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Elastic properties of a two-dimensional model of crystals containing particles
with rotational degrees of freedom
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We consider a discrete two-dimensional model of a crystal with particles having rotational degrees of
freedom. We derive the equations of motion and analyze its continuum analog obtained in the long-wave limit.
The continuum equations are shown to be the ones of the micropolar elasticity theory. The conditions when the
micropolar elasticity equations can be reduced to the equations of conventional elasticity theory are discussed.
We show that the rotational degrees of freedom are responsible for the anomalies in the elastic properties of
some of the dielectric crystals.
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I. INTRODUCTION

In many dielectric crystals the atom clusters are put
gether to form a lattice and the forces that hold the clus
together are usually much weaker compared to interclu
forces. It is natural to assume for such crystals that a
clusters are rigid: that is, to neglect the high-frequency in
cluster vibrations. The positions of a finite-size cluster
defined not only by the displacement vector but also by
orientation angles. Coupling of the translational and ro
tional degrees of freedom may result in the appearanc
soft optic modes. Contributions of the rotational modes
the physics of dielectric crystals have been studied from
continuum viewpoint1–4 and with the use of microscopi
models.2,5–9 The role of rigid unit modes~RUM’s! in amor-
phous and crystalline silica has been studied in Ref. 10.
theory of the coupling of an electric field with a field o
elastic strain has been developed by Sannikov.11

In the present paper we focus on unusual elastic pro
ties exhibited by the crystals with particles having rotatio
degrees of freedom. Particularly, we examine the nature
the negative Poisson ratio (n) in such crystals. The Poisso
ratio characterizes the response of an elastic body to unia
stress and is defined as the negative ratio between the t
verse strain and the corresponding axial strain. For mos
the materials in naturen lies in the range from 0 to 0.5 an
normally it is nearly equal to 0.3. Practically zeron is ex-
hibited, for example, by cork, andn50.5 ~constant volume
medium! is observed for rubber or for the plastic deform
tion of metals.

An elastic medium can be stable only if the Lame coe
cients are positive.12 This suggests that the Poisson ratio
an isotropic elastic medium can range from21 to 0.5. For
an anisotropic medium,n can take any value in some pa
ticular directions. That is why the negativen is often attrib-
uted to the anisotropy of medium.13 The anisotropy is the
reason for the negativen in highly anisotropic crystals like
arsenic, antimony, and bismuth14 and also in many single
crystals of cubic metals deformed in an oblique direct
0163-1829/2002/65~9!/094101~7!/$20.00 65 0941
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with respect to the cubic axis.15 However,isotropicmaterials
with negativen are quite rare. Cubic metals in the polycry
talline ~isotropic! state shown of about 0.3. It seems that th
negativen in an isotropic medium can be explained throu
the rotational degrees of freedom. The examples are
foams16,17 and quartz~isotropic in theXY plane! near the
a-b phase transition.18

In auxetics the negative Poisson ratio can be explained
their special electronic structure.19

An anomaly in the Poisson ratio has been reported for
isotropic two-dimensional~2D! microscopic model by
Wojciechowski.8 In his modeln becomes negative at hig
densities. A negative Poisson ratio has been reported f
model with rigid and elastic links randomly placed on a 2
honeycomb network near the percolation threshold.20 The
possibility to obtain an arbitraryn in an anisotropic 2D mi-
croscopic model has been proved in Ref. 21. The model s
ied in Ref. 21 is a 2D generalization of the elastically hing
molecule~EHM! model.22–24

Another anisotropic 2D model with particles having rot
tional degrees of freedom has been offered by Ishibashi
Iwata25 in order to describe some properties of the KH2PO4
~KDP! family of crystals, which has been studied extensive
in the last five decades.26 Their model contains the rigid par
ticles square in shape, which stand for PO4 tetrahedra. The
model explains the variation ofn from 21 to 0. Here we
carry out a more elaborate study of this model. We anal
the elastic properties of the anisotropic model subjected
homogeneous strain; then we analyze the dispersion rela
of the discrete model in comparison with the dispersion
lations of two different continuum approximations.

The paper is organized as follows. In Sec. II we descr
the model and in Sec. III the Hamiltonian and the equatio
of motion are given. Section IV is devoted to an analysis
the homogeneous strain. In Sec. V the dispersion relation
the microscopic model are derived, and in Sec. VI the d
crete model is reduced to the continuum one and, under
tain assumptions, to the anisotropic elasticity theory. In S
VII the dispersion relations for continuum models are d
©2002 The American Physical Society01-1
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rived and, in Sec. VIII, they are compared to that of t
discrete model.

