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There exist three conformers of hydrogenated graphene, referred to as chair-, boat-, or washboard-graphane.
These systems have a perfect two-dimensional periodicity mapped onto the graphene scaffold but they are
characterized by a sp3 orbital hybridization, have different crystal symmetry, and otherwise behave upon
loading. By first-principles calculations we determine their structural and phonon properties, as well as we
establish their relative stability. Through continuum elasticity we define a simulation protocol addressed to
measure by a computer experiment their linear and nonlinear elastic moduli and we actually compute them by
first principles. We argue that all graphane conformers respond to any arbitrarily oriented extension with a
much smaller lateral contraction than the one calculated for graphene. Furthermore, we provide evidence that
boat-graphane has a small and negative Poisson ratio along the armchair and zigzag principal directions of the
carbon honeycomb lattice �axially auxetic elastic behavior�. Moreover, we show that chair-graphane admits
both softening and hardening hyperelasticity, depending on the direction of applied load.
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I. INTRODUCTION

The hydrogenated form of graphene is referred to as
graphane. It is described as a two-dimensional, periodic, and
covalently bonded hydrocarbon with a C:H ratio of 1. Hy-
drogen atoms decorate the carbon honeycomb lattice on both
the top and bottom side �see Fig. 1�. Graphane was theoreti-
cally predicted by Sofo et al.,1 further investigated by
Boukhvalov et al.2 and eventually grown by Elias et al.3 The
investigation of graphane properties was originally moti-
vated by the search for different materials with possibly large
impact in nanotechnology.

The attractive feature of graphane is that by variously
decorating the graphene atomic scaffold with hydrogen at-
oms �still preserving periodicity� it is in fact possible to gen-
erate a set of two-dimensional materials with new physico-
chemical properties. This is obviously due to change in the
orbital hybridization which, because of hydrogenation, is
now sp3-like. For instance, it has been calculated1,2 that
graphane is an insulator, with an energy gap as large as
�3 eV while graphene is a highly conductive semimetal. In
case the hydrogenated sample is disordered, the resulting
electronic and phonon properties are yet again different.3 Hy-
drogenation likely affects the elastic properties as well. Top-
sakal et al.4 indeed calculated that the in-plane stiffness and
Poisson ratio of graphane are smaller than those of graphene.
In addition, the value of the yield strain is predicted to vary
upon temperature and stoichiometry.

As far as the mechanical properties of graphane are con-
cerned, the sp2-to-sp3 change in orbital hybridization causes
a major difference with respect to graphene. There in fact
exist graphane conformers which are not isotropic, at vari-
ance with graphene which is so �in linear approximation5�.
This feature stimulates an intriguing change in perspective,
namely, hydrogenation could not only affect the actual value
of some linear elastic moduli;4 it could even dramatically
change the overall mechanical behavior of the system by
introducing an anisotropic dependence of its response to an

external load. This is in fact what we predict in this work by
first-principles total-energy calculations, combined to con-
tinuum elasticity: we show that there is a graphane con-
former �i.e., boat-graphane as detailed below� showing a
vanishingly small �possibly negative� Poisson ratio upon
loading along given directions. In other words, we provide
evidence that upon suitable hydrogenation a graphene sheet
behaves as an axially auxetic material,6 namely, it does not
shrink but actually slightly elongates perpendicularly to an
applied traction force. Nonlinear elastic features show an in-
teresting anisotropic behavior as well.

This paper is organized as follows: in Sec. II, the methods
and the general computational setup adopted in our calcula-
tions are outlined. In Sec. III we provide a full structural
characterization of three graphane conformers and we dis-
cuss their stability. In Secs. IV and V we describe their linear
and nonlinear elastic properties, respectively, and we com-
pute all the relevant elastic moduli.

