the value of the Paris tearing modulus at the onset of growth

under small scale yielding conditions, and is given by

) elEJIC

T = £ Bl B, (33)
0.00 rm a r0'2
mo

where <. a has the value appropriate to small scale yielding (~ 0.65). In fact,
it is possible to express the crack growth criterion at all levels of yielding,
whether small scale or not, in terms of the two macroscogic‘parameters JIC
and To ; there is no need to measure directly the microscale paraméters T
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and GC/rm . The integrals of eq. (32) for small scale yielding are shown

in fig. 8 where we have set a = 0.65 , B = 5.08 and plotted

_ 2
J{JIC versus (a ao)/[O._zEJIC/c0 ]

for a range of values of T0 . Here the crack growth (a-ao) has been made
dimensionless by a quantity which is equal approximately to the maximum radius
of the plastic zone at the onset of growth. All the curves in fig. 8 exhibit
a plateau, corresponding to steady state growth (i.e., dJ/da - 0) , at J

levels given by

JSs = JIC exp(aTo/B) = JIC exp(0.128 To) . (34)
For materials with large T0 values, say- TO > 25 , this level is so large
(e.g., JSS > 25 JIC) that in cracked bodies of practical sizes, large scale
and, finally, fully plastic yielding conditions will occur well before J
approaches Jss , invalidating the calculation. Of course, .even for crack
growth under small scale yielding, the instability condition of eqs. (28,29)
will usually be met befofe J reaches Jss

More generally, at large scale yielding, the crack growth criterion of

eq. (27) may be put in the form

a
Tg_g_gi.-, SSy T ...ﬁ.gn[._l____] (35)

where now “ssy ~ 0.65 represents the small scale yielding value of a and
we admit the possibility that a # %ssy at large scale yielding. Here

R = J\EJ/cro2 at small scale yielding but (fig. 6) deviates from this at larger
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scalelyiélding'and finally saturates in value at fully yielded conditions.

The argument of the &n term is the ratio of R to the value which it would
have at the onset of growth under small scale yielding conditions. It is
this &n term which exhibits the sensitivity of the gréwth criterion at

full plasticity to specimen size. For example, taking the numerical values
of B and Gssy as above, setting A = 0.2 as suggested in eq. (30), and
guessing as in fig. 6 that the saturatioﬁ value of R 1is approximately b/4 ,

we have at fully yielded conditions

a
TE% g—i x [T, - 7.8 2n b/4 2] assy
o, O.ZEJIC/GO J fy
(36)
5 1.3 T - 10.0 zn-ﬂ———z-
0.28], /a

for the bend specimen, where we have taken afy (the value of o for fully

/afy ~ 1.3 . This

yielded conditions) as 0.51 in the last version, so that assy

value of “fy is suggested by the rigid-plastic solution (see Appendix); the
actual Ay for growth in an elastic-plastic material may be less different

from a .
ssy

Two observations can be made. First, if cracklgrowth begins under fully
yielded conditions the growth curve J versus a-a_ (according to the ideally
plastic model and other assumptions that we have made) is qualitatively
different from that for small scale yielding. T 'is then essenfially constant

for amounts of growth that are small compared to ligament size (so that b in
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eq. (36) does not change significantly) and, if the formula is regarded as
being accurate for large amounts of growth, T actually i§ predicted to increase
wi?h a-a_ (since b .diminishes), in marked contrast to the small scale
yielding behavior in fig. 8.

Second, the (essentially constant) value of T for small, fully plastic
growth will not be identical to T0 . The difference between the two arises

in part because of the ratio «a in (36). If this ratio were near to

ssy/afy

unity (as it seems to be for the deeply double edge-cracked t nsile specimen;

see Appendix), then the difference between T and To would generally be

negligible for high T0 materials, since the argument of the 2n term

in eq. (36) will seldom be very small or large compared to unity in practical

cases. But for low T0 materials the differences could be significant.