II. DESCRIPTION OF THE MODEL

We consider the 2D microscopic model of a crystal sho
in Fig. 1. The model consists of absolutely rigid elastica
bound square particles and each particle experiences th
tion of the rotational background potential.

The geometry of the model can be described by the
parameters: the lattice spacingh and the parameter

A5
A2

2
a sina, ~1!

wherea anda are the size and the orientation angle of p
ticles, respectively.

Particles have massM and moment of inertiaJ. Each
particle experiences the action of the rotational backgro
potential with coefficientC. Elastic bonds with coefficien
C1 connect the vertices of each particle with the vertices
nearest neighbors. Elastic bonds with coefficientC2 connect
the center of each particle with the centers of next-nea
neighbors. We are interested here in the elastic propertie
the model so that we do not introduce any anharmonic ter

Particles are numbered with two indicesm and n. Each
particle has three degrees of freedom, namely, two com
nents of displacement vector from the lattice poi
um,n ,vm,n , and the angle of rotation,wm,n . A translational
cell of the model@square area defined by the centers of p
ticles (m,n21), (m11,n), (m,n11), and (m21,n)# con-
tains two particles. However, the primitive cell contains on

FIG. 1. The 2D microscopic model of a crystal. Absolutely rig
square particles are bound elastically and each particle experie
the action of the rotational background potential. The lattice spa
is h, anda anda are the size and the orientation angle of particl
respectively.
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one particle@square area defined by the centers of partic
(m21,n21), (m,n21), (m,n), and (m21,n)#.

III. HAMILTONIAN AND EQUATIONS OF MOTION

We introduce the new variables

fm,n5~21!m1nwm,n . ~2!

Then, the energy of the model can be written as

H5
1

2 (
m,n

H Mu̇m,n
2 1M v̇m,n

2 1Jḟm,n
2 1Cfm,n

2

1C1@um,n2um21,n2A~fm,n1fm21,n!#2

1C1@vm,n2vm,n212A~fm,n1fm,n21!#2

1
C2

2
~um,n1vm,n2um21,n212vm21,n21!2

1
C2

2
~um,n2vm,n2um21,n111vm21,n11!2J , ~3!

where the first three terms give the kinetic energy, the fou
term gives the energy of the rotational on-site potential,
following two terms give the energy of the vertex-to-vert
bonds, and the last two terms give the energy of center
center bonds.

Then, the equations of motion are

Müm,n5C1~um11,n22um,n1um21,n!2C1A~fm11,n

2fm21,n!1
C2

2
~um11,n111um21,n211um11,n21

1um21,n1124um,n!1
C2

2
~vm11,n111vm21,n21

2vm11,n212vm21,n11!, ~4!

M v̈m,n5C1~vm,n1122vm,n1vm,n21!2C1A~fm,n11

2fm,n21!1
C2

2
~um11,n111um21,n212um11,n21

2um21,n11!1
C2

2
~vm11,n111vm21,n21

1vm11,n211vm21,n1124vm,n!, ~5!

Jf̈m,n52C1A2~fm11,n1fm21,n1fm,n111fm,n21

14fm,n!1C1A~um11,n2um21,n1vm,n11

2vm,n21!2Cfm,n . ~6!

The two first equations give the balance of force compone
and the third one gives the balance of moments acting
(m,n)th particle.

ces
g
,
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ELASTIC PROPERTIES OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 65 094101
IV. HOMOGENEOUS STRAIN

Let us subject the model to the homogeneous strain w
the components«xx ,«yy ,«xy , and«yx . The displacements o
particles in this case can be written as

um,n5hm«xx1hn«xy , vm,n5hn«yy1hm«yx ,

fm,n5f. ~7!

The unknown angle of rotationf can be found from Eq.
~6! rewritten in view of Eq.~7! in the form

28C1A2f12C1Ah~«xx1«yy!2Cf50. ~8!

The solution reads

f5
2C1Ah~«xx1«yy!

C18C1A2
. ~9!

Equations~7! and~9! define the displacements of particle
in the model under homogeneous strain with compone
«xx , «yy , «xy , and«yx .