II. COMPUTATIONAL SETUP

All calculations have been performed by density-
functional theory as implemented in the QUANTUM ESPRESSO

package.7 The exchange correlation potential was evaluated
through the generalized gradient approximation, using the
Vanderbilt ultrasoft pseudopotential PW91.8 A plane-wave
basis set with kinetic-energy cutoff as high as 50 Ry was
used and in most calculations the Brillouin zone �BZ� has
been sampled by means of a �18�18�3� Monkhorst-Pack
grid. The atomic positions of the investigated samples have
been optimized by using the quasi-Newton algorithm and
periodically repeated simulation cells. Accordingly, the inter-
actions between adjacent atomic sheets in the supercell ge-
ometry was hindered by a large spacing greater than 10 Å.

The elastic moduli of the structures under consideration
have been obtained from the energy-vs-strain curves, corre-
sponding to suitable sets of deformations applied to a single
unit-cell sample. As discussed in more detail in Secs. IV and
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V, for any deformation the magnitude of the strain is repre-
sented by a single parameter �. The curves have been care-
fully generated by increasing the magnitude of � in steps of
0.001 up to a maximum strain ��max�=0.05. All results have
been confirmed by checking the stability of the estimated
elastic moduli over several fitting ranges. The reliability of
the above computational setup is proved by the estimated
values for the Young modulus and the Poisson ratio of
graphene, respectively, 344 N m−1 and 0.169, which are in
excellent agreement with recent literature.9–11 Similarly, our
results for the same moduli in C-graphane �respectively,
246 N m−1 and 0.08� agree very well with data reported in
Ref. 4.

The stability of the three graphane conformers has been
established by calculating the corresponding phonon disper-
sions. Phonon dispersions, have been obtained by means
of density-functional perturbation theory,12 based on the
�2n+1� theorem. In this case, during the self-consistent field
calculation, the BZ has been sampled by a �16�16�3�
Monkhorst-Pack grid. The accuracy of the phonon-
dispersion evaluations has been tested on a graphene sample
�see below�.

III. STRUCTURE AND STABILITY OF GRAPHANE

CONFORMERS

By hydrogenating a honeycomb graphene lattice, three
ordered graphane structures can be generated, namely, the
chair �C-graphane�, boat �B-graphane�, and washboard �W-
graphane� conformers1,13 shown in Fig. 2.

Each conformer is characterized by a specific hydrogen
sublattice and by a different buckling of the carbon sublat-
tice. In particular, in C-graphane the hydrogen atoms alter-
nate on both sides of the carbon sheet; in B-graphane pairs of
H-atoms alternate along the armchair direction of the carbon
sheet; finally, in W-graphane double rows of hydrogen at-

oms, aligned along the zigzag direction of the carbon sublat-
tice, alternate on both sides of the carbon sheet. A perspec-
tive view of the conformers is shown in Fig. 2 and the
corresponding structural data are gievn in Table I. In
C-graphane and W-graphane the calculated C-C bond length
of 1.54 Å is similar to the sp3 bond length in diamond and
much larger than in graphene. Moreover, we note that the
B-graphane shows two types of C-C bonds, namely, those
connecting two carbon atoms bonded to hydrogen atoms ei-
ther lying on opposite sides �bond length 1.57 Å� or lying on
the same side of honeycomb scaffold �bond length 1.54 Å�.
Finally, the C-H bond length of 1.1 Å is similar in all con-
formers and it is typical of any hydrocarbon.

The stability of the three graphane conformers has been
established by calculating the phonon dispersion curves
reported in Fig. 3. Graphene phonon spectrum is reported
as well for comparison. No soft modes �with negative fre-
quency� corresponding to possible instabilities were found
along any high-symmetry direction of the Brillouin zone.
Furthermore, as expected,14 the zone-center longitudinal
acoustic �LA� and transverse acoustic �TA� branches show a
linear dependence upon the wave vector while the flexural
�ZA� mode �characterized by atomic displacement patterns
along the z direction shown in Fig. 2� shows a quadratic
dependence. The present dispersions compare very well with
those ones calculated in Ref. 15 for the C-conformer, either
as far as the vibrational frequencies and the topology of the

zz

ac

(a)

�a

�b

(b)

�a

�b

(c)

�b

�a

(d)

�b

�a

FIG. 1. �Color online� Pictorial representations of the graphane
conformers, obtained by different hydrogen decorations �the actual
atomic positions are reported in Fig. 2�. Top hydrogen atoms are
indicated by red �dark� circles while bottom ones by gray �light�
circles. Shaded areas represent the unit cell and the corresponding
lattice vectors are indicated by a� and b� . Panel �a�: graphene scaffold
�full lines� with zigzag �zz� and armchair �ac� directions. Panels �b�,
�c�, and �d�: chair-, boat-, and washboard-graphane, respectively.

