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Analytical expressions for the velocities of the longitudinal and the torsional sound waves in single-walled
carbon nanotubes are derived using Born’s perturbation technique within a lattice-dynamical model. These
expressions are compared to the formulas for the velocities of the sound waves in an elastic hollow cylinder
from the theory of elasticity to obtain analytical expressions for the Young’s and shear moduli of nanotubes.
The calculated elastic moduli for different chiral and achiral (armchair and zigzag) nanotubes using force
constants of the valence force field type are compared to the existing experimental and theoretical data.

I. INTRODUCTION

Since the discovery of the multiwalled carbon nanotubes
(MWNT’s) in the soot produced by the arc discharge
technique'> much attention has been given to the investiga-
tion of their amazing physical properties.’ Recently, the mass
production of single-walled carbon nanotubes (SWNT’s),
stacked in crystalline ropes, was made possible by the laser
ablation* and by the arc discharge® techniques. Due to their
specific structure, the nanotubes are expected to be as stiff as
graphite along the graphene layers or even reach the stiffness
of diamond. This unique mechanical property of the nano-
tubes combined with their light-weightiness predetermines
their usage in composite materials and has motivated precise
experimental measurements of their elastic properties.®™ In
the first of these works,® the temperature dependence of the
vibration amplitude of several isolated MWNT’s was ana-
lyzed in a transmission electron microscope to eventually
obtain 1.8 TPa for the average Young’s modulus. Later on,
this technique was applied to measure Young’s modulus of
isolated SWNT’s in the diameter range 1.0— 1.5 nm and an
average value (¥)=1.25—0.35/+0.45 TPa was derived.’ In
another experimental approach® the MWNT’s were pinned to
a substrate by conventional lithography and the force was
measured at different distances from the pinned point by
atomic force microscope (ATM). The average Young’s
modulus for different MWNT’s with diameters from 26 to 76
nm was found to be 1.28+0.59 TPa. Recently, Young’s and
shear moduli of ropes of SWNT’s were measured by sus-
pending the ropes over the pores of a membrane and using
ATM to determine directly the resulting deflection of the
rope.” The theoretical estimation of the elastic moduli was
accomplished exclusively by numerical second derivatives of
the energy of the strained nanotubes. In the calculation of the
elastic moduli of various SWNT’s within a simple force-
constant model'® it was found that the moduli were insensi-
tive to tube size and helicity and had the average values of
(Y)=0.97 TPa and (G)=0.45 TPa. In several works,
molecular-dynamics (MD) simulation algorithms using the
Tersoff-Brenner potential for the carbon-carbon interactions
were implemented to relax the strained nanotubes and calcu-
late their energy.''™!® For tubes of diameter of 1 nm values
for Y of 5.5 TPa (Ref. 12) and 0.8 TPa (Ref. 13) were ob-
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tained. A non-orthogonal tight-binding (TB) scheme was ap-
plied to calculate Young’s modulus of several chiral and
achiral SWNT’s yielding an average value of 1.24 TPa.'*
Recently, the second derivative of the strain energy with re-
spect to the axial strain, calculated with a pseudopotential
density-functional-theory (DFT) model for a number of
SWNT’s,!® was found to vary slightly with the tube type and
to have the average value of 56 eV.

In this paper, we choose a different approach to the cal-
culation of the elastic properties of SWNT’s. Namely, we
derive analytical expressions for the elastic (Young’s and
shear) moduli of SWNT’s using a perturbation technique due
to Born'® within a lattice-dynamical model for nanotubes.'”
This scheme has the advantage that the elastic moduli are
consistent with the lattice dynamics of the nanotubes and that
each of these moduli is obtained in one calculational step
only.

The essential features of a model of the lattice dynamics
of SWNT’s based on the explicit accounting for the helical
symmetry of the tubes'’ are summarized in Sec. I A. This
model is applied to study of the long-wavelength vibrations
in nanotubes using Born’s perturbation technique'® and to
obtain analytical expressions for the velocities of the longi-
tudinal and the torsional sound waves in SWNT’s (see Sec.
II B). The comparison of these expressions with the formulas
from the theory of elasticity for the velocities of these waves
in an elastic hollow cylinder allows one to determine the
Young’s and shear moduli of the nanotubes. The calculated
phonon dispersion of a (10,10) nanotube and elastic moduli
for various chiral and achiral (armchair and zigzag) nano-
tubes using force constants of the valence force field (VFF)
type'® are presented in Sec. III and discussed in comparison
with the existing experimental and theoretical data.