To analyze the anisotropy of the model let us calculate
components of the stress tensor in the coordinate sys
X8Y8 rotated with respect to the systemXY by angleb ~see
Fig. 1!. The result reads

sx8x85c11«x8x81c12«y8y81c13«x8y8 ,

sy8y85c21«x8x81c22«y8y81c23«x8y8 ,

sx8y85sy8x85c31«x8x81c32«y8y81c33«x8y8 , ~10!

whereci j 5cji with

c115c225E1~cos4b1sin4b!12~E212E3!cos2b sin2b,

c1252~E122E3!cos2b sin2b1E2~cos4b1sin4b!,

c1352c235~2E11E212E3!sinb cosb~cos2b2sin2b!,

c3352~E12E2!cos2b sin2b1E3~cos2b2sin2b!2,
~11!

and the macroscopic elastic constants are related to the
croscopic parameters as follows:

E15C21
CC114C1

2A2

C18C1A2
, E25C22

4C1
2A2

C18C1A2
,

E35C2 . ~12!

In the coordinate systemXY (b50), one hasE15c11, E2
5c12, andE35c33.

Let us calculate the Poisson ratio, which characterizes
response of elastic body to uniaxial stress and is define
the negative ratio between the transverse strain and the
responding longitudinal strain. We putsx8x8Þ0 and sy8y8
5sx8y85sy8x850, and find from Eq.~10!
09410
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n852
«y8y8

«x8x8

5
c12c331c13

2

c11c332c13
2

. ~13!

Analysis of Eq.~13! shows thatn8 is negative if and only
if

CC1
2tg2~2b!14CC2

2116C1C2~2C22C1!A2,0. ~14!

One can see that this condition cannot be satisfied in
absence of the rotational degrees of freedom (A50 or C
→`).

Note that many crystals of KDP family demonstrate t
negative Poisson ratio.27

It is possible to demonstrate that21,n8,1 for any
positiveC, C1, andC2 and for anyA andb. In Fig. 2 we
plot n8 as the functions ofb for A50.5 and different sets o
C, C1, and C2. Curve 1 corresponds toC51, C151, and
C251. Curve 2 is forC5100, C151, and C251. Rela-
tively large C means that particles almost do not rota
Curve 3 is forC51, C15100, andC251. In this case, the
Poisson ratio is negative in a wide range of uniaxial str
orientations. Curve 4 is forC51, C151, andC25100.

Uniaxial stress along two high-symmetry directionsb
50 and b5p/4 does not cause the appearance of sh
strain. For, example, the Poisson ratio for uniaxial str
alongb50 is

nb505
C̄224C̄1

2A218C̄1C̄2A2

C̄11C̄214C̄1
2A218C̄1C̄2A2

, ~15!

where we have introducedC̄15C1 /C andC̄25C2 /C. In the
limiting caseC̄1@C̄2, one hasn→21 if C̄1@1 andn→0 if
C̄1!1. In the limiting caseC̄2@C̄1, one hasn→1.

An interesting problem is to find the elastic constants o
polycrystal with randomly oriented microcrystals. We ave
age the elastic constantsci j , given by Eq.~11!, over orien-
tation angleb:

^c11&5^c22&5~3E11E212E3!/4,

FIG. 2. Poisson ration8 as the function of orientation angleb of
the applied uniaxial stress forA50.5 and different sets of
C,C1 ,C2. Curve 1 corresponds toC51, C151, C251. Curve 2 is
for C5100, C151, C251. Relatively largeC means that particles
almost do not rotate. Curves 3 and 4 are forC51, C15100, C2

51 andC51, C151, C25100, respectively.
1-3
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^c12&5~E113E222E3!/4,

^c13&5^c23&50,

^c33&5~^c11&2^c12&!/2. ~16!

One can see that after averaging there are only two inde
dent elastic constants as it should be for an isotropic ela
body.

The Poisson ratio of the polycrystal becomes orientat
independent and we can write it in theXY coordinate sys-
tem:

n52
«yy

«xx
5

^c12&

^c11&
5

C̄112C̄228C̄1
2A2116C̄1C̄2A2

3C̄116C̄218C̄1
2A2148C̄1C̄2A2

,

~17!

whereC̄15C1 /C and C̄25C2 /C.
In the limiting cases

C̄1@C̄2 , C̄1@1, then n→21,

C̄1@C̄2 , C̄1!1, then n→1/3,

C̄2@C̄1 , then n→1/3. ~18!

