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Abstract. This paper discusses the constraints imposed upon equilibrium and com-
patibility solutions in structures through the use of constitutive equations. It is shown, for
example, that "realizable" force systems are bounded by statically determinate force sys-
tems for the case of trusses. The analysis used depends heavily upon the concept of "basic
solutions" (statically determinate substructures) for linear systems which appears most
commonly in the theory of linear programming.

Introduction. As used in this paper, the term "physically realizable" or simply "reali-
zable" applies to force and displacement solutions which satisfy all the equations of struc-
tures. It is the intention here to study the properties of these solutions with respect to solu-
tions of the equilibrium or compatibility equations which may or may not also satisfy the
constitutive equations. The idea, of course, is that if equilibrium or compatibility systems
are to be "realized" or built they must also satisfy constitutive equations.

While questions such as realizability have a certain academic interest, the motivation
here is somewhat deeper and lies in structural optimization. Having tried unsuccessfully
to take structural optimization problems head on, the next step is to attempt to simplify
matters. In some cases [1] a convenient simplification is just to neglect the constitutive
equations and work with, for example, objective functions and constraints written in
terms of forces. When the constitutive equations are dropped from the set of constraints it
can happen—notably in cases of multiple loading conditions—that the resulting force sys-
tem cannot be realized (built). Rather than a practical solution, these results must be re-
garded as bounds.

The question then to be addressed here is the effect of constitutive equations on force
and compatibility solutions. It will be shown that the answer lies within the segment of the
theory of linear systems which deals with the question of non-negative solutions of linear
equations and some concepts of convex analysis. In spite of the fact that this type of anal-
ysis is basic to the study of linear programming, much of the supporting material is not
easily available. There is, however, an excellent summary of this material in the first chap-
ter of Gale's book on economic models [2] which is highly recommended to the reader.

In an earlier effort [3] the authors examined some aspects of the realizability problem
for a simple example while here it is hoped to develop a general theory of realizability. In
this earlier case it was in fact true that realizable forces were bounded by statically de-
terminate force systems, although this fact was not noted. It is proposed to show here that
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in general realizable solutions are bounded by statically determinate force systems. Other
properties of realizable solutions will also be developed.

The work presented here proceeds in the following manner. First of all a notation is
introduced. Then the case of a single redundant is considered. Finally the general case of
an arbitrary number of redundants is developed from the case of the single redundant.
The entire paper relies heavily on the concept of a "basic" solution of a linear system
which of course corresponds to a statically determinate substructure of a given structure.
When specific examples are considered they will be trusses, but it may be added that the
notation used applies to any type of structure including continuous systems. (The case of
the truss, which has a diagonal primitive stiffness matrix, must, however, be extended to
the general case in which the primitive stiffness matrix is partitioned-diagonal.)

Notation. It is proposed to present the node and mesh methods of structural analysis
in the following form (see [5] or any good book on matrix structural analysis):

The Node Method:

NF = P—node equilibrium,

F = KA—constitutive equation, (1)

A = N8—member/joint displacement equation,

The Mesh Method:

CA = 0—compatibility equations,

A = K 'F—constitutive equation, (2)

F = F°+CF„—member/mesh force equation.

In these equations

F, A—member force and displacement,

P, 8—node force and displacement,

K—primitive stiffness matrix,

F°—any equilibrium force system (N F° = P),

Fm—mesh force matrix,

N—generalized incidence matrix,

C—generalized branch-mesh matrix.

Ordinarily the node and mesh methods are solved as

(.NKN)8 = P or (CK'C)F„= -CK'F° (3)

in which 8 and Fm are to be computed given the other matrices. In this paper the interest
lies then in determining the ranges of 5 and Fm as K varies in some arbitrary manner while
remaining positive definite (as required by the particular class of structure under study).

