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We present a phenomenological theory together with explicit calculations of the electronic ground-state
energy, the surface contribution, and the elastic constants �“Lamé parameters,” i.e., Poisson ratio, Young’s
modulus� of graphene flakes on the level of the density-functional theory employing different standard func-
tionals. We observe that the Lamé parameters in small flakes can differ from the bulk values by 30% for
hydrogenated zigzag edges. The change results from the edge of the flake that compresses the interior. When
including the vibrational zero-point motion, we detect a decrease in the bending rigidity, �, by �26%. The
vibrational frequencies flow with growing N due to the release of the edge-induced compression. We calculate
the corresponding Grüneisen parameters and find good agreement with previous authors.
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I. INTRODUCTION

Since its fabrication has become technologically feasible,1

graphene has been in the focus of frontier research.2–4 One of
its most celebrated properties are its massless low-energy
excitations5,6 �“Dirac fermions”�, which emanate from the
symmetries of the honeycomb lattice. The electronic proper-
ties of graphene flakes are quite different from bulk graphene
due to the finite size and the presence of edges.7,8 In particu-
lar, calculations suggest that the zigzag edges of graphene
nanoribbons �quasi-one-dimensional� have two flat bands at
the Fermi energy9,10 that introduce magnetism.11–18 Recent
theoretical studies on zigzag-edged graphene flakes also con-
firm a tendency toward edge magnetism.17–20 Thus this
gives an added motivation for fabricating graphene-based
nanostructures.21–26 The fabrication of such structures with
well-defined edges still poses a considerable technological
challenge. Therefore, only very few experiments with struc-
tures exhibiting zigzag edges have been reported;27–29 a de-
tailed investigation of the edge physics still needs to be done.

An increased interest in the elastic properties of graphene
has developed recently.21,30–43 This is, for instance, because
experiments suggest that graphene samples exhibit a corru-
gated structure28,44–46 �“ripples”� even at relatively low tem-
peratures. Their origin is thought to be due to residual elastic
strain produced by the experimental preparation technique.47

Another motivation comes from exploring the feasibility of
strain engineering the electronic band structure48 �“pseudo-
magnetic” fields�.

Also for elastic properties, edge effects can be highly rel-
evant. Hence studies of flake elastic properties are interesting
in their own right. Namely, there is an intimate relation be-
tween the electronic structure and the atomic geometry of
graphene. For example, the electronic spectrum of a certain
class of armchair graphene nanoribbons is reported to ac-
quire a spectral gap due to an edge-induced lattice dimeriza-
tion along the transport direction.13

In our study we investigate the ground-state energy, the
elastic properties, and the phonon spectrum of N�N
graphene sheets �“flakes”� as displayed in Fig. 1 using the

density-functional theory �DFT�. We show that the different
chemical nature of C-C bonds at the hydrogenated edge as
compared to the bulk leads to a nearly homogenous isotropic
compression, i.e., strain. As a consequence, the average C-C
distance in a 3�3 flake is reduced by a substantial amount,
0.3%; for comparison, strain as achieved in typical pressure
experiments does not usually exceed values �1%.34,49,50

The presence of the surface-induced strain leaves various
traces in the flakes’ interior observables. �a� The flakes elas-
tic constants, i.e., the Lamé parameters, are enhanced as
compared to the bulk case. For isotropic strain in smallest
flakes �3�3�, the �inverse� compressibility �+� �for a pre-
cise definition see below, Eq. �2�� increases by 30%; for
shear forces the increase is even bigger, almost a factor of 2.
�b� Under bond compression the interatomic forces typically
increase so that even the short-wavelength vibrations, in
particular, the optical phonons, exhibit a “blueshift” of
their frequencies with decreasing flake sizes. This “flow”
can be seen in the variation in the Raman spectra with
strain27,49,51–54 and can be described in the standard manner
by Grüneisen parameters. The values that we find here of
Grüneisen parameters, agree reasonably well with previous
reports.49,52,55

Even though one might suspect, that our topics have al-
ready been dealt with extensively in the literature,54–58 a de-
tailed investigation of the elastic properties of nanoflakes is
yet to be done; this refers, in particular, to an analysis of
edge and finite-size effects of hydrogenated zigzag flakes
which we perform in this work.

II. GROUND-STATE ENERGY OF HOMOGENOUS,
PLANAR FLAKES

Quite generally, the total energy of a graphene flake such
as the one depicted in Fig. 1 is a sum of local contributions.
In principle, these may be thought of as contributions per
bond or per atom. The latter perspective has been worked out
in the Appendix. Here, we will focus on a representation in
terms of bond energies valid for flakes with a homogenous
C-C distance, d
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FN�d� = Ni��d� + Ne��d� + Nc�
c�d� +

�e�d�
Ne

+
�i�d�

Ni
,

�1�

where Ni denotes the number of internal C-C bonds with an
associated binding energy �, Ne denotes the number of edge
located C-C bonds with energy �, and �c includes the corner
contributions, where Nc is the number of bonds linking the
ten corner atoms, Nc=6 in Fig. 1. The coefficients �e,i are
further expansion parameters. The binding energy per
C-C-CH edge group is close to 2� but not identical to it. For
instance, � also includes corrections of internal bonds, that
still “feel” the presence of the surface. Similarly, Nc�

c is
approximating the binding energy of the corner groups �two
HC-CH groups and two C-CH-C groups�.