The functionn(C̄1 ,C̄2), given by Eq.~17!, was demon-
strated to be a monotone one, so that it cannot take va
smaller than21 or greater than 1/3. Recall that the Poiss
ratio of an isotropic solid must be in the range21<n
<1/2.

Now suppose that particles cannot rotate. To consider
limit we put C@C1 andC@C2; that is, the rotational back
ground potential is very rigid. The same limit can b
achieved assuming thatA→0 which means that the size o
particlesa→0 @see Eq.~1!#. In this limit, instead ofE1 , E2,
andE3, we have

E1* 5C11C2 , E2* 5C2 , E3* 5C2 , ~19!

and the Poisson ratio becomes

n* 52
«xx

«yy
5

^c12* &

^c11* &
5

E1* 13E2* 22E3*

3E1* 1E2* 12E3*
5

1

3
. ~20!

One can see that if the rotations of particles are suppres
the Poisson ratio of the polycrystal does not depend on
croscopic parametersC1 andC2 and is equal to 1/3, which is
the common value for many natural elastic bodies.

V. DISPERSION RELATION

Searching for the solution to Eqs.~4!–~6! in the form

um,n~ t !5Uei (vt1mhkx1nhky),

vm,n~ t !5Vei (vt1mhkx1nhky),

fm,n~ t !5 iFei (vt1mhkx1nhky), ~21!

one obtains
09410
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~a01a21Mv2!U1a3V1a4F50,

a3U1~a11a21Mv2!V1a5F50,

a4U1a5V1~a61Jv2!F50, ~22!

where

a052C1@cos~hkx!21#, a152C1@cos~hky!21#,

a252C2@cos~hkx!cos~hky!21#,

a3522C2sin~hkx!sin~hky!,

a452C1A sin~hkx!, a552C1A sin~hky!,

a6524C1A2@cos~hkx!cos~hky!11#2C. ~23!

The dispersion relation can be obtained by setting the
terminant of system, Eq.~22!, equal to zero.

The dispersion curves, Eq.~22!, can vanish only on the
boundary of the first Brillouin zone. This fact suggests th
in the present form, our model does not support an inco
mensurate phase. However, it is not difficult to revise
model in a way that incommensurate phase would be p
sible.

Let us analyze the dispersion relations for two hig
symmetry directionskx5ky andky50.

A. CasekxÄkyÄk

In this casea05a1 , a45a5. The dispersion curves tak
the form

v1
2~k!5

a32a02a2

M
, v2,3

2 ~k!5z16Az2
21

2a4
2

MJ
, ~24!

where

z152
a01a21a3

2M
2

a6

2J
, z25

a01a21a3

2M
2

a6

2J
.

~25!

Acoustic modes arev1 , v3, andv2 is the optic mode.

B. CasekyÄ0

In this casea15a35a550 and we come to the following
expressions for the dispersion curves:

v1
2~kx!5

2a2

M
, v2,3

2 ~kx!5z16Az2
21

a4
2

MJ
, ~26!

where

z152
a01a2

2M
2

a6

2J
, z25

a01a2

2M
2

a6

2J
. ~27!

Modesv1 andv3 are the acoustic ones andv2 is the optic
one.
1-4
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VI. LONG-WAVE APPROXIMATION: ANISOTROPIC
ELASTICITY THEORY

In the long-wave approximation Eqs.~4!–~6! become

rutt5~C11C2!uxx1C2uyy12C2vxy22C1Ah21fx ,
~28!

rv tt5C2vxx1~C11C2!vyy12C2uxy22C1Ah21fy ,
~29!

Jf tt522C1A2h2~fxx1fyy!12C1Ah~ux1vy!