II. THEORY
A. The lattice-dynamical model

The ideal nanotube structure can be obtained from a
graphene sheet by rolling it up along the straight line con-
necting two lattice points into a seamless cylinder in such a
way that the two points coincide.'!** The tube is uniquely
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specified by the pair of integers (L;,L,) that define the lat-
tice translation vector between the two points. Alternatively,
the tube can be described by its radius R and the chiral angle
0 that is the angle between the tube circumference and the
nearest zigzag of carbon-carbon bonds. The tubes are called
achiral for #=0 (zigzag type) and 0= /6 (armchair type),
and chiral for 0<6<7/6.

The nanotube can be considered as a crystal lattice with a
two atoms unit cell. Two different screw operators can be
used to construct the entire tube from these two atoms?' in
quite the same way as a crystal is generated by means of
primitive translation vectors. By definition, a screw operator
{S;|t;} (i=1,2) executes a rotation of the position vector of
an atom by an angle ¢; about the tube axis with rotation
matrix S; and a translation of this vector by a vector t; along
the same axis. Thus, the equilibrium position vector R(/;/,k)
of the kth atom in the (/,,/,)th cell is obtained from R(k)
=R(00k) as

R(lk)=S(DR(k)+t(l), (2.1)

where the compact notation S(I) =SlllS122,t(l) =1t +1,t,,
and I=([,,l,) is adopted.

A lattice-dynamical model for a SWNT can be con-
structed in a similar way as for a three-dimensional crystal.'”
In particular, the equation of motion for small displacements
u(lk) of the atoms from their equilibrium positions are given
by

Myt () =— 2 @ 5l l' k" ugl'k"),
I'k'B

(2.2)

where m; is the atomic mass of the kth atom and
D, 45(lk,l'k") is the force-constant matrix («,8=x,y,z). The
helical symmetry of the tubes described by the two screw
operators suggests to look for wavelike solutions for the
atomic displacement vectors u(lk) of the type

1
u (k)= o % Sap(De g(k|q)explil q-1— o(q)r]}
(2.3)

with wave vector q=(g;,q,), wave amplitude e B(k|q) and
angular frequency w(q). After substituting Eq. (2.3) in Eq.
(2.2), the equations of motion are obtained in the form

o (@e (k@)= Dog(kk'|@esk'|q),  (2.4)
k'B

where

> D (0K I'K")S., 51 exp(ig-1").

1
N myr y
(2.5)

is the dynamical matrix. The rotational boundary
condition'”~! and the translational periodicity condition?* on
u(lk) impose the following constraints on the wave-vector
components

D .p5(kk'|q)=

q1L1+qZL2:27Tl (26)

and
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9 1N1+q2N,=q. (2.7)
Here, [ is an integer number, N, is the number of atomic
pairs in the translational unit cell of the tube, g is a new,
one-dimensional wave vector, and the integers N; and N,
define the primitive translation vector of the tube.

From Egs. (2.6) and (2.7) the wave-vector components ¢
and ¢, can be expressed through the couple ¢ and / and the
equations of motion and the dynamical matrix can be written
as

W (gl)e(klgl) =2 D a(kk'|gl)eg(k'|ql)  (2.8)
k'B

and
D 4(kk'|ql) ! DD 50k, 1k")S s5(1)
(23 q = o 9
p N mgr |'s 2 %
Xexpli(a(l")I+z(1")q)]. (2.9)
Here, a'(l)=27T(llN2—lzN])/NL and Z(l):(Lllz

—L,1,)/N, are the dimensionless coordinates of the origin of
the Ith cell along the circumference and along the tube axis,
respectively. The equations of motion (2.8) yield the eigen-
values w(qlj) and the corresponding eigenvectors e ,(k|qlj)
where the couple (/j) (I=0,...,N.—1;j=1,...,6) labels
the modes with a given wave number ¢ in the one-
dimensional Brillouin zone (—7<g=<r). It can be easily
proven that three translational and one rotational sum rules
are fulfilled identically for this lattice-dynamical model giv-
ing rise to four acoustic branches without any additional cor-
rections either to the dynamical matrix,”> or to the force
constants>* (see Appendix A).