FIG. 2. �Color online� Perspective representations of fully re-
laxed graphane conformers. Gray �light gray� and red �dark gray�
spheres represent carbon and hydrogen atoms, respectively. Labels
Cn and Hn �with n=1, 2, 3, and 4� provide the atom identifications
used in Table I. Right panels show the orientation with respect to
the armchair �ac� and zigzag �zz� direction, as well as the structural
parameters h and � reported in Table I.
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phonon branches are concerned �see the supplementary ma-
terial provided as Ref. 25 of that paper�. Similar excellent
agreement is found with a still unpublished work16 using the
ABINIT code.17 We observe that in C-graphane, as well as in
graphene, the speed of sound �i.e., the slope of the acoustic
branches at � point� is the same along the �-M and �-K
directions. On the other hand, the B- and W-graphane con-
formers are characterized by different sound velocities along
the �-X and �-Y directions. This is the fingerprint of an
unlike elastic behavior: as extensively discussed in Sec. IV,
C-graphane is elastically isotropic while neither B-nor
W-graphane are so.

Finally, according to the present first-principles total-
energy calculations we identified C-graphane as the most en-
ergetically favorable conformer. W- and B-graphane have
higher ground-state energy of 0.05 and 0.10 eV �per C-H
unit�, respectively. These small differences in energy demon-
strate that all three conformers are thermodynamically acces-
sible, as indeed experimentally guessed.13

IV. LINEAR ELASTICITY

While C-graphane has trigonal symmetry �and, therefore,
is elastically isotropic as hexagonal graphene�, the remaining
B- and W-conformers show an orthorhombic symmetry,
which causes an anisotropic linear elastic behavior. Accord-
ingly, the elastic energy density �per unit of area� accumu-
lated upon strain can be expressed as18

Utrigo =
1

2
C11��xx

2 + �yy
2 + 2�xy

2 � + C12��xx�yy − �xy
2 � �1�

for the isotropic structures and as

Uortho =
1

2
C11�xx

2 +
1

2
C22�yy

2 + C12�xx�yy + 2C44�xy
2 �2�

for the anisotropic ones. In Eqs. �1� and �2� we have explic-
itly made use of the elastic linear constants C11, C22, C12, and
C44. Furthermore, the infinitesimal strain tensor �̂= 1

2 ��� u�

+�� u�T� is represented by a symmetric matrix with elements
�xx=

�ux

�x
, �yy =

�uy

�y
, and �xy = 1

2 �
�ux

�y
+

�uy

�x
�, where the functions

ux�x ,y� and uy�x ,y� correspond to the planar displacement
u� = �ux ,uy�. It is important to remark that Utrigo can be ob-
tained from the Uortho by simply imposing the isotropy con-
dition C11=C22 and the Cauchy relation 2C44=C11−C12,
holding for both the hexagonal and trigonal symmetry. We
will take profit of this by focusing just on the elastic behavior
of a system described by Eq. �2�; when needed, the general
results so obtained will be applied to the isotropic structures
by fully exploiting the above conditions. The constitutive
in-plane stress-strain equations are straightforwardly derived

from Eq. �2� through T̂=�U /��̂, where T̂ is the Cauchy stress
tensor.19 They are: Txx=C11�xx+C12�yy, Tyy =C22�yy +C12�xx,
and Txy =2C44�xy.

