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We consider a discrete two-dimensional model of a crystal with particles having rotational degrees of
freedom. We derive the equations of motion and analyze its continuum analog obtained in the long-wave limit.
The continuum equations are shown to be the ones of the micropolar elasticity theory. The conditions when the
micropolar elasticity equations can be reduced to the equations of conventional elasticity theory are discussed.
We show that the rotational degrees of freedom are responsible for the anomalies in the elastic properties of
some of the dielectric crystals.

DOI: 10.1103/PhysRevB.65.094101 PACS nuniber77.84-s, 62.20.Dc, 46.05:b

I. INTRODUCTION with respect to the cubic axiS.However,isotropic materials
with negativer are quite rare. Cubic metals in the polycrys-
In many dielectric crystals the atom clusters are put to+talline (isotropig state show of about 0.3. It seems that the
gether to form a lattice and the forces that hold the clustersegativer in an isotropic medium can be explained through
together are usually much weaker compared to interclustahe rotational degrees of freedom. The examples are the
forces. It is natural to assume for such crystals that atonfoams®” and quartz(isotropic in theXY plane near the
clusters are rigid: that is, to neglect the high-frequency interw-3 phase transitioh®
cluster vibrations. The positions of a finite-size cluster is In auxetics the negative Poisson ratio can be explained by
defined not only by the displacement vector but also by theheir special electronic structut@.
orientation angles. Coupling of the translational and rota- An anomaly in the Poisson ratio has been reported for an
tional degrees of freedom may result in the appearance d§otropic two-dimensional (2D) microscopic model by
soft optic modes. Contributions of the rotational modes towbojciechowsk# In his model» becomes negative at high
the physics of dielectric crystals have been studied from a&ensities. A negative Poisson ratio has been reported for a
continuum viewpoint™* and with the use of microscopic model with rigid and elastic links randomly placed on a 2D
models®°>~° The role of rigid unit mode$RUM’s) in amor-  honeycomb network near the percolation threskBl@he
phous and crystalline silica has been studied in Ref. 10. Thgossibility to obtain an arbitrary in an anisotropic 2D mi-
theory of the coupling of an electric field with a field of croscopic model has been proved in Ref. 21. The model stud-
elastic strain has been developed by Sanntkov. ied in Ref. 21 is a 2D generalization of the elastically hinged
In the present paper we focus on unusual elastic propemolecule(EHM) model?>~%*
ties exhibited by the crystals with particles having rotational ~ Another anisotropic 2D model with particles having rota-
degrees of freedom. Particularly, we examine the nature afonal degrees of freedom has been offered by Ishibashi and
the negative Poisson ratio’) in such crystals. The Poisson Iwat&® in order to describe some properties of the fRid),
ratio characterizes the response of an elastic body to uniaxigkDP) family of crystals, which has been studied extensively
stress and is defined as the negative ratio between the traria-the last five decadeé8.Their model contains the rigid par-
verse strain and the corresponding axial strain. For most aicles square in shape, which stand for P@trahedra. The
the materials in nature lies in the range from 0 to 0.5 and model explains the variation of from —1 to 0. Here we
normally it is nearly equal to 0.3. Practically zerois ex-  carry out a more elaborate study of this model. We analyze
hibited, for example, by cork, and=0.5 (constant volume the elastic properties of the anisotropic model subjected to
medium is observed for rubber or for the plastic deforma- homogeneous strain; then we analyze the dispersion relations
tion of metals. of the discrete model in comparison with the dispersion re-
An elastic medium can be stable only if the Lame coeffi-lations of two different continuum approximations.
cients are positivé? This suggests that the Poisson ratio of  The paper is organized as follows. In Sec. Il we describe
an isotropic elastic medium can range freal to 0.5. For  the model and in Sec. Il the Hamiltonian and the equations
an anisotropic mediumy can take any value in some par- of motion are given. Section IV is devoted to an analysis of
ticular directions. That is why the negativeis often attrib- the homogeneous strain. In Sec. V the dispersion relations of
uted to the anisotropy of mediutd.The anisotropy is the the microscopic model are derived, and in Sec. VI the dis-
reason for the negative in highly anisotropic crystals like crete model is reduced to the continuum one and, under cer-
arsenic, antimony, and bismdfhand also in many single tain assumptions, to the anisotropic elasticity theory. In Sec.
crystals of cubic metals deformed in an oblique directionVIl the dispersion relations for continuum models are de-
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one particle[square area defined by the centers of particles
(m-1n-1), (mn—-1), (m,n), and (M—1,n)].