For example, the argument of the 4£n term is approximately equal to the ratio

of the quarter-ligament size to the plastic zone Size corresponding to onset of

growth in a large specimen, sustaining small scale yielding conditions. For

a specimen which is sufficiently small that JIC conditions are attained only

in the fully plastic regime, this ratio is expected to be less than unity, so

that T exceeds To (or TO assyfafy if variations in a are consideréd).
For example, consider a material which is tested in a specimen size

at the limit of what is regarded as the permissible range for a valid fully

plastic JI test, namely b = 25 JIC/UO . Then eq. (36) predicts

C

T =~ [T0 + 7.8 Qn(EKSIUO)]aSSy/afy

0.002 (37)

"
1]

~1.3T + 28 , for o /E
o o

[To + 22]assyfafy

0.006

[T + 13]a =~ 1.3 To + 17 , for oO/E

0 ssy/afy
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where the last expressions given for each strength level are based on
assy/afy = 1.3 , as may be approximately correct for a bend specimen. We
note that when the observed fully plastic T value is sufficiently small,
To would have to be negative. Such a material would be expected to show

immediately unstable fracture when tested in specimens that are large enough

to meet small scale yielding conditions, although it exhibits stable crack growth

in small, fully plastic specimens. On the other hand, if the fully plastic
T value is large, say, greater than 100, the effect of the &n term can be
disregarded and differences between T and To arise only because (or if)
ny differs from %isy |

In fact in this latter case of high T materials, the &n terms in
eqs. (35,36) are negligible, and hehce‘the J versus a-a_ relation, at least
for small amounts of growth, is expected to show negligible dependence on
specimen size in the fully yielded range. In this respect our conclusions are
in partial agreement with those of Hutchinson and Paris [6],and this is of interest
because the basic assumptions are very different in the two approaches. |
Hutchinson and Paris appeal to strain hardening of the material (whereas we
have neglected hardening) and assume that this hardening is sufficiently
strong to create a HRR singular zone near a stationary crack tip, so that
the near tip field is then uniquely characterized by J . Next, they consider
crack growth unHef increasing imposed displacement on the specimen, and observe
that if the imposed displacement increases rapidly enough with increasing a ,
effects of strongly non-proportional stréssinglare limited to a small neighbor-
hood of the tip, whereas at greater distances the stress histories are such
that the approximation of deformation plasticity theory is valid. Hence they

assume thag a far field value of J 1is well-defined and path-independent every-

where except very near the tip, and this assumption has confirmation from the
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numerical studies of Shiﬁ [16], which are based on incremental plasticity and
model observed crack growth in a high T material. Hence, for sufficiently
large T , and degree of hardening, and for sufficiently limited amounts of
crack growth, Hutchinson and Paris assume that the growth process takes
place in a surrounding HRR singular field that is uniquely characterized by J ,
so that there is a universal relation of J to a-a_ . Further, their
work carries the implication that this same relation would apply for small
scale yielding, although our work does not support this notion, even for high
T materials, when the ratio assy/afy of eq. (36) differs from unity.
(We also note that Hutchinson and Paris [6] tacitly assume that this far
field J value, say, Jf , can be equated to the ''deformation theory" function
Jd = Jd(q,a) . We show in the Appendix that the two are definitely different
in the rigid-plastic limit, although the differences between jf and jd
will often be small for high T materialg).

In comparison to the Hutchinson and Paris approach, our growth criterion
is based on the actual structure of near tip fields as predicted for a material
of the incremental plasticity type. Indeed, the near tip fields are strongly
influenced by the path-dependent constitutive response of such a material.
On the other hand, we have modelled the material as ideally plastic and
this probably tends te overestimate dependences on the extent of yielding,
particularly those arising from differences between assy and “fy ,since,
on the basis of the HRR fields, hardening is widely thought to lead to a lessened
dependence of a on the extent of yielding than predictéd from ideally plastic
solutions. Also, while it is clear that an incremental formulation of the
plgsticity equations is correct physically, there is reason to believe that
models of the Prandtl-Reuss-Mises type, which assume invariant shapes of yield
surfaces in stress space, may not be fully adequate for strongly non-proportional

stress histories as experienced near a growing crack.
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While it is éf interest that our approach and that of Hutchinson and Paris
are consistent, at least to the neglect of a variations, for high T materials,
ig is well to remember that both approaches rest on assumptions which require
more study for full understanding of their range of validity. Also, enthusiasm
over this concurrence of conclusions should be tempered by the recognition
that the high .T materials may be so resistant to crack growth that unstable
crack propagation is seldom likely to be a practical problem. On the other
hand, for low T materials, which are more prone to instability, the conditions
which Hutchinson and Paris state for validity of a universal J versus a-a
 relation are not met,'and our work suggests significant dependencies on the
extent of yielding and specimen size.