2~C18C1A2!f, ~30!

wherer5M /h2 is the density of the medium. These equ
tions are often called the equations of micropolar elastic
which generalize the equations of conventional elastic
theory. The main difference is that the micropolar elastic
can take into account the coupling of the field of microsco
rotations f(x,y) with the displacement fieldsu(x,y) and
v(x,y). It is important to note that, in our case,f(x,y) is a
slowly varying envelope function for the two-periodic
modulated structure@see Eq.~2!#. Rotational degrees of free
dom appear in many models and those models are desc
by the equations similar to Eqs.~28!–~30!. Equations~28!–
~30! have the same form as the equations of 2D micropo
elasticity,1 but in fact, the models do not coincide exact
because there is some difference in coefficients. The st
tural 2D model with orientable points jointed by extensib
and flexible rods presented in Ref. 6 also has the struc
identical to Eqs.~28!–~30! with coefficients different from
our model and from the micropolar medium by Eringe1

Micropolar equations are used as continuum models for
terials with beamlike microstructure.7

To obtain the equations of the conventional anisotro
elasticity theory we must neglect in Eq.~30! the inertia of
rotationsJf tt and the second derivativesfxx andfyy . Then,

f5
2C1Ah

C18C1A2
~ux1vy!, ~31!

which coincides with Eq.~9!.
Now we can eliminatef from Eqs. ~28! and ~29! and

write

rutt5E1uxx1E3uyy1~E21E3!vxy , ~32!

rv tt5E3vxx1E1vyy1~E21E3!uxy , ~33!

whereE1 , E2, andE3 are given by Eq.~12!. Equations~32!
and ~33! are the equations of conventional two-dimensio
elasticity for an anisotropic medium.

VII. DISPERSION RELATIONS FOR APPROXIMATE
MODELS

First we calculate the dispersion relations for the co
tinuum approximation given by Eqs.~28!–~30!. We substi-
tute
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u5Uei (vt1kxx1kyy), v5Vei (vt1kxx1kyy),

f5 iFei (vt1kxx1kyy), ~34!

and find that the set of homogeneous equations inU, V, and
F has the form of Eq.~22! with

a052C1h2kx
2 , a152C1h2ky

2 , a252C2h2~kx
21ky

2!,

a3522C2h2kxky , a452C1Ahkx , a552C1Ahky ,

a652C1A2h2~kx
21ky

2!28C1A22C. ~35!

We note that the coefficients given by Eq.~35! coincide with
the corresponding coefficients defined by Eq.~23! expanded
in Taylor series with respect tokx andky up to second order
This implies that the continuum model, Eqs.~28!–~30!, can
be used for the modeling of long-wave propagation. Disp
sion curves in the particular directionskx5ky andky50 are
given by Eqs.~24! and ~26! with the parameters defined b
Eq. ~35!.

To calculate the dispersion relations for the equations
anisotropic elasticity, we substitute the first two expressio
of Eq. ~34! into Eqs.~32! and ~33! and obtain

~E1kx
21E3ky

22rv2!U1~E21E3!kxkyV50,

~E21E3!kxkyU1~E3kx
21E1ky

22rv2!V50. ~36!

Then the dispersion relations are

rv1,3
2 5z17Az2

21~E21E3!2kx
2ky

2, ~37!

where

2z15~E11E3!~kx
21ky

2!, 2z25~E12E3!~kx
22ky

2!.
~38!

Note that the optic branchv2 is absent in the conventiona
elasticity theory.

Along the directionkx5ky5k we have

rv1
2~k!5~E12E2!k2, rv3

2~k!5~E11E212E3!k2,
~39!

and along the directionky50 we have

rv1
2~kx!5E3kx

2 , rv3
2~kx!5E1kx

2 . ~40!

VIII. DISCUSSION

In the above, we have derived the exact equations of m
tion for the discrete model, Eqs.~4!–~6!, their long-wave
micropolar-type approximation, Eqs.~28!–~30!, and the con-
ventional elasticity theory, Eqs.~32! and ~33!.

Let us compare the dispersion relations for these th
models. For purpose of illustration, we will consider a pa
ticular high-symmetry direction of the Brillouin zone,ky
50, but all the conclusions made will be valid in general

In Fig. 3, the dispersion curves forM5J5h51,
A50.5, C54, C151, andC252 are presented. The thre
thick solid lines are the dispersion curves for the discr
model @Eq. ~26! with coefficients defined by Eq.~23!#. The
1-5
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VASILIEV, DMITRIEV, ISHIBASHI, AND SHIGENARI PHYSICAL REVIEW B 65 094101
three thin solid lines correspond to the micropolar-type
proximation@Eq. ~26! with coefficients defined by Eq.~35!#.
Open circles present the two branches of the conventio
elasticity theory, Eq.~40!.

One can see that the two linear branches of the conv
tional elasticity ~open circles! are tangent to the acoust
branches for the discrete model~thick solid lines! at kx50.
The conventional elasticity does not describe the optic vib
tions of the discrete model.