IlI. HAMILTONIAN AND EQUATIONS OF MOTION

We introduce the new variables

¢m,n=(_l)m+n‘Pm,n- 2

Then, the energy of the model can be written as

1 . . :
H=> mEﬂ MUZ ,+MoZ -+ 32 ,+Ch2

+ Cl[um,n_ umfl,n_A( ¢m,n+ d’mfl,n)]z

+ Cl[Um,n_ Um,nfl_A(¢m,n+ d’m,nfl)]2

2 2
X' +7(um,n+vm,n_um—l,n—l_vm—l,n—l)
X 5 5
+ 5 (Unn=Umn—Um-1p+1F0m-10+0(, (3
FIG. 1. The 2D microscopic model of a crystal. Absolutely rigid 2 omnoEmn EmeLaT moL

square particles are bound elastically and each particle experiences

the action of the rotational background potential. The lattice spacingvhere the first three terms give the kinetic energy, the fourth

is h, anda and « are the size and the orientation angle of particles,term gives the energy of the rotational on-site potential, the

respectively. following two terms give the energy of the vertex-to-vertex
bonds, and the last two terms give the energy of center-to-

rived and, in Sec. VIII, they are compared to that of thecenter bonds.

discrete model. Then, the equations of motion are

Il. DESCRIPTION OF THE MODEL MU n=C1(Unms 10— 2Um n+ Um—15) — C1A( s 10

We consider the 2D microscopic model of a crystal shown )
in Fig. 1. The model consists of absolutely rigid elastically —Pm-10)t 7(um+1,n+l+ Un-1n-1FtUm+1n-1
bound square particles and each particle experiences the ac-

tion of the rotational background potential. C,
The geometry of the model can be described by the two FUp—1n+1~4Umn) + ?(Um+1,n+1+vmfl,nfl
parameters: the lattice spacihgand the parameter
\/E _Um+l,n—l_vm—1,n+1)a (4)
A= 7a sina, (1)

MUm,n:Cl(vm,n+l_zvm,n+vm,nfl)_ClA(¢m,n+1
wherea and « are the size and the orientation angle of par-
ticles, respectively.

Particles have massl and moment of inertial. Each
particle experiences the action of the rotational background C,
potential with coefficientC. Elastic bonds with coefficient —Up—1n+1)t 7(vm+1,n+1+vm—1,n—1
C, connect the vertices of each particle with the vertices of
nearest neighbors. Elastic bonds with coeffici€atconnect
the center of each particle with the centers of next-nearest
neighbors. We are interested here in the elastic properties of .. 5
the model so that we do not introduce any anharmonic terms. J®mn=—C1A (dm+1nt Pm-1nt Pmnr1t Pmn-1

Particles are numbered with two indicesand n. Each
particle has three degrees of freedom, namely, two compo- TAbmn) + CoAUm 10~ Un-1nF Umn+1
nents of displacement vector from the lattice point, —Umn-1)—Cdhmn- (6)
Unn:Umn. and the angle of rotationp,, ,. A translational
cell of the modelsquare area defined by the centers of par-The two first equations give the balance of force components
ticles (m,n—1), (m+1,), (m,n+1), and fn—1,n)] con- and the third one gives the balance of moments acting on
tains two particles. However, the primitive cell contains only (m,n)th particle.

2
- ¢m,n—1) + 7(um+1,n+l+ um—l,n—l_ U+ 1n—-1

+Um+1,n71+Umfl,n+l_4vm,n)- (5
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IV. HOMOGENEOUS STRAIN
4
. L 1
Let us subject the model to the homogeneous strain with / \
the components,y ,&yy,&xy and_syx. The displacements of __:__2___:-_—_:1::?—- R e
particles in this case can be written as S
Upn=hmey+hne,,, vyp=hneyy+hmey,, 4 N A7
¢m,n: ¢ (7) —J’[/4 0 ﬂ/4
The unknown angle of rotatioh can be found from Eq. P
(6) rewritten in view of Eq.(7) in the form FIG. 2. Poisson ratio’ as the function of orientation angiof
) the applied uniaxial stress foA=0.5 and different sets of
—8C1A“¢p+2C,AN(exteyy) —C=0. (8)  c,c,,C,. Curve 1 corresponds ©=1, C,;=1, C,=1. Curve 2 is

for C=100,C,;=1, C,=1. Relatively largeC means that particles
almost do not rotate. Curves 3 and 4 are @+ 1, C,=100, C,
=1 andC=1, C;=1, C,=100, respectively.