We clase this section by outlining an alternate crack growth criterion
based on near tip plastic straining. The centeréd fan velocity field of
eqs. (10) includes the function f(6) , which is homogeneous of degree one in
a and in the rate of applied load. If, analogously to the transition from
eq. (16) to (19) in the expression for 8 , we assume this dependence to be
linear in a énd the load rate, then it is straightforward to show that the

P

asymptotic integration leading to eq. (13) for Eij yields expressions of

the form, as r - 0 ,

. a

P _ 2V o L dJ

Eij - E Gij(e) Ln b Mij(e) i (38)
- 0

in the fan for a continuously growing crack (here no summation is implied by

repeated indices). The functions Gij(e} are given by eqs. (14), but the

functions Lij(e] , of length dimensions, and the dimensionless functions

Mij(e) are undetermined by the asymptotic analysis.
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Similarly, the equivalent plastic shear strain Yp , with rate defined
by

WP = /'205‘09- = 20113e in the fan,

Jij (39)

is obtained by integration of eq. (11), adding on the yp accumulated discon- !

tinuously at the front boundary of the fan. This results in ' |

p_ 2(2-v) %o tan(8/2)] L(e)] , M(8) dJ -
VT e E E*“[tan(n/a)_' “‘[rJ o da (40) |

- where the length function L(6) and dimensionless function M(8) are again
undetermined by the asymptotic analysis. For example, setting 6 = n/2 ,
yp represents the gquivalent shear strain accumulated in the forward part of

.the fan and is given by

ag
P . v) =2 gnfl| + M4
v' = 1.88 (2-v) ¢ ﬁn[r] + o, da (41)

where L = L(n/2) , M = M(n/2) . Although verification would require detailed

comparison with numerical solutions in a region where these have great
inaccuracies, it seems reasonable to expect that L scales with the size of the
plastic region; being approximately proportional to EJ/cro2 for small scale
yielding, and that M is approximately invariant to growth. Hence the
features of the terms in this equation are expected to be similar to those of
analogous terms in eq. (21);

'Accordingly, if we require as a criterion for continuing crack growth
that all-pointsltloser than a certain small characteristic distance T above
and below the tip have accumula:ted a plastic strain equal to or greater than

a critical value yg as the crack approaches, we obtain
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c g da
° T

P _ M dJ 00 L )
Y, = — 5 + 1.88 (2-v) T Rn[—;] (42)

as the differential equation governing growth. This is identical in form
to the criterion studied here (compare eq. (27)) and is expected to lead to

qualitatively similar conclusions.
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Appendix: Interpretation of J at Full Plasticity

To clarify the interpretation of the term involving J in eq. (19),
and dJ/da in eq. (21), for fully plastic-specimens, consider the cracked
bend specimen of fig. 6 to consist of rigid-ideally plastic material. Let 8
be the rotation of one end of the specimen relative to the other. Then [10]

the moment required to continue deformation is

M= (0.63//3 )o_b’ (A-1)
and the rate qf opening at the tip is

§ = 0.37 bé_. | | (A-2)

These formulae are valid for stationary or growing cracks, and when the latter

is integrated for a continuously growing crack we obtain, for small r ,
§ = 0.37 r b do/da . '  (A-3)

As remarked in the text, if eqs. (19) and (21) are to reduce to (A-2) and (A-3)

in the rigid pl?stic limit LaolE + 0) with bounded &n R , it is necessary

that the definition of J be such that in this limit it reduces to an expression

for which J depends only on 6 and not on é_.
We examine two candidate definitions of J . First, the deformation

theory definition takes J to be the samé function of 6 and a (or b ) as

it would be if the current rotation 6 were imposed at a fixed value of b ,

namely the current b value. This J , called Jd , is given in the rigid-plastic
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case by the well-known expression

Jd =

(=g § 8]

Mo = [2(0.63)/V/3 Jo b8 = 0.73 o b6 . (A-4)