We mention that the representation in Eq. �1� is slightly
simplified in the following sense. In general, the boundary
�shape� of a given flake, e.g., as depicted in Fig. 1 does not
share the hexagonal symmetry of the honeycomb lattice. For
this reason, in flakes with a fully relaxed atomic structure
bond lengths and bond angles are not strictly all the same.
Our DFT calculations indicate, however, that such distor-
tions, though clearly detectable, give only small corrections
to those phenomenological parameters that we are mostly
interested in.

The continuum theory of two-dimensional membranes has
been devised for an inhomogeneous flake with neighboring
bonds exhibiting slowly �in space� varying bond distances,
d�r�, and angles. In this formulation the elastic energy is
represented by the functional,59

E =
�

2
�

A
d2r��2h�2 +

� + �

2
�

A
d2r�uxx + uyy�2

+
�

2
�

A
d2r�4uxy

2 + �uxx − uyy�2� . �2�

The flake coordinates are given with respect to a planar ref-
erence state with area A, that lives in the r= �x ,y� plane;
accordingly, the in-plane coordinates constitute the displace-
ment vector, u�x ,y�, that measures the translation of each
membrane point �x ,y ,z� with respect to the reference state.
The out-of-plane distortions define the height field h�x ,y�;
for the planar case h=0. u and h together constitute the strain
tensor �i , j=x ,y�,

uij =
1

2
��iuj + � jui + �ih� jh + ¯� , �3�

where �nonlinear� higher order gradient terms have been ne-
glected. It is clear that the form of uij depicted in Eq. �3� is a
symmetric construction with respect to the spatial derivatives
of u ensuring, e.g., invariance under in-plane rotations. Such
infinitesimal rotations correspond to u	 �y ,−x� and hence the
strain must be invariant under such displacements u.

The total elastic energy Eq. �2� is a sum over contribu-
tions which resemble local oscillators in the membrane
plane. The first term is proportionate to the curvature �2h
and introduces the bending rigidity �. It describes the energy
cost for bending the membrane without changing the bond
lengths or in-plane bond angles.60 The Lamé parameters, �
and �, appearing in the second and third terms of Eq. �2�
describe the in-plane rigidity.

For homogenous, planar membranes the elastic theory Eq.
�2� may be considered as a continuum approximation to Eq.
�1� which does not make explicit reference to boundary
terms. Edges are accounted for only in the boundary condi-
tions and �possibly� in a dependency of the Lamé parameters
on the position with respect to the edge. Usually not included
in Eq. �2� is the fact that this spatial dependency supports
long-range terms, �1/flake size. They modify the Lamé pa-
rameters appearing in Eq. �2� even inside the flake’s interior.

Phenomenological parameters

1. Isotropic strain

In order to illustrate the cooperative effect between sur-
face and bulk, we consider an expansion of Eq. �1� in terms
of the variable 
= �d−d0� /d0; 
 quantifies the strain inside
the flake. The bulk energy per bond has an expansion,

� = �0 +
1

2
�2
2 +

1

6
�3
3 +

1

24
�4
4 + ¯ , �4�

where the bulk bond length d0 is to be determined at Ni,e
→�. The surface energy may also be expanded about a
minimum bond length, d0

e, but, in general, d0
e �d0. After all,

in the limit Ni,e→�, just the first term in Eq. �1� contributes
to the energy per area and therefore d0 needs to minimize �,
only. Hence, we introduce the relative deviation of surface
and bulk optimal bond lengths, d= �d0−d0

e� /d0, so that we
have an expansion

� = �̄0 +
1

2
�̄2�
 + d�2 +

1

6
�̄3�
 + d�3 +

1

24
�̄4�
 + d�4

¯

� �0 + �1
 +
1

2
�2
2 +

1

6
�3
3 + ¯ , �5�

where the coefficients in the second line are defined in terms
of the expansion the line before. The elastic properties of the
flake are determined by the expansion parameters
�2,3,4 ,�1,2,3.

At any finite value of Ni,e, optimization must also include
the boundary �i.e., surface� terms and therefore the optimal
value of 
, 
N, is nonvanishing in this case; specifically,

FIG. 1. Geometry of the N�N hydrogenated graphene flakes�h-
ere N=4�, that we have used for the density-functional calculations.
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N = −
�1

�2

Ne

Ni
� − d

�̄2

�2

Ne

Ni
. �6�

In order to calculate the feedback of this shift into the elastic
parameters, we expand F in the vicinity of its minimum, 
N,
to the fourth order in 
−
N. Recalling that this corresponds
to a strain u�x�=
x we can compare the result with Eq. �2�
and thus find to leading order in Ne /Ni

� + � =
1

4
	�2 +

Ne

Ni
�2
 +

1

4
�3
N +




12
	�3 +

Ne

Ni
�3 + �4
N
 .

�7�

The first term on the rhs of expression �7� simply accounts
for the separate, additive contributions of bulk and surface
�i.e., edge� energies. The edge contribution, that appears
here, could formally be accounted for in a generalized ver-
sion of Eq. �2� where one adds a boundary term. Similarly,
by allowing for a dependency of the Lamé parameters on
strain itself, one could also include additive anharmonic ef-
fects, second bracket first two terms. In either case, the phe-
nomenological parameters that enter the conventional elastic
theories of the continuum are the same for each flake size
and shape. Adapting these parameters to each flake geometry
separately is not foreseen in this framework

The interesting pieces in 
N are the terms, which mix the
surface and bulk parameters: �3
N��1�3 /�2. They encode
the “cooperative” effect between boundary induced strain

and bulk anharmonicities. It is due to them, that the flakes
elastic parameters need to be adjusted in principle for every
geometry separately.