We now suppose to apply an axial tension � to any two-
dimensional hydrocarbon shown in Fig. 2 along the arbitrary
direction n� =cos �e�x+sin �e�y, where e�x and e�y are, respec-
tively, the unit vectors along the zigzag and the armchair
directions of the underlying honeycomb lattice. In this nota-
tion, therefore, � is the angle between n� and the zigzag di-

rection. Under this assumption we get T̂=�n� � n� , where the
in-plane stress components are defined, respectively, as Txx

=� cos2 �, Txy =� cos � sin �, and Tyy =� sin2 �. By invert-
ing the constitutive equation we find the corresponding strain
tensor �̂. In particular, we easily get its longitudinal compo-
nent �l=n� · �̂n� along the direction n�

�l = ��C11

	
s4 +

C22

	
c4 + � 1

C44
− 2

C12

	
�c2s2� �3�

as well as its transverse component �t= t�· �̂t� along the direc-
tion t�=−sin �e�x+cos �e�y �with t�·n� =0�

�t = ���C11 + C22

	
−

1

C44
�c2s2 −

C12

	
�c4 + s4�� , �4�

where 	=C11C22−C12
2 , c=cos �, and s=sin �. By means of

Eqs. �3� and �4� we obtain, respectively, the n�-dependent
Young modulus En� =� /�l �i.e., the ratio between the applied
traction and the longitudinal extension� as

En� =
	

C11s
4 + C22c

4 + � 	

C44
− 2C12�c2s2

�5�

and the n�-dependent Poisson ratio 
n� =−�t /�l �i.e., the ratio
between the lateral contraction and the longitudinal exten-
sion� as

TABLE I. Space groups and structural parameters for each
graphane conformers. The cell parameters a and b are defined in
Fig. 1 while the other quantities are reported in Fig. 2. Note that the
B-graphane shows two types of C-C bonds while W-graphane ex-
hibits a large buckling parameter, h.

C-graphane B-graphane W-graphane

Space group P3̄m1 �164� Pmmn �59� Pmna �53�

a 2.54 Å 2.53 Å 2.55 Å

b 4.31 Å 3.82 Å

C1-C2 1.54 Å 1.54 Å 1.54 Å

C3-C4 1.54 Å 1.57 Å 1.54 Å

C-H 1.11 Å 1.11 Å 1.11 Å

h 0.46 Å 0.65 Å 1.14 Å

� 0.0° 16.7° 30.1°

C1C2C3
̂ 111.5° 110.7° 111.2°

C2C3C4
̂ 111.5° 112.3° 112.3°

H1C2C3
̂ 107.4° 107.2° 106.5°

H1C2C3H2
̂ 180.0° 180.0° 51.2°

H2C3C4H3
̂ 180.0° 0.0° 0.0°
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n� = −
�C11 + C22 −

	

C44
�c2s2 − C12�c

4 + s4�

C11s
4 + C22c

4 + � 	

C44
− 2C12�c2s2

. �6�

Equations �5� and �6� are central to our investigation.
First of all, we remark that they allow for the full linear

elastic characterization of both the anisotropic graphane
conformers and the trigonal one �as well as graphene�, pro-
vided that in the latter case the isotropy and Cauchy condi-
tions are duly exploited. In this case we in fact obtain the
Young modulus E= �C11

2 −C12
2 � /C11 and the Poisson ratio


=C12 /C11, which are independent of the angle �, confirm-
ing the planar isotropy.

More importantly, however, Eqs. �5� and �6� imply that En�

and 
n� can be directly obtained by the linear elastic constants
Cij, in turn computed through energy-vs-strain curves corre-
sponding to suitable homogeneous in-plane deformations.
This implies that there is no actual need to mimic by a com-
puter simulation a traction experiment along the arbitrary
direction identified by n� or �, indeed a technically compli-
cated issue to accomplish. Rather, for the isotropic case
�graphene and C-graphane� only two in-plane deformations
should be applied in order to obtain all the relevant elastic
constants, namely, �i� an axial deformation along the zigzag
direction; and �ii� an hydrostatic planar deformation. For the