For the case of trusses the primitive stiffness matrix is particularly simple: it is just a
diagonal matrix with non-negative diagonal terms. For this case the terms in the system
matrices in Eq. (3) are linear in either the elements of AT or AT"1 and these equations can be
rewritten in the form
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Dk= p and = 0 (4)

where k and k~l are simply column matrices whose elements are the diagonal terms of K
and K~' are simply column matrices whose elements are the diagonal terms of K and K '
respectively. The elements of the matrices D and .^are the linear in the displacements S
and forces Fm . From Eq. (4) the readability problem is reduced to finding all values of S
and Fm for which these equations have semi-positive solutions k and k'\ (In Gale's termi-
nology, x is semi-positive if x > 0 but x ¥= 0.)

There are basic differences in the forces and displacement formulations as they appear
in Eqs. (3-4). From one point of view the displacement formulation deals with the solu-
tions of a non-homogeneous system while the force formulation deals with a homoge-
neous system; from another point of view the displacements S vary inversely along a ray
in K-space while the forces are constant along such a ray.

Finally it should be noted that the form of Eq. (4) is reminiscent of work on linear in-
equalities. But the fact that the coefficients of D and <^are linear in the displacements S
and the forces Fm adds a degree of difficulty not common in this area.

Structures with a single redundant. In this section it will be shown that realizable
force systems are bounded by statically determinant force systems for structures which are
statically indeterminant to the first degree. Displacement realizability will also be dis-
cussed.

In this case it is convenient to start with the node equilibrium equation,

NF=P. (5)

If n is the number of nodal degrees of freedom and b is the number of branch forces (b is
the number of bars in the case of the truss), a single redundant implies that b = n + 1. It is
furthermore assumed that the structure geometrically stable, which implies that the rank
of the matrix N is n.

Fig. 1 shows a plane truss which will be useful in discussing this case of a single redun-
dant. The loading itself is of a certain interest since it corresponds to a situation in which
the sign of a bar force can be changed by changing the values of the member stiffnesses.
For example, as k} -* 0 (bar 3 is removed from the structure) bar 2 goes into tension,
while as k, —» 0 it goes into compression. Some of the appropriate matrices are also in-
dicated in this figure.

At this point it is convenient to invoke the following theorem. ([5, theorem 2.9]):
Theorem 1. Exactly one of the following alternatives holds. Either the equation

Ax = 0

has a semi-positive solution or the inequality

Ay > 0

has a solution.

When Theorem 1 is applied to the system J*k~l = 0 for the case of a single redundant, it
simply states that either (a) the system is realizable or (b) all the terms in the row matrix &
must have the same sign. The regions of realizability are therefore defined by points at
which the terms in ^change sign (pass through zero). Since a term in ^becoming zero
corresponds to the formation of a statically determinate substructure, the region of real-
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FIG. 1. A plane truss.
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izability must be bounded by statically determinant substructures. It remains to show that
the region is finite and contains no holes.

The fact that the region of feasibility is finite can be argued from the fact that the sys-
tem matrix (CK~'Q is positive definite which implies that the coefficients of Fm in Eq. (3)
must all have the same sign. Since the terms in ^are all linear in Fm, Fm can be made
sufficiently large—either positive or negative—so that the linear part of each term domi-
nates the constant part. Then for this sufficiently large Fm the terms must all have the
same sign and Fm must be unrealizable.

The absence of holes within the domain of realizable solutions can be argued in the
following manner. Each of the terms of the matrix F varies linearly with the scalar param-
eter Fm . As Fm, for example, proceeds from — oo to +oo the terms of ^ go from the condi-
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tion of all having the same sign at — oo to all having the same, but different sign at +00.
Since each term only changes sign once in this range, there can be no holes within it in
which all the terms have the same sign. Fig. 2 shows some of these properties for the ex-
ample indicated in Fig. 1.

For displacement readability it is convenient to invoke Theorem 2 ([5, theorem 2.6]):
Theorem 2. Exactly one of the following alternatives holds. Either the equation

Ax = b

has a non-negative solution or the inequalities

Ay > 0, by< 0
have a solution.
For displacement realizability Theorem 2 can have the following interpretation. Since
Ax — b corresponds to Dk = P, it is convenient to interpret y in Theorem 2 as a virtual
displacement. Then the inequality by< 0 corresponds to negative virtual work.