2. Shear strain

An analogous analysis as for the isotropic strain also ap-
plies to shear forces. The expansion is even in the shear
strain u= �0,
sx�

� = �0 +
1

2
�̃2
s

2 +
1

24
�̃4
s

4 + ¯ , �8�

� = �0 +
1

2
�̃2
s

2 +
1

24
�̃4
s

4 + ¯ . �9�

The new expansion parameters, �̃i , �̃i , i=2,4 , . . ., are, in
general, dependent on the flake geometry. Again, a compari-
son to Eq. �2� yields

� = �̃2 + �̃2 +
1

12

s

2��̃4 + �̃4� . �10�

Here, the surface and bulk energies give strictly additive con-
tributions, and a cooperative effect does not emerge.

III. DENSITY-FUNCTIONAL CALCULATIONS

A. Method

In Fig. 1 we display the geometry of the N�N-graphene
flake that is employed in our calculations: Ni= �N−1��3N
−1� and Ne=8�N−1�. Electronic structure calculations have
been performed for a given atomic configuration �C-C dis-
tance, flake geometry, etc.� on the basis of the density-
functional theory as implemented in the quantum chemistry
package TURBOMOLE.61 We are comparing GGA functionals
�BP86 �Refs. 62 and 63� and PBE �Refs. 64 and 65�� with a
hybrid functional �B3LYP �Ref. 66�� and use a minimal basis
set �SVP �Ref. 67��. Specifically, we are working at zero
temperature and approximate the ground-state energy, Eq.
�1�, by the DFT estimate for the total binding energy of the
flake

Fel�N,d� ª Eel�N,d� − Efree�N� �11�

with

TABLE I. Minimum C-C bond length as extracted from bulk
energy and surface energy correspondingly �see Fig. 2, upper and
middle panels�. The distance in d0 and do

e leads to a nearly homog-
enous pressure on the flake that modifies elastic and electronic-
structure properties. Data are shown for three different functionals
used in DFT calculation.

d0

�Å�
d0

e

�Å�

BP86 1.432�0.002 1.427�0.001

B3LYP 1.426�0.001 1.421�0.002

PBE 1.431�0.001 1.426�0.005

2.6 2.65 2.7 2.75 2.8

d [a
0
]

-5.22

-5.2

-5.18

-5.16

-5.14

Ψ
[e

V
]

{N}: 3,4..9
{N}: 3,4..8
{N}: 3,4..7

-7.52

-7.5

-7.48

-7.46

-7.44

ψ
[e

V
]

-0.04 -0.02 0 0.02 0.04
ε (Isotropic Strain)

-10.55
-10.5

-10.45
-10.4

-10.35

ψ
c

[e
V

]

d0 = 2.706 [a.u]

FIG. 2. �Color online� Bulk ���, surface �edge, ��, and corner
��c� energy per carbon bond in the graphene flakes, Fig. 1, calcu-
lated with density-functional theory �BP86 functional�. Data based
on the evaluation of three sets of flake sizes ranging from �N�
=3, . . . ,9, and a five-parameter fit to Eqs. �1� and �11� per d values.
�a0ª0.529 Å.�
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Efree�N� = NHEH + NCEC, �12�

where EH/C denote the DFT energies of a free charge neutral
hydrogen/carbon atom and NH/C denotes the number of
hydrogen/carbon atoms in the flake.

B. Results and discussion

1. Isotropic strain

A sequence of DFT calculations has been performed for
N=3, . . . ,9 and different values of the C-C distance, d. For
each distance, Fel�N ,d� has been calculated. In order to ex-
tract the expansion coefficients of Eq. �1�,
��d� ,��d� ,�c�d� ,�e�d� ,�i�d�, we have performed five-
parameter fits on sets of raw DFT data. These fits were ap-
plied to three data sets consisting of �N�=3, . . . ,7, �N�
=3, . . . ,8, and �N�=3, . . . ,9. The results for the surface,
bulk, and corner energy have been displayed in Fig. 2. The
scatter between the fitting parameters belonging to different
data sets is relatively small, which illustrates the stability of
the fit.

The lattice constant of bulk graphene is estimated from
the minimum position of ��d� Fig. 2, upper panel as d0
=2.706a0, where a0=0.529 Å denotes the Bohr radius.
Comparing this position to the minimum of the edge �sur-
face� energy, Fig. 2, center panel, d0

e =2.694a0, we find d

=0.44%. This indicates clearly the compression of the C-C
bond length near the edge. The shift of the minimum position
to lower values becomes even more pronounced near the
corners, i.e., in �c�d�, see Fig. 2, lower panel.

To obtain also the other phenomenological parameters, a
second �polynomial� fit of the traces ��d� ,��d�, Fig. 2, ac-
cording to Eqs. �4� and �5� has been performed; all fitting
parameters are summarized in Tables I–III.