TABLE II. Deformations and corresponding strain tensors applied to compute the elastic constants Cij of
graphane. The relation between such constants and the fitting term U�2� of Eq. �7� is reported as well.
Deformations �i�-�ii� are applied to the C-conformer while the full set �i�–�iv� of deformations is applied to
the B- and W-conformers. � is the scalar strain parameter.

strain tensor U
(2)

U
(2)

isotropic structures anisotropic structures

(i) zigzag axial deformation
`

ζ 0
0 0

´

C11 C11

(ii) hydrostatic planar deformation
`

ζ 0
0 ζ

´

2(C11 + C12) C11 + C22 + 2C12

(iii) armchair axial deformation
`

0 0
0 ζ

´

C22

(iv) shear deformation
`

0 ζ
ζ 0

´

4C44

0

200

400

600

800

1000

1200

1400

1600

Γ M K Γ

fr
eq
u
en
cy
(c
m
-1
)

ZA

TA

LA

2800

3000

0

200

400

600

800

1000

1200

Γ M K Γ

fr
eq
u
en
cy
(c
m
-1
)

ZA

TA

LA

2900
3000

0

200

400

600

800

1000

1200

1400

Γ X S Y Γ

fr
eq
u
en
cy
(c
m
-1
)

ZA

TA
LA

2900
3000

0

200

400

600

800

1000

1200

1400

Γ X S Y Γ

fr
eq
u
en
cy
(c
m
-1
)

ZA

TA

LA

(a)

(b)

(c)

(d)

FIG. 3. �Color online� Phonon dispersion relations of graphene 	panel �a�
, C- 	panel �b�
, B- 	panel �c�
 and W- 	panel �d�
 graphane.
Acoustic and optical modes correspond, respectively, to blue �dark gray� and yellow �light gray� dispersions. Longitudinal and transverse
acoustic branches are indicated as LA and TA, respectively. The acoustic branch with displacement patterns along the z direction of Fig. 2
is marked as ZA.
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anisotropic case �B- and W-graphane� two more in-plane de-
formations must be applied; �iii� an axial deformation along
the armchair direction; and �iv� a shear deformation. The
strain tensors corresponding to deformations �i�–�iv� depend
by a unique scalar strain parameter � as shown in Table II.
For all imposed deformations the elastic energy of strained
structures can be written in terms of � as

U��� = U0 +
1

2
U�2��2 + O��3� , �7�

where U0 is the energy of the unstrained configuration. Since
the expansion coefficient U�2� is related to the elastic moduli
as summarized in Table II, a straightforward fit of Eq. �7� has
provided the full set of linear moduli for all structures.

The synopsis of the calculated elastic constants for all
graphane conformers, as well as graphene, is reported in
Table III, from which three qualitative information can be
extracted. First, we observe that the difference between C11
and C22 is much smaller for the B-conformer than for
W-graphane; therefore, this latter is by far the most elasti-
cally anisotropic conformer. Then, the value of C44, measur-
ing the resistance to a shear deformation, decreases mono-
tonically from graphene to W-graphane. Finally, we remark
that the value of C12 �or, similarly, of the Poisson ratio� is
much smaller in any graphane structure than in pristine
graphene. The change in hybridization has therefore largely
reduced the property of lateral contraction upon extension.
Interestingly enough, the B-conformer is characterized by a
negative C12 value, something unexpected and worthy of fur-
ther investigation, as reported below.

Through Eqs. �5� and �6� and by using the elastic con-
stants reported in Table III, we can quantify the n� depen-
dence of E and 
 for the anisotropic structures by using polar
coordinates, as illustrated in Figs. 4 and 5, respectively. In
such a representation, a fully isotropic elastic behavior is
represented by a perfectly circular shape of the En� and 
n�

plots. This is indeed the case, as expected, of graphene and
C-graphane. On the other hand, Fig. 4 confirms that
W-graphane is much more anisotropic than the B-conformer.
Furthermore, as anticipated, Fig. 5 provides evidence that the
Poisson ratio in any graphane conformer is much smaller
than in pristine graphene, since the corresponding 
n� polar
plots are contained within the graphene circle.