It does not have the desired feature, because

Jy = 0.73 0 (b6 - a) . (A-5)

An alternate definition is the far field contour J , called Je and,

for definiteness this is taken on the dashed line contour Fl + F2 + F3

coinciding with the specimen boundary in fig. 6. Thus

Jeo = ZJ
£ r.+r

(Wdy - T. 3u,/3x ds) (A-6)
T i
1 2 °3

(the factor 2 appears because only one-half of a complete contour is considered),

where
W= Jo..de.. (A-7)

L ]
is the density of stress working, Ti the traction and ug -the displacement

vector. The term with Ti vanishes on stress free surfaces rl and I‘3 ,

and it makes no net contribution on FZ since each Bui/ax is uniform there

(the boundary is rigid) and the integrated value of each Ti on rz vanishes

since the loading is pure bending. Also,- W vanishes on the rigid boundaries

r and T

2 whereas on Pl it has the value

3
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W=-(20 /Y3 e, = -(20/73 )au, /3y | (A-8)

since those points along T, which yield do so in compression under stress

1

= -(20 /V3 . Hence
oy, = ~(20,//3)

J = 2] Wdy = (20 /3 )[-20"] (A-9)
r ° y
1 .
where uP is the vertical displacement at point P in fig. 6. Now, the
motion of the rigid portions of the rigid-plastic specimen is well-known to
consist of rotation about a "hinge point'" having an x coordinate which extends
a distance 0.37 b ahead of the tip [10], and hence

211; = -(b-0.37b)6 = -0.63bd . (A-10)

Thus

0 o
bde = 0.730_ J bde (A-11)

Jg = [2(0.63)//3 lo, J .

0
where the integral follows the history of crack growth (i.e., b will in general
vary with 8 )3 It is obvious that Jf = Jd of (A-4) when the crack does not
grow as 6 1is applied. But when the crack is growing Jf exhibits the desired
feature

J. = 0.7300bé (i.e., independent of a ) . (A-12)

£

Hence, the symbol J which we use when discussing the fully plastic case

can consistently be identified with a far field value like Jf » although not
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with the deformation theory value J Further, (A-2) yields in the rigid-

d .

plastic case
8§ = 0.37 b6 = 0.51 jf/co . (A-13)

This is the origin of the value “fy ~ 0.51 wused in the text for the fully
yielded bend specimen.
Also, we observe that since
Jo = Jd + Jd a/b , or de/da = de/da + Jd/b FA-14)
for the rigid-plastic bend specimen, we expect the same to be approximately
valid for a fully yielded elastic-plastic bend specimen. Hence, if

dJ

_E %4 -
and Td = '—2—d-é- s (A—IS)

ag
o o

Tf = 2

~_ e Y
o da

where Tf should be considered as the T of eqs. (36,37), then

Ty = Tg - EJ /0 %b _ ' (A-16)
.
in this case. That.is, the value of the tearing modulus is sensitive to the
definition used for J , and Td may turn negative with increasing growth
while Tf remains positive. In particular, eq. (37) for the value of T
(interpreted as Tf ) at fhe onset of growth in a fully plastic bend specimen

with b = 25 JIC(GO becomes, in terms of Td ,
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T, = [To + 7.8 Rn(E{Sloo)]a - E/ZSUO

ssy/afy

~ 1.3 To +8 , for oo/E = 0.002 (A-17)

14

1.3T + 10 , for o /E = 0.006
o 0

where assy/afy has been set equal to 0.65/0.51 = 1.3 again. Hence, even

though J is fundamentally an incorrect parameter within our incremental,

d
ideally plastic model, its use does seem under typical conditions to bring the
fully plastic T value somewhat closer to To . In fact, if the differences

between afy and a« . were neglected, the difference between Td and T0

ssy
in the above expressions would be 2 and 6, respectively.