When fitting the raw data to get � ,� ,�c the terms in
1 /Ni,e could not be neglected for the system sizes that we

considered. The corresponding amplitudes are displayed in
Fig. 3. Unlike it was the case with the previous data, Fig. 2,
the amplitudes �i,e of the 1 /Ni,e corrections still exhibit a
considerable variation with increasing system size, which is
due to even order terms that have been neglected in the ex-
pansion Eq. �1�. Interestingly, while the magnitude of �i,e�
�
is still shifting the slope and perhaps also the sign of the two
functions have converged, already. Under this assumption we
may conclude that both amplitudes flow closer to zero values
when 
 increases. This behavior is compatible with the
simple expectation that the main effect incorporated in the
1 /Ni,e corrections is the discreteness of the flake’s electronic
spectrum with level spacings i,e for bulk and surface
modes. With increasing 
 the bandwidth decreases and so do
i,e and �i,e.

In the Appendix we have repeated this analysis for a rep-
resentation of the free energy as a sum of atomic contribu-
tions, Eq. �A1�. The results are equivalent, of course, but the
detailed comparison of the results based on our phenomeno-
logical theory with earlier findings for bulk systems, which
we have relegated there, is simplified in this way. In a nut-
shell, our extrapolation scheme recovers the known values
for the surface free energy �per Angstrom� and the edge
stress with excellent accuracy, see Table VII and below Eq.
�A4�.

2. Shear strain

A largely analogous method as was adopted for the iso-
tropic strain has also been applied for shear forces. In this
case, the convergence of the DFT calculations turned out to
be considerably more difficult so that the investigated system
sizes range from �N�=3, . . . ,7, only. From our fitting proce-
dure we could determine the response of the bulk energy and
surface energy to the shear strain, 
s, as shown in Fig. 4. The
parameters entering Eqs. �8� and �9� can be extracted and are
listed in Table IV.

TABLE II. Bulk-energy coefficients as defined in Eq. �4�. These
coefficients are extracted from fitting Eq. �4� to the data in Fig. 2,
upper panel.

−�0

�eV�

1
2�2

�eV�
− 1

6�3

�eV�

BP86 5.223�0.001 46.301�0.082 128.3�2

B3LYP 5.008�0.001 47.7�0.4 154�32

PBE 5.373�0.004 45.57�0.43 187�25

TABLE III. Edge �surface� coefficients as defined in Eq. �5�.
These coefficients are extracted from fitting Eq. �5� to the data in
Fig. 2, middle panel.

−�0

�eV�
�1

�eV�

1
2�2

�eV�
− 1

6�3

�eV�

BP86 7.515�0.006 0.285�0.015 44.93�0.43 113�19

B3LYP 7.187�0.006 0.261�0.015 45.6�2.2

PBE 7.63�0.01 0.308�0.011 47.5�1.1
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φi
[e

V
]

FIG. 3. �Color online� Dependency of the amplitudes �i,e de-
scribing the corrections in 1 /Ne,i to the binding energy Fel�N�.
Data were obtained by the five-parameters fit, already underlying
the traces shown in Fig. 2.
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IV. FLAKE ELASTIC PROPERTIES

In the previous section, the focus was on the behavior of
the energy on the flake size under isotropic and shear strains.
In this section, we discuss and illustrate what our previous
findings imply for the elastic properties of a single flake with
a fixed size, N. Partly, we are considering the same set of
data again, but now plotting observables directly for N fixed.

A. Homogenous isotropic strain

Figure 5 shows, how the excess energy per unit cell grows
under increasing strain for different flake sizes N. It is readily
seen from this plot, that there is a shift of the equilibrium
lattice constant d�N� to smaller values. In the light of the
previous section, this shift is the expected consequence of
the surface-induced strain 
N. The inset shows the scaling
with Ne /Ni.

In addition, we also extract the flake elastic constant �
+� from the parabolic shape of the curves, Fig. 5. To this
end, we replot the data in Fig. 6 left, so as to highlight the
curvature and its strain dependency. On the basis of Eq. �7�
we can conclude that the offset of the curves is a conse-
quence of �a� the presence of the surface and the extra energy
required for its compression �term Ne /Ni in Eq. �7�� and �b�
the feedback of the surface strain 
N into the bulk C-C dis-
tance. Extrapolating the zero-strain values into the limit, N
→�, we find �el+�el�71 per benzene ring, see Table V,

matching well our result �2 /4�23.5 per �bulk� bond de-
rived in the previous section, Table II, since each ring con-
tributes three bonds. This check is displayed in Fig. 6, right.
The plot also reveals that the deviation of elastic parameters
from their bulk values in small flakes may not be very small.
For our smallest flakes, N=3 it reaches almost 30%.

Additional information can be extracted from Fig. 6 left,
about anharmonicities which manifest themselves in the
slope of the curves displayed. This prefactor of the anhar-
monic term �linear in 
� in Eq. �7� admits the following
interpretation. The slope changes with increasing N since the

-5.223

-5.222

-5.221

-5.22
Ψ

[e
V

]
{N}: 3,4..7

0 0.005 0.01 0.015 0.02
ε

s
(Shear strain)

-7.513

-7.512

-7.511

-7.51

-7.509

ψ
[e

V
]

FIG. 4. �Color online� Change in the energy when applying a
shear strain in graphene flakes. Upper panel shows the change in
bulk energy per interior C-C bond; lower panel exhibits change in
surface �edge� energy per C-C bond. Data sets are for system sizes
�N�=3, . . . ,7 and extracted from an expression analogous for shear
to Eqs. �1� and �11�. The lines indicate the polynomial fit according
to Eqs. �8� and �9� with parameter given in Table IV.

TABLE IV. Bulk- and surface-shear-energy coefficients as ex-
tracted from fitting Eq. �8� �Eq. �9�� to the data in Fig. 4 upper panel
�lower panel�.