The micropolar elasticity~thin solid lines! gives a good
approximation for all three branches of the discrete mode
the range ofk,p/4h.

In Fig. 4 we show the same as in Fig. 3 but instead
C54 we put C540 in order to suppress the rotations
particles. In this case the optic branch goes up and the
continuum models~thin solid lines and open circles! give
almost the same approximations of the acoustic branche
the discrete model~thick solid lines!.

One can see from Figs. 3 and 4 that the continuum
proximations derived for the discrete model give an excell
approximation in the range of the long waves and the ac
racy is not good for the short waves. This is a usual prob
for the continuum models of structural media. When deriv
the continuum analog to the discrete equations, we use
Taylor expansion, and the influence of high-order gradi
terms is small for long waves but it is not small for a wav
length comparable with the size of a periodicity cell. To im

FIG. 3. The dispersion curves forM5J5h51, A50.5, C
54, C151, andC252. The three thick solid lines are the dispe
sion curves for the discrete model@Eq. ~26! with coefficients de-
fined by Eq. ~23!#. The three thin solid lines correspond to th
micropolar-type approximation@Eq. ~26! with coefficients defined
by Eq. ~35!#. Open circles present the two branches of the conv
tional elasticity theory, Eq.~40!.

FIG. 4. Same as in Fig. 3 but instead ofC54 we putC540 in
order to suppress the rotations of particles.
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prove the approximation in the short-wave range one
take into account the fourth-order terms in the Taylor exp
sion. An alternative approach is the so-called many-field
proximation when one uses more than one continuum fi
for the description of the generalized displacements. T
approach was successfully used in Ref. 23 where the sh
wave soliton solution for a nonlinear discrete model has b
obtained.

Now let us turn to the discussion of the role of rotation
degrees of freedom. If particles cannot rotate~the limit of
C→` or, equivalently,A→0), thenf(x,t) disappears from
the system, Eqs.~28!–~30!, and we come to the following
equations of conventional elasticity for the medium witho
microrotations:

rutt5~C11C2!uxx1C2uyy12C2vxy , ~41!

rv tt5C2vxx1~C11C2!vyy12C2uxy . ~42!

If the rotations of particles are not suppressed, the mo
discussed in this paper, presents a micropolar medium
the equation forf(x,t) must be introduced. However, eve
in this case, under the assumption thatfxx , fyy , andJf tt
are small, we could derive Eqs.~32! and~33! which have the
same structure as Eqs.~41! and ~42! with coefficients rede-
fined in order to take into account the rotations of particl

The termsfxx and fyy are not small in the vicinity of
crystal defects like the domain wall, dislocation, free surfa
or tip of a crack. They also cannot be neglected in the mo
lated or incommensurate phase. In all these ca
micropolar-type elasticity should be used.

Formally, the functionf(x,t) can be eliminated from
Eqs.~28! and~29! even whenfxx andfyy are not small and
Jf tt is negligible but, in this case, the higher-order spa
derivatives ofu andv will appear in the equations. It is wel
known that the incommensurate phase cannot be descr
without taking into account the higher-order gradient term
We have just demonstrated that these terms can appear i
media with microscopic rotations. Thus, microscopic ro
tions can be responsible for the appearance of incomme
rate phase in crystals.

We can easily imagine the physical situation wherefxx
andfyy are small but the inertia of the rotationsJf tt cannot
be neglected. This can happen, for example, under an app
high-frequency electric field with possible resonance w
the optic branch. The coupling with the rotational mode c
play an important role in the ultrasonic-wave propagatio
Effects of this kind cannot be studied in the framework
conventional elasticity because the rotational optic branc
absent in this theory. Here again the equation forf(x,t)
must be involved in the analysis.

Finally, we have shown in Sec. IV that the rotational d
grees of freedom are responsible for the negative Pois
ratio in a polycrystal.

As pointed out above, our model in the present form do
not support an incommensurate phase. But, for example
introduction of a third-neighbor interaction will make th
vanishing of a dispersion curve inside the first Brillouin zo
possible. An additional nonlinear term can make the inco

-
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mensurate structure stable. Besides, the model with a no
earity will support solutions in the form of a domain wall o
soliton and comparison with the results of Pouget a
Maugin28 will become possible.
t
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