In some cases, it is important to know the eigenvectors
and the dynamical matrix for the translational unit cell. The
derivation of these quantities in terms of those for the two
atoms unit cell is straightforward and eventually the follow-
ing equations are obtained

eauquzj):% SapDeg(klgli)explil a(D)i+z(Dq]}
(2.10)

and

1
Doplhd'k' )= 5= 2, S DD (k' |a1)S 35(~1')
c by

xexp{—i[a'DI+z(I'D)q]}. (2.11)

Here, the index [ labels the two atoms unit cells within the
translational unit cell, a(l'D=a(l’)—a(l) and z(I'l)
=z(l')—z(1). Tt is important to point out that the necessary
computational time for solving the eigenvalue problem for
the two atoms unit cell and subsequent use of Eq. (2.10) is
nearly independent of the number of atoms in the transla-
tional unit cell. However, if the dynamical matrix is calcu-
lated from Eq. (2.11), this will require a time increasing as
NS , which may be practically impossible for certain experi-
mentally observable chiral SWNT’s with large N,..
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B. Sound waves velocities and elastic moduli

Analytical expressions for the velocity of the sound waves
in SWNT can be derived by studying the long-wavelength
vibrational waves using Born’s perturbation technique16
within the lattice-dynamical model developed above.
Namely, the dynamical matrix Eq. (2.11) and the eigenvec-
tors Eq. (2.10) and the eigenvalues belonging to the acoustic
branches are expanded in power series in g. These expan-
sions, substituted in the equations of motion for the transla-
tional unit cell, give rise to equations of zeroth, first, and
second order with respect to the perturbation parameter q.

Taking nontrivial solutions for the zeroth-order eigenvec-
tor of the form

e (1) = myu

with u - a constant vector, and solving the zeroth-, first-, and
second-order equations as in Ref.16 we obtain the system of
linear equations for u,,

(2.12)

pvzua=E Agpig. (2.13)
B

Here, p=N_.Z;m;/V is the mass density of the tube, V is a

(yet unspecified) ‘unit cell volume,”” and v=w'"/q is the

phase sound velocity. The matrix elements A,z are defined

by

> mm D)

aB V Il k'
— > 2 Tk lk) Y muD (kK"
k'K v 'y
X X muD )Tk 1K) . (2.14)
l///kH/

The matrices D(l)(lk l'k") and D(z)(lk l'k") are the first-
and second-order dynamical matrices and the matrix
I ,p(lk,lI'k") is defined at the end of this section.

Equation (2.13) have nontrivial solutions only for certain
values of v that are the sound velocity of the longitudinal
wave v; and the sound velocity of the transverse waves v

Y (YR v
L pv T pv

where A ,(@=1,2,3) are the eigenvalues of the matrix A,z

Besides the nontrivial solutions given in Eq. (2.12), the
zeroth-order equations have also a nontrivial solution of the
form

(2.15)

Ik, (2.16)

0 —
e(a)(lk)ZZ mksazvezR
14
where without loss of generality we have chosen the z axis
along the tube axis and, consequently, A=X,ViEqpy is the
Levi-Civita symbol, 6, is an angle of rotation about the z
axis. Proceeding as in Ref. 16, we obtain the equation

pv2=A, (2.17)

where
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> 2

mgm DYk e
W'k’ Vo

az
a,B=x,y Y

A=‘1—/[ >

XR(lk)eg, sRs(I'k")

-2 2Tk > muD )k IK e,
Iz Y

k'K’ #-v k" y

XRy(l”k”) Z

""" s

kWD(l)(l k/ l///k///)gﬂz(ng(l///k///)

(2.18)

The sound velocity of the torsional wave in the tube, vy, can
be determined from Eq. (2.17) as

\F
vrR=\—
FNop

In Egs. (2.14) and (2.18) the matrix I' ,4(lk,l'k") is the
inverse of the zeroth-order dynamical matrix D( (lk U'k".
However, this inversion cannot be done dlrectly because of
the linear dependence of elements of the latter. To carry out
the inversion, we, following Born,'® remove one row and one
column of D(O)(lk I'k") for each a and B, remove one row
and one column from its xy submatrix, invert the resulting
matrix, and add rows and columns of zeros on the places of
the removed ones.