1
2�̃2

�eV�
− 1

24�̃4

�eV�

1
2 �̃2

�eV�

1
24�̃4

�eV�

BP86 8.4�0.4 871�50% 9�3.3 5237�60%

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004
( d-d

0
)/d

0

0

5

10

15

20

∆E
/N

2
[e

V
]

N:= 3
N:= 4
N:= 5
N:= 6
N:= 7
N:= 8

0 0.2 0.4 0.6 0.8 1
N

e
/N

i

2.69

2.695

2.7

2.705

2.71

d(
N

)
[a

0]

FIG. 5. �Color online� Excess energy E per unit cell generated
by rescaling all bond length, d, �homogeneous, isotropic strain�. E
exhibits flow of the equilibrium bond length with the linear flake
size N. Main panel: E over bond length d employed in the simu-
lation. d is measured relative to the bulk bond length. The lines
serve as a guide to the eyes. Inset: extrapolating the equilibrium
bond length d�N� into the bulk limit: d0=2.707�0.001.
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2102( µ
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) = 143.613

FIG. 6. �Color online� Estimating the sum of the Lamé param-
eters �el+�el and the boundary correction �offset of traces� from E
displayed in the previous Fig. 5. Left: data for curvature exhibit a
slope which indicates the linear dependency of the Lamé parameter
�el on strain. �Linear terms in �el do not appear, see Fig. 9.� Right:
extrapolating the curvature at 
=0 into the bulk limit.
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contributions of the surface ��3 term� and the surface-
induced bulk compression ��4
N term� diminish. A nonvan-
ishing value of �3 /12 for the slope will remain however
even in the bulk limit.

B. Shear strain

Following the same strategy as we did before with Fig. 6,
we plot in Fig. 7 the excess energy Es induced by pure
shear strain, u�x�=
s�0,x�. Again, the plot emphasizes the

curvature in this quantity, �, and how it evolves with the
flake size. Since Es is even in the shear strain, only positive
values of 
s are given. Also, for the same reason anharmonic
terms exist only in the quartic order so that the displayed
data traces have zero slope. Similar to the previous case of
isotropic strain, we also witness here a very strong depen-
dency of the elastic constant on the flake size. In fact, for
shear strain it reaches almost 70% for the small system sizes
that we are considering.

C. Buckling-induced strain

We present results from an additional DFT study, where
we investigate the transverse stiffness of the graphene flake
that gives rise to the elastic parameter �. To this end we
employ the following strategy. Each flake has a center pair or
center ring of carbon atoms, see Figs. 1 and 8. To create a
transverse probing field h�r�, we lift the center atoms by the
distance h0 over the reference plane. After this, the atomic

TABLE V. Comparison of C-C-bond distance in bulk graphene, elastic constants, Poisson ratio ��=� / �2�+���, and Young’s modulus
�Y =2��+���1−�� /Aring� as extracted from Figs. 5–7, respectively, by extrapolating the values in bulk limit �N→�� with previous works.
Data are shown for three different functionals we used in DFT calculation. The area of a benzene ring is estimated as Aring=33d0

2 /2.

d0

�Å�
�el+�el

�eV�
�el

�eV� �
Y

�N/m�

BP86 1.432�0.001 70.715�0.011 50.95�0.01 0.162 356.23

B3LYP 1.427�0.001 71.21�0.12

PBE 1.431�0.002 69.027�0.012

Prev. calc. 1.42 �Refs. 37 and 70� 66.571 �Ref. 37� 49.45 �Ref. 37� 346 �Ref. 37�
1.41 �Ref. 43� 0.173 �Ref. 31� 307 �Ref. 41�
1.45 �Ref. 71� 0.16 �Ref. 71� 336 �Ref. 71�

0.31 �Ref. 39� 312 �Ref. 39�
0.149 �Ref. 72� 345 �Ref. 72�
0.179 �Ref. 73� 341 �Ref. 73�

Expt. �Graphene� 342 �Ref. 34�

Expt. �Graphite� 1.421 �Ref. 74� 0.165 �Ref. 75� 371 �Ref. 76�a

1.422 �Ref. 76�
aAssuming graphene thickness 0.335 nm.
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FIG. 7. �Color online� Estimate for Lamé parameter �el deter-
mined from the excess energy Es per unit cell under pure shear
strain with strength 
s. �Procedure similar to previous Fig. 6.� Left
panel: dependency of curvature of Es�
s� on the linear flake size
N. Due to mirror symmetries of the unit cell, linear corrections do
not appear for the shear parameter �el. Right: extrapolating the
curvature into the bulk limit.

FIG. 8. Buckling flakes of N=5 and 6 with different central
configurations of carbon atoms. The atomic configuration of C at-
oms is relaxed under the constraint that the center atoms remain at
a given height h0 above the ground plane while edge atoms �H and
C� remain sitting within this plane �h=0�.
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structure of the flake is relaxed under the constraint that the
set of edge atoms �H atoms and edge C atoms� can move
only within the reference plane; edge atoms cannot shift in h
direction.77 In this way, a flake is equipped with a single
ripple while at the same time the associated strain field u�x�
remains negligibly small. In order to estimate the integrated
curvature we numerically compute the bivariate function
which interpolates the scattered data values �h�r� field� at
any predefined smooth mesh. We then use this interpolated
function to perform the second-order numerical derivative at
any arbitrary precision.