The solution reads

2C,Ah(gyxt&yy) ©
= .
C+8C1A , 8ylyr C12033+ 0%3 (13)
VvV = — = .
Equationg7) and(9) define the displacements of particles Exrx C11C33~ Cis
in the model under homogeneous strain with components
Exx» Eyy, Exy, andey,. Analysis of Eq.(13) shows that’ is negative if and only

To analyze the anisotropy of the model let us calculate théf
components of the stress tensor in the coordinate system
X"Y' rotated with respect to the systexi¥ by angleg (see CC2g?(23) +4CC2+16C,Cy(2C,— C;)A2<0. (14)
Fig. 1). The result reads
One can see that this condition cannot be satisfied in the

Oxrx = Cr18xrxr T C18yryr T Crg€yryr absence of the rotational degrees of freedoks=(Q or C
—00),
Oyryr = C1€xrxr T CaByryr + Cogexryr Note that many crystals of KDP family demonstrate the
negative Poisson ratfd.
Oxryr = Oyrxr =Ca18xrxr + Cag8yryr +Cageiryr s (10) It is possible to demonstrate thatl<v’'<1 for any

positive C, C,, andC, and for anyA and 8. In Fig. 2 we

wherec; =cj; with plot v as the functions of8 for A=0.5 and different sets of

C11= Coy=E(COL B+ sint B) + 2(E,+ 2E-) coL3 i, C, C4, andC,. Curve 1 corresponds t6=1, C;=1, and
1= oz~ Ea(COS B SITB) + 2(E,+ 2Bg)cos B sim C,=1. Curve 2 is forC=100, C;=1, andC,=1. Rela-
Cio=2(E,— 2E;)co€B si B+ E,(cod B+ sirf B), tively large C means that particles almost do not rotate.

Curve 3 is forC=1, C;=100, andC,=1. In this case, the
Poisson ratio is negative in a wide range of uniaxial stress
orientations. Curve 4 is fot=1, C;=1, andC,=100.
Uniaxial stress along two high-symmetry directioBs
=0 and B=w/4 does not cause the appearance of shear
strain. For, example, the Poisson ratio for uniaxial stress
and the macroscopic elastic constants are related to the nflong 8=0 is
croscopic parameters as follows:

C13= — Cp3=(— E;+ E,+ 2E3)sin B cosB(cos B—sir’B),

C33=2(E;— E,)cos B sirt B+ Ez(cos B—sir? B)2,
11

. ) C,—4C2A%+8C,C,A? 15
CC;+4CIA 4CTA Vo= = — -,
E1:C2+;, E2:C2_—l, p=0 C1+C2+465A2+8C1C2A2

C+8C,A? C+8C,A?

where we have introducegd;=C,/C andC,=C,/C. In the
limiting caseC,>C,, one hayy— —1 if C;>1 andv—0 if
In the coordinate systeM{Y (8=0), one hass;=c;, E; C,<1. In the limiting caseC,>C,, one hasv—1.
=Cyp, andE3=Cgs. An interesting problem is to find the elastic constants of a

Let us calculate the Poisson ratio, which characterizes theolycrystal With randomly ori.ented microcrystals. We aver-
response of elastic body to uniaxial stress and is defined &ge the elastic constantg , given by Eq.(11), over orien-
the negative ratio between the transverse strain and the cdgtion angleg:
responding longitudinal strain. We puat,.,»#0 and oy
=0y =0y, =0, and find from Eq(10) (€1 =(Cyp)=(3E1+E,+2E3)/4,

E3:C2. (12)
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(€19 =(E1+3E;—2E3)/4, (ag+a,+Mw?)U+agV+a,d=0,
<Cl3>:<023>:01 a3U+(a1+a2+|V|a)2)V+a5<I>=0,
(Cag)=((C11) —(C12))/2. (16) aU+agV+ (ag+Jw?)®=0, (22)

One can see that after averaging there are only two indepeo\;
dent elastic constants as it should be for an isotropic elastic
body.