The microscopically derived sound waves velocities Eqgs.
(2.15) and (2.19) can be used to derive the Young’s modulus
Y and the shear modulus G of the nanotube. For this purpose,
we assume that a nanotube can be considered as an infinitely
thin homogeneous cylinder with radius R and use the formu-
las from the theory of elasticity®

(2.19)

e

U= (220)
G
vr=\ 2.21)
2Y
v$= \IFRCI:\/ERULQ. (2.22)

Comparing Egs. (2.15) and (2.19) to Egs. (2.20), (2.21), and
(2.22), we identify A; and A as the Young’s and the shear
moduli of the tube, respectively, and find that A, ; must be
zero. The Young’s modulus can be determined alternatively
from Eq. (2.22) and the transverse acoustic branches of the
phonon dispersion curves.

III. RESULTS AND DISCUSSION

The lattice-dynamical model and the analytical expres-
sions for the sound velocities can be applied now to calculate
the phonon dispersion, Young’s and shear moduli of various
SWNT’s. Since in a force-constant model of the lattice dy-
namics it is not possible to accomplish a real structural op-
timization, the structural data for the nanotubes has to be
provided from the experiment or from theoretical estima-
tions. The experimental data on the nanotube structure are
rather scarce but two recent ab initio studies'*?° reveal that
there are only slight differences between the various carbon-
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carbon bond lengths and between the various bond angles. In
accord with these results, we have chosen the simplest struc-
tural model accepting that for a given tube (1) all bond
lengths are equal to 1.42 A, the same as those in the
graphene sheet, (2) all bond angles are equal to each other
for a given tube, and (3) all atoms lie on a cylindrical sur-
face. These assumptions are justified by the results of our
preliminary calculations showing that deviations of the bond
lengths and bond angles up to a few per cent from their
values following from (1)—(3) and small departures from the
ideal cylindrical geometry do not affect significantly the
eigenmodes and the elastic moduli.

The lattice-dynamical model implements force constants
of valence force field (VFF) type with values obtained by
fitting to the surface phonon dispersion curves of graphite
investigated by high-resolution electron energy-loss
spectroscopy.'® The VFF parameters are of types nearest-
neighbor stretch, next-to-nearest-neighbor stretch, in-plane
bend, out-of-plane bend and twist interactions. Here, we ad-
ditionally assume that these model parameters can be trans-
ferred to nanotubes without any modification. Nevertheless,
effects due to the curvature of the tubes will still exist be-
cause the bond angles enter the force-constant matrix explic-
itly.

The calculated phonon dispersion of a (10,10) tube in
Fig. 1 shows the presence of four acoustic branches-
longitudinal, torsional, and a doubly degenerate transverse
one. The former two increase linearly with the wave number
and the latter one increases as the square of the wave number
near the origin in agreement with the long-wavelength re-
sults presented above. To our knowledge, up to now there
have been only a few calculations of the phonon dispersion
in nanotubes. They have been accomplished either by the
zone-folding method with a correction of the dynamical ma-
trix in order to obtain the two transverse acoustic branches,23
or by a simple force-constant model with modification of the
force constants in order to fulfill the rotational sum rule and
to obtain the torsional acoustic branch.?* In the latter work it
is obtained, however, that all the four acoustic modes have
nonzero slopes at the origin. Recently, ab initio phonon dis-
persions for (4,4) and (10,10) tubes that are free from the
zone-folding model deficiencies have been published.'
However, these ab initio results predict frequencies for the
highest zone-center phonons that are about 6% higher than
the experimental values and in this respect they cannot com-
pete with the simple force-constant models.

The estimation of the elastic moduli of nanotubes requires
the knowledge of the ‘‘unit cell volume’ V of the tubes.
There is no agreement between the different authors about
the choice of the continuum model of a nanotube. Some of
them consider a nanotube as a hollow cylinder with a certain
wall thickness, e.g., 0.66 A (Ref. 12) or 3.4 A (Ref. 10)—
equal to the adjacent layer separation in graphite. Others
choose a uniform cylinder with a cross-sectional area of 7R>
(Ref. 13) or a prism—the unit cell in a crystalline rope of
SWNT’s,* with a cross-sectional area of \/5/2(2R-l-3.4)2
(Ref. 9). Recently, it was proposed to characterize the axial
stiffness of a nanotube with the second derivative of the
strain energy with respect to the axial strain per unit area of
the nanotube'* or per atom of the tube." In the latter case,
the resulting quantity is equal to the Young’s modulus mul-
tiplied by the tube volume per atom v, so that it does not
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FIG. 1. Calculated phonon dispersion curves for a (10,10)

SWNT (left) and the low-energy region of the same curves contain-
ing the translational, the torsional and the doubly degenerate trans-
verse acoustic branches (right).

contain the ambiguous unit-cell volume. For this reason, we
adopt such a description of the elastic properties of the tubes
for both axial and shear strains.