Figure 9 displays how the excess energy Eh associated
with the ripple grows with the increased integrated curvature,

I� =
1

2
� d2r�h�r��2. �13�

The increase is linear, as expected from Eq. �2� with a slope
that is only weakly dependent on the flake size, see inset Fig.
9. This implies that nonlinearities remain small as long as the
ratio of the ripples amplitude and wavelength, h0 /L, does not
exceed �5%. The bending rigidity thus found is �el
=1.24 eV which is well consistent with the value 1.1 eV
obtained by Fasolino et al.30

Notice that there is a significant scattering of almost 20%
in earlier theoretical estimates for � and derived quantities,
see Table 2 in Ref. 78. Discrepancies appear because differ-
ent theoretical techniques are being employed, e.g., empirical
potentials42 and density-functional theory but also because of
modeling artifacts. For example, extracting � from the elastic
energy of carbon nanotubes �radius R� requires a very careful
extrapolation in 1 /R. If subleading terms are ignored, there is
a pronounced tendency for overestimation, e.g., �
=1.46 eV in Ref. 72. These authors used nanotubes with

smaller tube radius, hence bigger curvature, where nonlinear
effects become important. We can check the bending rigidity
using the same curvature in Fig. 9 �inset� as reported in Ref.
72 and find a reasonable agreement with their value.

V. ZERO-POINT MOTION

In this chapter we extend our analysis of flake elastic
properties and take also the zero-point motion of the atom
cores into account, that constitute the hexagonal lattice. Now,
the energy acquires a second term,

F�N,d� = Fel�N,d� + Fvib�N,d� �14�

with

Fvib =
1

2�
p

��p�N,d� �15�

where p labels all the flake’s vibrational modes. The vibra-
tional excess energy associated with stretching the flake
reads

Fvib =
�

2 �
p

�p�N,d� − �p�N,d�N�� , �16�

where ��N ,d�N�� denotes the vibration energies in the ab-
sence of strain and d�N� the equilibrium bond length, see
inset Fig. 5. Also Fvib can be expanded in terms of the slow
elastic modes,

Fvib�h,u� =
1

2
�

A
d2r�h�h�r��2 − �

A
d2r�

ij

�u
ijuij�r�

�17�

with expansion parameters �h ,�u that represent averages of
Grüneisen parameters over all vibrational modes. Specifi-
cally, we have in isotropic media

�h = ��
p

�p�p
h, �u

ii = ��
p

�p�p
ii, �18�

where �p
h =� ln �p /�hii and �p

ii=� ln �p /�
ii. In a two-
dimensional sample79 with a mirror symmetry one expects
�u

xy =�u
yx=0; the change in phonon frequencies should be

even in the shear strain, 
s. Combining Eq. �17� with an
expansion of Fel in full analogy with Eq. �2� and after
completing the square, we find,

Felvib�N,d� =
�el + �h

2
�

A

d2r��2h�2 +
�el + �el

2
�

A

d2r

�	uii −
�u

ii

�el + �el

2

+
�el

2
�

A

d2r�uxx − uyy�2

+ uxy
2 . �19�

For clarity, we have indicated in this expression the bare
electronic coefficients �i.e., with frozen atomic cores� by
�el ,�el ,�el. Likewise, the displacement field u�x� is defined
with respect to the optimum flake geometry-ignoring vibra-
tional terms.
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FIG. 9. �Color online� Estimating the Lamé parameter � deter-
mined from the excess energy E of a bulging flake with maximum
height at h0 over the unperturbed �flat� plane �see Fig. 8�. Main
panel: change in energy E with the integrated curvature I�

=�d2r�h�r��2 for different flake sizes N. Inset: the ratio �
=E / I� depend on N due to the effect of edge compression.
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In this way we can observe two facts. �i� Vibrations
modify the bare transverse stiffness �el in Eq. �19�, �=�el
+�h. �ii� Vibrations also affect interatomic distances. The ef-
fect can be understood as an effective strain, which stretches
the bare C-C distances: �u

ii / ��el+�el�. �iii� The change in the
C-C bond lengths eventually feeds back into all elastic coef-
ficients. Therefore, in a more complete treatment of higher
order terms also modifications in �el ,�el would occur.

A. DFT calculations of the Grüneisen parameters

In order to estimate the Grüneisen parameters, �h ,�u, we
should calculate the vibrational spectrum of flakes with and
without applied strain. To this end we adopt the following
procedure. For every flake size, N, we find the atomic geom-
etry with the optimal electronic energy, see, e.g., Fig. 1. This
constitutes the set of freely relaxed “parent states.” The re-
laxation ensures the Hessian, that characterizes interatomic
forces, to become a positive definite matrix.80

In the present study we focus on the impact of phonons on
the bulk elastic constants. There we may eliminate contribu-
tions of surface vibrations by assigning an infinite mass to
the surface H and C atoms. Other than this, the calculation of
vibrational modes and frequencies for the relaxed flake is a
standard procedure.81,82

Thereafter, each parent state thus obtained is used in order
to create two new families. The first family is constructed to
obtain �u. It derives by changing the bond length of edge
C-C-pairs by a factor of 1+
 keeping all atoms still inside
the base plane �h=0�. For each value 
 the internal C atoms

are relaxed and the vibrational spectrum together with the
average strain field, Iu�
�=�dr�uxx+uyy�, are recalculated. In
this process it is important to have edge atoms at infinite
mass. This ensures that the flake energy is in a �constrained�
minimum so that all frequencies are real.