The Poisson ratio of the polycrystal becomes orientation
independent and we can write it in th€Y coordinate sys-

ere
ap=2C,[coghk,)—1], a;=2Cy[coghk,)—1],

a,=2C,[coghk,)coghk)—1],

tem:
Syy <C_12> El+ ZEZ_BEEAZ‘F 1&_162A2 a3: _ZCZSIrthX)SIr(hky)’
exx (C11) 3C;+6C,+8C2A%+ 485152A2(' , a,=2C;Asin(hk,), ag=2C;Asin(hk,),
1
_ _ _ 2 _
WhereC1=C1/C andCZZCZ/C. ag= 4ClA [COS(th)COS(hky)-l-l] C. (23)

In the limiting cases . . . . .
9 The dispersion relation can be obtained by setting the de-

C.>Co Co>1  then v —1 terminant of system, Eq22), equal to zero.
172, 2175 ' The dispersion curves, Eg22), can vanish only on the
C.>C. C.<l then v—1/3 boundary of the first Brillouin zone. This fact suggests that,
1 2 1 ’ ’

in the present form, our model does not support an incom-
mensurate phase. However, it is not difficult to revise the
model in a way that incommensurate phase would be pos-

. - = . sible.
tTch Zuntc)tlonv(cl,ct:z), given by tﬁqi('ltn’ Wast(:elr(non-l Let us analyze the dispersion relations for two high-
strated to be a monotone one, so that it cannot take valugs mmetry directiond,= k, andk, =0.

smaller than—1 or greater than 1/3. Recall that the Poisson
ratio of an isotropic solid must be in the rangel=v
<1/2. A. Casek,=k,=k

Now suppose that particles cannot rotate. To consider this In this casea,=a;, a,=as. The dispersion curves take
limit we put C>C; andC>C,; that is, the rotational back- the form
ground potential is very rigid. The same limit can be

achieved assuming th&t—0 which means that the size of 5 ag—ap—a, 5 , 2a;
particlesa— 0 [see Eq(1)]. In this limit, instead o, E,,  @1(K)=——y——, 023K =z1% \ 2+ 5, (24)

M
andE;, we have

C,>C,, then »—1/3. (18)

. . . where
Elzcl+C2, E2:C2, E3:C2, (19)
and the Poisson ratio becomes 2 =— Aot8+a; 3 7 :ao+_a2+a3 _ %
! 2M 21" 2 2M 2)°
. ex_(cl) EI+8E;-2E7 1 20 (25)
eyy (c¥) BE¥+E;+2EF 3 Acoustic modes are;, wz, andw, is the optic mode.
One can see that if the rotations of particles are suppressed, _
the Poisson ratio of the polycrystal does not depend on mi- B. Casek,=0
croscopic parametef3; andC, and is equal to 1/3, which is In this casea; =az=a;=0 and we come to the following
the common value for many natural elastic bodies. expressions for the dispersion curves:
V. DISPERSION RELATION 2 —ay 2 2 aﬁ
Searching for the solution to Eggl)—(6) in the form
Uy, (1) = Ui (@t + mhkctnhig) where
i agta, a agta, a
v (t):Ve|(wt+mhlg<+nhky)’ __ % 2 9 _%o )
mr 2= om0 2w a2 @
t :iq)ei(thrmhlg(Jrnhky)’ 21 ] ) )
$mn(t) @D Modesw; and w5 are the acoustic ones ang is the optic
one obtains one.
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VI. LONG-WAVE APPROXIMATION: ANISOTROPIC u= Uel (etTkxt kyy)' v =V (ettkect kyy),
ELASTICITY THEORY
—i i (wt+Kkex+kyy)
In the long-wave approximation Eg&l)—(6) become p=ide 7 (34)
and find that the set of homogeneous equatiord, i, and
pU=(C1+Co) Uy, + Czuyy+ 2C2”xy_ 2C1Ahil¢xa ® has the form of Eq(22) with

(28)
ap=—C;h%kZ, a;=—C;h%k, a,=—Coh?(ki+k)),
pvtt:CZUXX+(Cl+ Cz)Uyy+ ZCZUXy_ 2C1Ahild)y, 5
(29) a3:_2C2h k)(ky' a4:2C1Ath, a5:2C1Ahky,