An intriguing unconventional behavior is observed in Fig.
5 for B-graphane, namely: for extensions along to the zigzag
and armchair directions, the corresponding Poisson value is
vanishingly small. This feature appears as a flower petal

structure of the 
n� plot for such a system. By considering
Fig. 6, where a zoom of the previous plot nearby the origin
has been reported, we can actually learn more information. It
is evident that four small lobes appear along the zigzag and
armchair directions �i.e., along the principal axis of the
orthorhombic symmetry�, corresponding to a Poisson ratio
varying in the range −0.0075�
�−0.0065. The limiting
values are computed for extensions along the zigzag and
armchair directions, respectively. It is truly remarkable that 

could be negative in B-graphane. While a negative Poisson
ratio value is allowed by thermoelasticity, this peculiar situ-
ation is only observed in special systems �i.e., foams, mo-
lecular networks, or tailored engineering structures� or just
rarely in ordinary bulk materials �i.e., SiO2, cubic metals, or
polymer networks�.14,20–22

V. NONLINEAR ELASTICITY

In this section we generalize the previous analysis in or-
der to draw a comparison between the nonlinear elastic be-

TABLE III. Graphene- and graphane-independent elastic con-
stants �units of N m−1�. For graphene and C-graphane C11=C22 and
2C44=C11−C12.

Graphene C-graphane B-graphane W-graphane

C11 354 248 258 280

C22 225 121

C12 60 20 −1.7 14

C44 93 81

zigzag

θ=30°

θ
=
60

°

armchair

graphene
B−graphane
C−graphane
W−graphane

0

100

300

FIG. 4. �Color online� Polar diagram for the Young modulus E

of graphene and graphane conformers. The angle � identifies the
extension direction with respect to the zigzag one. Isotropic �aniso-
tropic� behavior is associated to a circular �noncircular� shape of the
En� plot.

0 zigzag

θ
=30°

θ
=
60

°armchair

graphene
B−graphane
C−graphane
W−graphane

0.1

0.2

FIG. 5. �Color online� Polar diagram for the Poisson ratio 
 of
graphene and graphane conformers. The angle � identifies the ex-
tension direction with respect to the zigzag one. Isotropic �aniso-
tropic� behavior is associated to a circular �noncircular� shape of the

n� plot. The special case of B-graphane is enlighten by shading �see
text�.
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havior of graphene5 and the three conformers of graphane.
The nonlinear strain energy function Uhex for an hexagonal
two-dimensional lattice is5

Uhex =
1

2
C11��xx

2 + �yy
2 + 2�xy

2 � + C12��xx�yy − �xy
2 � +

1

6
C111�xx

3

+
1

6
C222�yy

3 +
1

2
C112�xx

2 �yy +
1

2
�C111 − C222

+ C112��xx�yy
2 +

1

2
�3C222 − 2C111 − C112��xx�xy

2

+
1

2
�2C111 − C222 − C112��yy�xy

2 , �8�

where all the nonlinear features are described by the three
independent moduli C111, C222, and C112.

Similarly, the strain energy function Utrigo for C-graphane
depending on the linear �C11 and C12� and nonlinear �C111,
C112, C144, C114, C124, and C444� elastic constants is found to
be

Utrigo =
1

2
C11��xx

2 + �yy
2 + 2�xy

2 � + C12��xx�yy − �xy
2 � +

1

6
C111

���xx
3 + �yy

3 � +
1

2
C112��xx

2 �yy + �xx�yy
2 � + 2C144��xx�xy

2

+ �yy�xy
2 � + C114��xx

2 �xy + �yy
2 �xy� + 2C124�xx�xy�yy

+
4

3
C444�xy

3 . �9�

For such a trigonal symmetry we have C111=C222, C112
=C122, and C144=C244. Nevertheless, it is important to under-
line that the overall nonlinear elastic response is truly aniso-
tropic since not all the relevant isotropic conditions are ful-
filled.