In order to determine �h a second family has been con-
structed. It consists of the buckled flakes, Fig. 8, that we
have studied in the previous section in order to extract �el.
Again, after assigning infinite mass to the edge atoms for
each family member, the vibrational spectrum and the con-
secutive modification of the zero-point energy can be calcu-
lated.

B. Results and discussion

In Fig. 10 the change in the zero-point energy, Fvib, is
plotted over the integrated strain fields. The Grüneisen pa-
rameters are given by the slope near zero strain; their nu-
merical values are listed in Table VI. For a discussion of our
results we first recall that the vibrational spectral density of
states of the carbon sheet has a strong peak in the optical
frequency regime, cf. Fig. 11, near 1600 cm−1. It is the “G-
peak,” that corresponds to an in-plane mode, where neigh-
boring atoms vibrate in opposite direction as depicted in Fig.

TABLE VI. Survey over the fitted Grüneisen parameters ex-
tracted from the data in Figs. 10 and 11, respectively. For the defi-
nitions of �u,h see Eq. �18�.

BP86, N=6 Prev. calc. Expt.

�u �eV /Å2� −0.055

�h �eV� −0.32

�u / ��el+�el� −0.004

�D 2.6 2.7a

�G 2.2 2.0b 1.99c,d

aReference 70.
bReference 83.
cReference 49.
dReference 53.
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12 �right�. This mode gives the dominating contribution to
the total zero-point energy. Another significant contribution
comes from the frequency range 500–1000 cm−1, where one
observes the mixing of out-of-plane modes with in-plane
modes. A third important mode is the “D-peak” near
1350 cm−1 that reflects the breathing mode as shown in Fig.
12 �left�. This mode is particularly interesting when studying
finite-size �edge� effects in graphene flakes. The reason is
that in bulk graphene the coupling of the D-peak to the elec-
tromagnetic fields is suppressed, since the D6h symmetry of
the hexagonal unit cell remains intact and inhibits the forma-
tion of the dipole moment. By contrast, in flake with an
overall symmetry that is lower than D6h, the D-peak is ob-
servable with a strength proportional to the inverse flake
size.

Therefore, we can understand the sign of �h as a conse-
quence of a softening of these modes in the sample regions
with nonzero curvature �h�r��2. Similarly, �u is negative,
indicating the increase in the atomic oscillator frequency that
occurs when the interatomic distance is diminished.

While the sign of �h,u was not unexpected, it is worth
noting that the vibrational contributions to the phenomeno-
logical material parameters are actually not so small. The
bare electronic bending rigidity, �el is reduced by as much as
26% down to �=�el+�h=0.88 eV. Similarly, when express-
ing the effect of vibrations on the atomic lattice as an effec-
tive strain pushing the atoms to larger distances, then this
strain reaches values up to 0.4%.

Here, we also calculate the Grüneisen parameters associ-
ated with individual modes �see Fig. 12�. The right panel in
Fig. 11 shows the flow of the Raman frequencies �upper
half D, lower G� with the applied strain. The frequency de-
creases linearly �as described in Eq. �17�� with decreasing
compression due to anharmonicity of the interatomic poten-
tial. The slope essentially estimates the Grüneisen param-
eters, �G and �D for the vibrations shown in Fig. 12. Our
results for �G and �D are consistent with the earlier experi-
ments and first-principles calculations �see Table VI� avail-
able in literature.49,53,70,83

VI. CONCLUSION

The elastic properties of edge-hydrogenated graphene
flakes have been investigated employing the density-
functional theory �DFT�. Our study emphasizes the interplay

between the edge and bulk properties which are mediated via
long-range elastic forces.

Specifically, we are able to disentangle bulk, surface and
corner contributions to the energy together with the leading
higher order corrections. The binding energy per surface
�edge� bond �7.5eV� is roughly 2 eV higher than the one for
interior �bulk� bonds �5.2 eV�; similarly, edge bonds have a
tendency to be shorter than bulk ones. As a consequence, the
flake’s interior undergoes a surface-induced compression
which is the more pronounced the smaller the flake is. This
compression manifests itself in the way in which various
observables depend on the flake size, N. For example, elastic
constants �i.e., Lamé parameters� of small flakes can exceed
their bulk limit ��+��70 eV per ring, ��51 eV per ring,
�=0.162� by 30% ��+�� or even by 70% ���. In compari-
son, the sheet �out-of-plane, buckling� stiffness, ��1.2 eV,
is less sensitive to N. Nonlinearities remain weak �less than
10% increase� as long as the ratio of out-of-plane amplitude
and in-plane wavelength of buckling is below 5%. To high-
light the importance of quantum effects on elasticity we have
also calculated the vibrational spectrum of graphene flakes.
Quantum corrections affect mostly the sheet stiffness, �,
lowering it significantly, about 26% within our DFT frame-
work.

Finally, based on these results we predict a pronounced
shift of the Raman G- and D-peaks with decreasing flake size
to higher values. It is a natural consequence of the edge-
induced flake compression. The associated Grüneisen param-
eters are �D�2.6 and �G�2.2.
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APPENDIX: COMPARISON

In order to compare our results with previous authors here
we perform a consistency check by evaluating the bond en-
ergies. We have a binding energy ��d0�=−5.22 eV for bulk
carbon bonds. It translates into an energy per bulk C atom
�cohesive energy� 3��d0� /2�−8.06 eV which compares fa-
vorably well with an earlier estimate84 −7.9 eV.