Iu=—2C AN (et dbyy)+2C1AN(UycHvy) 8,=2CA°N* (K k) ~8C,AT-C. (39

—(C+8C,A2) ¢, (30) We note that thg coeffici.e.nts given. by Eg5) coincide with
the corresponding coefficients defined by E2B) expanded

where p=M/h? is the density of the medium. These equa-in Taylor series with respect tq, andk, up to second order.
tions are often called the equations of micropolar elasticity,This implies that the continuum model, Eq&8)—(30), can
which generalize the equations of conventional elasticitype used for the modeling of long-wave propagation. Disper-
theory. The main difference is that the micropolar elasticitysion curves in the particular directiokg=k, andk,=0 are
can take into account the coupling of the field of microscopicgiven by Eqs.(24) and (26) with the parameters defined by
rotations ¢(x,y) with the displacement fieldsi(x,y) and Eg.(35).
v(X,y). It is important to note that, in our cas¢(x,y) is a To calculate the dispersion relations for the equations of
slowly varying envelope function for the two-periodic- anisotropic elasticity, we substitute the first two expressions
modulated structurgsee Eq(2)]. Rotational degrees of free- of Eq. (34) into Egs.(32) and(33) and obtain
dom appear in many models and those models are described

by the equations similar to Eq&28)—(30). Equations(28)— (E1kG+Egki—pw?)U+(Ep+Eg)kk, V=0,
(30) have the same form as the equations of 2D micropolar 5 5 )
elasticity’ but in fact, the models do not coincide exactly (ExtEg)kykyU +(Egky +Eiky—pw?)V=0.  (36)

because there is some difference. in qogfficients. The struerpen the dispersion relations are
tural 2D model with orientable points jointed by extensible
and flexible rods presented in Ref. 6 also has the structure pwt=2,F 22+ (Ey+ Eg)zkikf,. (37)
identical to Eqs.(28)—(30) with coefficients different from
our model and from the micropolar medium by Erinden. where
Micropolar equations are used as continuum models for ma- 5 2 > 12
terials with beamlike microstructure. 22,=(E1 T Ba) (Kt ky),  22,=(E1—Eg) (K —kjy).
To obtain the equations of the conventional anisotropic (38)

elasticity theory we must neglect in E(B0) the inertia of  Note that the optic branch, is absent in the conventional
rotationsJ ¢, and the second derivativels, and¢,, . Then,  elasticity theory.

Along the directionk,=k,=k we have

2C,Ah
= (Uctuy), (B pwd(K)=(E;-Ek:  pwd(k)=(Ey+Ep+2E5)K?,
C+8C,A (39)
which coincides with Eq(9). and along the directiok, =0 we have
Now we can eliminate from Egs.(28) and (29) and ) 5 ) )

write pwi(ky)=Esk;, pos(k)=EK;. (40)

pUy=EUy,+ Eguyy+(Ex+E3)vky, (32) VIIl. DISCUSSION

pvy=Egvyyt Eqvyyt (Ex+Eg)Uyy, (33) In the above, we have derived the exact equations of mo-

tion for the discrete model, Eq$4)—(6), their long-wave

whereE;, E,, andE; are given by Eq(12). Equation32) ~ micropolar-type approximation, Eq&28)—(30), and the con-
and (33) are the equations of conventional two-dimensionalventional elasticity theory, Eq$32) and(33).
elasticity for an anisotropic medium. Let us compare the dispersion relations for these three
models. For purpose of illustration, we will consider a par-
ticular high-symmetry direction of the Brillouin zond,
=0, but all the conclusions made will be valid in general.

In Fig. 3, the dispersion curves foM=J=h=1,

First we calculate the dispersion relations for the con-A=0.5,C=4,C;=1, andC,=2 are presented. The three
tinuum approximation given by Eq$28)—(30). We substi- thick solid lines are the dispersion curves for the discrete
tute model[Eqg. (26) with coefficients defined by Ed23)]. The

VII. DISPERSION RELATIONS FOR APPROXIMATE
MODELS

094101-5



VASILIEV, DMITRIEYV, ISHIBASHI, AND SHIGENARI PHYSICAL REVIEW B 65 094101

' prove the approximation in the short-wave range one can
take into account the fourth-order terms in the Taylor expan-
sion. An alternative approach is the so-called many-field ap-
proximation when one uses more than one continuum field
] for the description of the generalized displacements. This
oL S0 approach was successfully used in Ref. 23 where the short-
wave soliton solution for a nonlinear discrete model has been
obtained.
/2% h Now let us turn to the discussion of the role of rotational
k, degrees of freedom. If particles cannot rotéfee limit of
C— o or, equivalentlyA—0), then¢(x,t) disappears from
FIG. 3. The dispersion curves fd=J=h=1, A=0.5, C  the system, Eqs(28)—(30), and we come to the following