Finally, we remark that Jf does not seem to be the appropriate definition
of J for all rigid-plastic specimens. For example, suppose the specimen in
fig. 6 is considered to represent one-half of a double edge cracked tensile
specimen, with cracks deep enough to validate the Prandtl field over the
uncracked ligament, and let U be the extension of one end of the specimen -
relative to the other. Then it is straightforward to show [10] that the
deformation theory value is

Jy = [(2+m)/Y3 Jo U =2.970 U, (A-lé)

whereas Jf does not seem to have any unique value for the case of a growing
crack (due to non-uniqueness of the stress field in rigid regions of the specimen)
for the contour T shown. In this case it is Jd which exhibits the desired

feature that J is independent of a . Also, the rate of opening at the crack

tip is [10]

§ =20 = 0.67 Jy/a . . (ATIQ)
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Hence afy ~ 0.67 in this case, which is very close to what we have estimated
as the small scale yielding value. Thus, lessened differences between T and
To are expected for this type of specimen, particularly when T 1is based on
Jd"

Finally, for the center-cracked, rigid-plastic plane strain tensile
specimeh it is elementary to show that

Jy=Jg = czooffﬁiu s -~ (A-20)

d

provided that J_. is evaluated on a contour similar to that in fig. 6, and

f
that the opening rate at the tip is

§=10=0.87 J/o_ . : (A-21)
. However, this specimen does not have a Prandtl-like stress state at its tip,

and cannot be discussed in terms of the analysis in the body of the paper.
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Additional note: Since presentation of the paper we learned of the work of

L.I. Slepyan ("Growing crack during plane deformation of an elastic-plastic
body'", Izv. AN SSR. Mékhanika Tverdogo Tela, Vol. 9, pp. 57-67, 1974). Using
methods of asymptotic analysis similar to those of [12] and, for the growing
crack, [8] and [10], Slepyan determines the form of the near tip stress and
-"deformation fields for a crack growing under steady state conditions in an

- ideally plastic Tresca material. He comes to the same conclusions as in [2]
on the necessity of an elastic unloading zone of the form shown in fig. 1d.
The results of [2] have a slight dependence of the unloading zone boundary
angles 91 s 02 on the Poisson ratio, since [2] is based on the Mises model,

whereas Slepyan's work, based on the Tresca model, does not. But for

v = 1/2 the results are identical.
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Figure Captions

Fig. 1 Stress field at crack tip consists, in yielded sectors, of
either (a) centered fan or (b) constant stress regions. The full
Prandtl field (c) results for a stationary crack, at least.at small
scale yielding, but must be modified (d) with an elastic unloading

sector for a growing crack. N

Fig. 2 Comparison of crack tip stress state for a growing crack (dashed
lines, based on field of fig. 1d) with the Prandtl field for a sta- \
tionary crack (solid lines, based on field of fig. 1lc). Stresses

are made dimensionless by tensile yield strength.

Fig. 3 Opening profiles near the tips of growing cracks with various
values of T = (E/coz)dJ/da , and near a stationary crack tip; based
on a=065,8=5,R =_0.2EJ/0°2 (m plastic zone size).

Fig. 4 Finite element results for increments ' A§ of crack surface
opening due to load increase at fixed crack length, based on finite
element solution for small scale yielding with load history as shown.
(a) Load.increases following one-element steps of crack growth. (b)-

Last few increments of monotonic loading of stationary crack.

Fig. 5 Correlation of finite element results for crack opening 6 ,
in growth at constant J , with theoretical result. Each set of
peints corresponds to total & values, along the path of constant
J growth, after a one-element growth step. Resulting estimates

of B and R are shown.

Fig. 6 Speculation on the variation of R with J over the entire
range‘df yielding. The linear variation at low J 1is expected to
become non-linear as shown and to finally saturate in value (the

level = 1/4 1is a guess) at general yielding.

Fig. 7 Crack growth criterion of RS requires that a critical opening Gc
be maintained at small distance T behind the tip. As discussed at
end of paper, the criterion is similar qualitatively to others based
on other deformation parameters (e.g., plastic strain) of the near
tip field. '
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Fig. 8 Predicted variation of J with a-a_ for small scale yielding.
Curves are drawn for different values of To , which is the value of
(E/coz)dJ/da at the onset of growth under small scale yielding con-
ditions. Based on a = 0.65 , B = 5.08 . Growth criterion of RS
can be stated in terms of the '"macroscopic' parameters JIC and
T0 , rather than the "microscopic" parameters of Fig. 7. Note that
a-a is scaled by what is, approximately, the maximum plastic zone

radius at the onset of growth.
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