Finally, the strain energy function Uortho for the B- and
W-graphane, expressed through the linear �C11, C22, C12, and

C44� and nonlinear �C111, C222, C112, C122, C144, and C244�
elastic constants, is given by

Uortho =
1

2
C11�xx

2 +
1

2
C22�yy

2 + 2C44�xy
2 + C12�xx�yy +

1

6
C111�xx

3

+
1

6
C222�yy

3 +
1

2
C112�xx

2 �yy +
1

2
C122�xx�yy

2

+ 2C144�xx�xy
2 + 2C244�yy�xy

2 . �10�

Equations �8�–�10� can be obtained by using the standard
tables of the tensor symmetries, found in many crystallogra-
phy textbooks �see, for instance, Ref. 18�.

As above described, in any symmetry the strain energy
function depends on the third-order elastic constants �as well
as the linear ones�. Once again, they can be computed
through energy-vs-strain curves corresponding to suitable
homogeneous in-plane deformations. For each deformation
the elastic energy of strained graphene or graphane can be
written in terms of just the single deformation parameter �

U��� = U0 +
1

2
U�2��2 +

1

6
U�3��3 + O��4� . �11�

Since the expansion coefficients U�2� and U�3� are related to
elastic constants, as summarized in Table IV for the

TABLE V. Strain fields applied to compute the linear �Cij� and
nonlinear �Cijk� elastic constants of the B- and W-graphane. The
relation between such constants and the fitting terms U�2� and U�3�

of Eq. �11� is reported as well.

Strain U
(2)

U
(3)

tensor
`

ζ 0
0 0

´

C11 C111
`

0 0
0 ζ

´

C22 C222
`

ζ 0
0 ζ

´

C11 + C22 + 2C12 C111 + C222 + 3C112 + 3C122
`

0 ζ
ζ 0

´

4C44 0
`

ζ ζ
ζ 0

´

C11 + 4C44 C111 + 12C144
`

0 ζ
ζ ζ

´

C22 + 4C44 C222 + 12C244
`

ζ 0
0 −ζ

´

C11 + C22 − 2C12 C111 − C222 − 3C112 + 3C122

zigzag

armchair

ν > 0
ν < 0

θ=30°

θ
=
60

°

0

0.004

0.008

FIG. 6. �Color online� The same as Fig. 5 zoomed in the region
nearby the origin. Positive and negative Poisson ratio values are
differently shaded as indicated.

TABLE IV. Strain fields applied to compute the linear �Cij� and
nonlinear �Cijk� elastic constants of the C-graphane. The relation
between such constants and the fitting terms U�2� and U�3� of Eq.
�11� is reported as well.

Strain U
(2)

U
(3)

tensor
`

ζ 0
0 0

´

C11 C111
`

ζ 0
0 ζ

´

2 (C11 + C12) 2C111 + 6C112
`

0 ζ
ζ 0

´

2 (C11 − C12) 8C444
`

ζ ζ
ζ 0

´

3C11 − 2C12 C111 + 12C144 + 6C114 + 8C444
`

0 ζ
ζ −ζ

´

3C11 − 2C12 −C111 − 12C144 + 6C114 + 8C444
`

ζ ζ
ζ −ζ

´

4 (C11 − C12) 12C114 − 12C124 + 8C444
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C-graphane and in Table V for the B- and W-graphane, a
straightforward fit of Eq. �11� has provided the full set of
third-order elastic constants.

The results have been reported in Table VI where only the
values of the independent elastic constants appearing in Eqs.
�8�–�10� are reported. We note that graphene and B-graphane
are characterized by an inverted anisotropy: while C111
�C222 for graphene, we found C222�C111 for B-graphane.
On the contrary, W-graphane has the same anisotropy of
graphene �C111�C222� but a larger �C111−C222� difference.
So, it is interesting to observe that the different distribution
of hydrogen atoms can induce strong qualitative variations
for the nonlinear elastic behavior of these structures.