The in-plane elastic moduli, calculated for graphene with
the adopted VFF parameters, are compared to the corre-
sponding experimental values for graphite in Table I. The
agreement between these values is quite good and it may be
expected that these VFF parameters would allow for fair pre-
dictions of the elastic moduli of nanotubes as well. The
Young’s and shear moduli of SWNT’s are calculated here
using Egs. (2.14) and (2.18) for various tube types: armchair
tubes from (3,3) to (15,15), zigzag tubes from (5,0) to (25,0),
and a number of chiral tubes [(5,1), (5,2), (6,1), (5,3), (6,2),
(7.1), (63), (6:4), (8.2), (7.4), (10,1), (8:4), (9.3), (8.5),
(11,2), (10,4), (10,5), (12,3), (14,2), (12,6), (16,4), (14,7),
and (15,6)—in order of increasing tube radius]. The results
for the moduli and the Poisson ratio vs tube radius are dis-
played in Fig. 2. We note that Y can be determined alterna-
tively from the transverse acoustic branches of the dispersion
curves fitted with a polynomial of second degree with respect
to the wave number and the expression for the group sound
velocity of the bending waves (2.22) leading to the same
results as those obtained by using Egs. (2.15) and (2.20). The
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TABLE I. Experimental elastic constants (in GPa) and elastic moduli (in GPa/in eV) and Poisson ratio for

graphite in comparison with the calculated ones here.

C11 Ci2 Ce6 a Y b G b 14 b
Experim. values © 1060 180 440 1029/56.43 440/24.13 0.17
Calc. values (this work) 1047 219 414 1002/54.95 414/22.70 0.21

For hexagonal symmetry, cg=(c;—C12)/2.

®In-plane moduli Y=(c%1—c%2)/c” and G =c¢, and Poisson ratio v=c,/cy; .

‘Ref. 27.

results for Y, presented in Fig. 2, show that for a given radius
the Young’s modulus for armchair tubes is slightly larger
than for zigzag tubes and that for chiral tubes it has interme-
diate values. As a whole, the Young’s modulus is insensitive
to the tube chirality and for large radii has values of about 55
eV that are about 3% smaller than the experimental one for
graphite (see Table I). At small radii the Young’s modulus
softens to about 50 eV. The first MD simulations'? predict
for the Young’s modulus of a (10,10) tube the value 59.4 eV
which differs only by a few percent from our results. How-
ever, the calculations within another MD simulations
scheme'? and with a TB model'* yield for Y values of about
35 eV and about 70 eV, respectively, that significantly un-
derestimate and overestimate Young’s modulus of a tube.
Recently, pseudopotential DFT calculations'> of several
SWNT’s resulted in average Young’s modulus of 56 eV. The
only available experimental point’ is nearer to the TB (Ref.
14) and the DFT results'® for the same tube radius but the

70 T T T T T T T T
® achiral SWNTs (this work}
65 |- O chiral SWNTs (this work) J
---- graphite (Blakslee et al.) |
60

Young's modulus
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FIG. 2. Calculated Young’s and shear moduli times the volume
per atom of the tube v, (in eV), and Poisson ratio estimated using
the relation v=(Y/2— G)/G (in the inset) vs tube radius for various
chiral and achiral SWNT’s. The notations A and Z stand for ‘‘arm-
chair’” and ‘‘zigzag,”’ respectively.

force-constant results'® as well as ours are also within the
range of the experimental error of the former.

The shear modulus behaves similarly to the Young’s
modulus reaching values of about 23 eV for large radii but
softening at small radii as shown in Fig. 2. The direct com-
parison of the obtained results with the experimental data for
graphite (see Table I) reveals systematic deviation of about
6% for the shear modulus at large radii, which we attribute to
the VFF parameters of the model and to the initial assump-
tions. The shear moduli calculated for several tube types
within a force-constant model'® appear to be insensitive to
the tube radius and chirality and are about 15% higher than
the ones obtained here.