=4, C;=1, andC,=2. The three thick solid lines are the disper- equations of conventional elasticity for the medium without
sion curves for the discrete modgtqg. (26) with coefficients de-  mijcrorotations:

fined by Eg.(23)]. The three thin solid lines correspond to the

micropolar-type app_roximatio[Eq. (26) with coefficients defined pU=(Cq+ Co) Uyt CzUyy+ 2C2nyr (41)
by Eqg.(35)]. Open circles present the two branches of the conven-
tional elasticity theory, Eq40).

pvtt=C2vXX+(C1+ Cz)Uyy+ 2C2uxy. (42)

three thin solid lines correspond to the micropolar-type ap- . )

proximation[Eq. (26) with coefficients defined by Eq35)]. _ If the rot_atmns of particles are not su_ppressed, thg model,
Open circles present the two branches of the conventiond]iScussed in this paper, presents a micropolar medium and
elasticity theory, Eq(40). the equation forp(x,t) must be introduced. However, even

One can see that the two linear branches of the converl this case, under the assumption thigt,, ¢y, andJéy
tional elasticity (open circles are tangent to the acoustic are Small, we could derive EgS32) and(33) which have the
branches for the discrete modghick solid lines atk,=0.  Same structure as Egetl) and (42) with coefficients rede-

The conventional elasticity does not describe the optic vibralin€d in order to take into account the rotations of particles.
tions of the discrete model. The termsg,, and ¢, are not small in the vicinity of

The micropolar elasticitythin solid lines gives a good crystal defects like the domain wall, dislocation, free surface,

approximation for all three branches of the discrete model irf" tiP Of & crack. They also cannot be neglected in the modu-
the range ok< /4h. lated or incommensurate phase. In all these cases

In Fig. 4 we show the same as in Fig. 3 but instead ofmlicropolar-type elasticity should be used.
C=4 we putC=40 in order to suppress the rotations of Formally, the functiong(x,t) can be eliminated from
particles. In this case the optic branch goes up and the twBdS:(28) and(29) even wheng,, and ¢, are not small and
continuum modelgthin solid lines and open circlegive ~ J¢u iS negligible but, in this case, the higher-order spatial
almost the same approximations of the acoustic branches gerivatives ofu andv will appear in the equations. Itis well
the discrete modslthick solid lines. known that the incommensurate phase cannot be described

One can see from Figs. 3 and 4 that the continuum apwithout taking into account the higher-order gradient terms.
proximations derived for the discrete model give an excellentVe have just demonstrated that these terms can appear in the
approximation in the range of the long waves and the acculedia with microscopic rotations. Thus, microscopic rota-
racy is not good for the short waves. This is a usual problenfions can be responsible for the appearance of incommensu-
for the continuum models of structural media. When derivingrat€ phase in crystals. o
the continuum analog to the discrete equations, we use the We can easily imagine the physical situation whesg
Taylor expansion, and the influence of high-order gradiengnd ¢y, are small but the inertia of the rotatiodg, cannot
terms is small for long waves but it is not small for a wave-Pe neglected. This can happen, for example, under an applied

length comparable with the size of a periodicity cell. To im- high-frequency electric field with possible resonance with
the optic branch. The coupling with the rotational mode can

. ' play an important role in the ultrasonic-wave propagation.
Effects of this kind cannot be studied in the framework of
conventional elasticity because the rotational optic branch is
absent in this theory. Here again the equation dgi,t)
3 i must be involved in the analysis.

Finally, we have shown in Sec. IV that the rotational de-
grees of freedom are responsible for the negative Poisson

/2h
k,

i/

ratio in a polycrystal.
As pointed out above, our model in the present form does
not support an incommensurate phase. But, for example, the

introduction of a third-neighbor interaction will make the
FIG. 4. Same as in Fig. 3 but instead®f 4 we putC=40in  vanishing of a dispersion curve inside the first Brillouin zone
order to suppress the rotations of particles. possible. An additional nonlinear term can make the incom-
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mensurate structure stable. Besides, the model with a nonlin-
earity will support solutions in the form of a domain wall or

PHYSICAL REVIEW B 65094101
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