We finally observe that necessarily C444=0 for B- and
W-graphane because of the orthorhombic symmetry. On the
other hand, this nonlinear shear modulus could assume any
value for the trigonal lattice. Interesting enough, we have
verified that C444=0 also for C-graphane. This is due to the
additional �with respect to the trigonal symmetry� mirror
symmetry of C-graphane.

Similarly to the case of graphene,5,23 a nonlinear stress-
strain relation can be derived for the three graphane con-
formers,

�n� = En��n� + Dn��n�
2, �12�

where En� and Dn� are, respectively, the Young modulus and
an effective nonlinear �third-order� elastic modulus, along
the arbitrary direction n� , as defined in Sec. IV. The nonlinear
elastic modulus Dn�

�trigo� for the C-graphane �as well as for any
trigonal 2D lattice� is given by

Dn�
�trigo� =

1

2
	
�1 − 
��C111 − 3C112�

+ �1 − 
��1 + 
2�C111 + 6cs�1 + 
��1 + 
2�C114

− 12cs�1 + 
�
C124 + 3c2s2�1 − 
��1 + 
2��− C111

+ 4C144 + C112� + 4c3s3�1 + 
��1 + 
2��− 3C114

+ 2C444 + 3C124� + 8c3s3�1 + 
�
�− 6C114 + 5C444

+ 6C124�
 �13�

while the corresponding modulus Dn�
�ortho� B- and W-graphene

is

Dn�
�ortho� =

1

2	3En�
3 	C111�C22c

2 − C12s
2�3 + C222�C11s

2 − C12c
2�3

+ 3C112�C11s
2 − C12c

2��C22c
2 − C12s

2�2

+ 3C122�C22c
2 − C12c

2��C11s
2 − C12c

2�2

− 3C166c
2s2�C22c

2 − C12s
2��	/C44�

2

− 3C266c
2s2�C11s

2 − C12c
2��	/C44�

2
 . �14�

Since Cijk�0, as shown in Table VI, Dn�
�ortho� are negative for

any direction �see Fig. 7�, so both B- and W-graphane show
an hyperelastic softening behavior. The trigonal C-graphane
behaves in a very different way instead. Since the C114 and
C144 are positive, the C-graphane can show an hyperelastic
hardening behavior in the angular sectors 5 /12+k��
�1 /12+k and 8 /12+k���10 /12+k �k�Z�.

VI. CONCLUSIONS

In conclusion, present first-principles calculations predict
that the class of auxetic materials is larger than reported so
far, including as well two-dimensional hydrocarbons like
B-graphane. More precisely, since a negative Poisson ratio is
observed for extensions along the zigzag and armchair prin-
cipal directions, B-graphane is better referred to as an axially
auxetic atomic sheet. Moreover, we calculated that the other
two conformers, namely, the C- and W-graphane, exhibit a

TABLE VI. Graphene and graphane-independent nonlinear elas-
tic constants �units of N m−1�.

Graphene C-graphane B-graphane W-graphane

C111 −1910�11 −1385�18 −1609�31 −1756�33

C222 −1764�3 −1827�7 −487�85

C112 −341�35 −195�41 −20�14 −75�54

C122 −55�22 −296�36

C124 −411�17

C114 530�12

C144 568�7 −161�4 −143�17

C244 −159�3 −287�10

C444 0.0�10−5

������

��
��
�

�
�
	�
�

�
����


���
�����
���
�����
���
�����
���
�����

� ��� ��� ��� ������������������

(D�n < 0)
(D�n > 0)

FIG. 7. �Color online� Polar representation of the nonlinear elas-
tic moduli Dn� of the three graphane conformers. In the B- and
W-graphane cases, Dn� �D are everywhere negative �softening hy-
perelesticity� while in the C-graphene one the Dn� alternates nega-
tive and positive values �hardening hyperelesticity�.
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vanishingly small value of the Poisson ratio. The nonlinear
elastic behavior of graphane shows peculiar features as well.
In particular, we have found that the C-graphane admits both
softening and hardening hyperelasticity, depending on the
direction of the applied strain. These features makes
graphane a very intriguing material with potentially large
technological impact in nanomechanics.
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