Using Y and G, we can estimate the Poisson ratio v, that
is equal to the ratio of the relative radial tube expansion to
the relative axial tube shortening, making use of the expres-
sion valid for a three-dimensional isotropic medium:®* »
=(Y/2—G)/G. The spread in the values of both moduli has
as a consequence a spread in the values of the Poisson ratio
that is more prominent for small tube radii (see the inset in
Fig. 2). In the limit of large radii, the Poisson ratio tends to
0.21 that is close to the experimental value for graphite (see
Table I). The Poisson ratio estimated by means of a force-
constant model'® is practically a constant of 0.28 that is
about 1.6 times larger than the in-plane value for graphite. A
possible reason for this disagreement may be that the chosen
model cannot describe properly the energy of radially
strained tubes. The same behavior has TB results'* that range
from 0.247 to 0.275. The recently calculated Poisson ratio by
a DFT model'® varies from 0.12 to 0.19 for a number of tube
types and for large tube radii has values that are close to the
experimental value for graphite.

IV. CONCLUSIONS

In this paper, Young’s and shear moduli of various
SWNT’s are estimated from analytical formulas derived
within a lattice-dynamical model for nanotubes. The results
for the elastic moduli and Poisson ratio obtained here using
force constants of the VFF type are in fair agreement with
the existing experimental data on graphite and nanotubes.
These results compare well to the best results of more refined
models—potential-based molecular-dynamics, tight-binding
and DFT models. The force-constant model has the essential
advantage to the latter models that it has a low-
computational cost with respect to both computer memory
and processing time. In particular, the use of analytical for-
mulas allows one to obtain the elastic moduli of a given tube
in one calculational step only. Due to the large values of the
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Young’s modulus along the tube’s axis, the SWNT’s are one
of the stiffest materials. This property, combined with their
relatively small mass density, makes them ideal ingredients
for composites.
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APPENDIX A: TRANSLATIONAL
AND ROTATIONAL SUM RULES

The infinitesimal translational and rotational invariance
conditions impose constraints on the force constants. If the
undistorted crystal is translated by an infinitesimal vector
&g, this will not give any contribution to the restoring force
in Eq. (2.2), i.e.,

0= @ 4(lkI'k )eg. (A1)
Uk’
This equation can be transformed in the form
0=> say(l){E D (0K, —1k") | S 5p(—Deg.
yoB 'k’
(A2)

Since the rhs of Eq. (A2) is zero for arbitrary I and &4, we
may set /=0 and obtain the translational sum rule as

0=2 ®,45(0kI'k").
'k’

(A3)

Equation (A3) enables the determination of the ‘‘self”” force
constant

D50k, 00)=— >
U'k" (k" +0k)

D50k I'K). (A4

An infinitesimal rotation performed on the undistorted
crystal results in the atomic displacements

()= 2 SapDepundRyk). (A3)
wv
where 6, is an infinitesimal rotation angle about the « axis.

Such a rotation gives no contribution to the restoring force in
Eq. (2.2), i.e.,
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0= 2 @, kI'k)S,5(I")ep,,0,R, (k). (A6)
Uk’ yBuv
Here, €, is the Levi-Civita tensor. The rhs of Eq. (A6) can
be written as

> D0k — 1K)
'k 58v

0=> Sw(l)[
Y

XSgﬁ(l’—l)sﬁwR,,(k’)}Hﬂ. (A7)

Since the rhs of Eq. (A7) is zero for arbitrary [ and 6,,, the
rotational sum rule is obtained eventually as

0= 2 @ 50kI'k")Ssp(I")egu R (K').  (AY)
U'k' 5Buv

Consider now the case q—0. If we assume a solution to
Eq. (2.4) in the form

ea(k|0)=\me ., (A9)
we get
w2(0)sa=;ﬁ: > @ag(Ok,l'k’)}S,;ﬁ(l')sﬁ. (A10)
Uk’

The rhs of Eq. (A10) vanishes due to the translational sum
rule (A3) and this gives rise to three acoustical modes with
w(0)=0.

Let us assume the solution

ea(k|0)=2 \mie o, 0,R (k). (A11)
7

Then Eq. (2.4) becomes
@ (0) 2 €00 0,R (k)
3%

=D | D D0k Ik )S s e g R (K |6,
o1k 5By

(A12)

The rhs of Eq. (A12) vanishes in view of the rotational sum
rule (A8) and we get w(0)=0. However, from here, the
existence of only one torsional acoustic mode follows be-
cause of the restriction for small atomic displacements.
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