For the edge energy we use the earlier definition,68,69

Eedge =
1

L
	Etot − NCEC

b −
NH

2
EH2


 , �A1�

where NC is the total number of carbon atoms and EC
b de-

notes the energy of a carbon atom in bulk graphene. EH2
=

−31.496 eV is the energy of a hydrogen molecule and NH is
the total number of hydrogen atoms that terminate the
graphene edge of total length L. In order to estimate EC

b we
parameterize the total energy in full analogy with Eq. �1�,

FIG. 12. Schematic of vibrating modes that give rise to D�left�
and G�right� peaks in Raman spectra of graphene.
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Etot = NC
b EC

b + NC
e EC

e + NC
c EC

c + NHEH +
�e

NC
e +

�b

NC
b �A2�

with

NC = NC
b + NC

e + NC
c , �A3�

where NC
b denotes the number of bulk carbon atoms �having

only C atoms as nearest and next-nearest neighbors� with an
associated energy EC

b , Nc
e denotes the number of edge carbon

atoms with energy EC
e , and NC

c is the number of corner car-
bon atoms with energy EC

c �CH groups with at least one more
CH group as nearest neighbor; NC

c =10 in our case�. �b,e are
further expansion coefficients. NH= �NC

e −4� /2+NC
c is the to-

tal number of hydrogen atoms with energy per atom EH=
−13.568 eV in vacuum which is calculated separately. In
order to estimate the bulk carbon energy we have performed
a three-, four-, and five-parameter fit on the raw DFT data.
The fit is stable against the number of fitting parameters with
data set consisting of N=4, . . . ,8, as shown in Fig. 13. Our
estimate of the bulk energy EC

b , edge energy EC
e , and corner

energy EC
c per carbon atom are listed in Table VII.

Finally, using these estimates we calculate the edge en-
ergy per unit length and its variation with homogenous, iso-
tropic strain, 
, �Fig. 14�. The result at zero strain,
0.114�0.001 eV /Å, compares well with earlier works
0.106 eV /Å.68,69 Furthermore, we extract the edge stress, �e,
following the conventional definition,68

�e =
dEedge

d

. �A4�

Our value, �e=0.26 eV /Å, is significantly enhanced com-
pared to the values reported for uniaxial strain, �e

ua=
−0.01 eV /Å,68,69 that have been obtained in a ribbon geom-
etry. The lower sensitivity on homogenous uniaxial strain is
not a surprise, since in that case a considerable part of the
elastic energy cost for longitudinal stretching can be released
by the transverse contraction. With homogenous isotropic
strain the surface unit cell experiences stretching in all direc-
tions and there is no partially compensating relaxation pro-
cess.

In order to understand the relative smallness of the edge
energy, Eedge, of the hydrogen-terminated graphene flakes we
rewrite Eq. �A1� after substituting Etot from Eq. �A2�,
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FIG. 13. �Color online� Bulk �EC
b �, surface �edge, EC

e �, and cor-
ner �EC

c � energy as extracted from Eq. �A2� using density-functional
theory �PBE functional�. Databased on the evaluation of flake sizes
ranging from �N�=4, . . . ,8 per d values �a0ª0.529 Å.�. ��� de-
notes data from a three-parameter fit to first three terms of Eq. �A2�
ignoring the correction terms. ��� and ��� are the data with four-
and five-parameter fits of Eq. �A2� including the correction terms.
The scattering between the data sets that include the finite-size cor-
rection terms is relatively small, which shows the stability of the
fitting procedure.
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FIG. 14. �Color online� Change in the edge energy �Eedge� as
defined in Eq. �A1� when applying homogenous, isotropic strain �
�
in graphene flakes�. Data sets are calculated using PBE functional
for system sizes �N�=4, . . . ,8. d0=1.431 Å, see, e.g., Table I. ���
and �⊳ � show the extrapolated value of Eedge at NC

c /L→0 limit per
d value using five ��N�=4, . . . ,8� and four system sizes ��N�
=5, . . . ,8�, respectively. Almost no scattering between these two
data sets illustrates the convergence of the fit.

TABLE VII. Survey over the fitted total-energy parameters and
edge energy as defined in Eqs. �A1� and �A2�. Data extracted at
zero strain, where the bulk C-C bond distance is minimum, d0

=1.431 Å �see Table I�.

PBE functional Prev. calc.

Ec
b �eV� −1035.33�0.01

Ec
e �eV� −1036.25�0.02

Ec
c �eV� −1037.18�0.06

Eedge �eV /Å� 0.114�0.001 0.106a,b

aReference 68.
bReference 69.
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Eedge =
NC

e

L
�EC

e − EC
b � +

NC
c

L
�EC

c − EC
b � +

1

2

NH

L
EH2

b +
�e

LNC
e

+
�b

LNC
b �A5�

with

L = 3d
NC

e + 4

2
+

8d
3

, �A6�

where NC
e denotes the total number of edge C atoms of a

graphene flake and EH2

b =2EH−EH2
�4.36 eV is the binding

energy of a hydrogen atom. Now, considering the limit L
→�, Eq. �A5� reduces to

lim
L→�

Eedge =
EC

e − EC
b + EH2

b /4
3d/2

.

Using the above-mentioned estimate, EC
e −EC

b � �−0.92, we
see that difference in bulk and edge binding energy is largely
compensated by the additional binding energy averaged over
two edge C atoms contributed by the H2 molecule, EH2

b /4
�1.09.
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