The inequality Ay > 0 is somewhat more difficult to deal with. First of all, it is conve-
nient to partition the matrix N by rows and write

NKN <5 = />=>(£ N,k,N.) 8 = P (6)

or

Then

I N,kA, = P= Z NAk,. (7)

Ay > 0 => A,( Ny), > 0. (8)

Equilibrium
Solutions^

® indicates a statically determinate
substructure

Fig. 2.



416 SPILLERS AND LEFCOCHILOS

The interpretation of the theorem follows as either Dk = P has a non-negative solution or
there exists a virtual node displacement y which produces member displacements (Ny), of
the same sign as A, = (NS), but which corresponds to negative virtual work.

The general case. It is now possible to develop the general case of n redundants us-
ing the results for the case of a single redundant. Fig. 3 indicates an example to which it
will be convenient to refer in this section. This example is of course obtained from the ex-
ample of Fig. 1 by simply adding a bar, and is therefore statically indeterminant to the
second degree.

bar 1

Figure 3
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It is convenient at this point to introduce the concept of basic solutions [2], A system of
linear equations

Ax = b (9)

can be written as

£ As, = b (10)i

when the matrix A is partitioned by columns. Any solution x is termed basic if the col-
umns associated with non-zero x> form a complete independent set. Applied to the equi-
librium equations, this concept, of course, leads to identifying the statically determinant
substructures of a given structure as basic solutions of the equilibrium equations. Simon-
nard [5] points out that the maximum number of basic solutions is the combinatorial
problem of, for example, b bars taken n degrees of freedom at a time, or

b\ b\
n) n\(b—ri)\

The actual number of basic solutions must be determined by examining the matrix N.
Since there are frequently statically determinate pieces of a given structure, it would be
expected that the maximum number of basic solutions might not be achieved frequently.

Fig. 4 shows the feasible region for the case of example 2 which is regarded as typical
of problems of higher dimension. In this figure the heavy dots indicate statically determi-
nant substructures. It is proposed to argue that in general the feasible region is defined by
(and limited by) statically determinate substructures. In particular, it will be argued that

F Shading indicates the
realizable region

^ indicates a statically
determinate substructure

Fig. 4. Realizable region for example 2.
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any feasible force solution can be written as a convex combination of statically determi-
nate substructures. This of course does not imply that the feasible region itself is convex.
In fact in Fig. 2 the feasible region is not convex.

Several properties of feasible solutions will now be listed.
Property 1. Given a stable structure and loads, a feasible interior solution always ex-

ists. (This can be shown by simply taking K = I in Eq. (1).)
Property 2. Given any feasible interior point, there exists a feasible neighborhood

bounded by lines or surfaces along which member forces are zero. (This neighborhood
can be developed by keeping the displacement fixed, varying the member forces, and sim-
ply computing the member stiffness as K, = FJ A,.)

Property 3. Given a feasible region, it is possible to develop the other feasible regions
through systematic variation of the primitive stiffness matrix K. (Starting with the point K
= I it is possible to cross surfaces on which member forces go through zero by moving
along lines in K space from this point to the neighborhood of any statically determinate
substructure.)

Property 4. If member forces change sign within the feasible region, this change of sign
also occurs in the statically determinate substructures of this structure. (This follows from
arguments of continuity using the statically determinate substructures as limiting points
of the feasible region. See the Appendix.)

Property 5. Any feasible force system can be written as a convex combination of stati-
cally determinate solutions. (This follows from the fact that feasible regions can be sub-
divided into convex regions in which the member forces do not change sign. These re-
gions are bounded by statically determinate substructures.)

Topological analysis. There are some interesting combinatorial aspects of the reali-
zability problem. For example, Fig. 4 can be constructed using the analyses of the four
possible substructures which are statically indeterminate to the first degree. In each of
these cases the feasible region can be represented by two lines joining three nodes. Since it
is known from graph theory that

B=M+N-\ (11)

where B is the number of branches, M is the number of meshes, and N is the number of
nodes, it follows that in the case shown in Fig. 4,

4x2 = M+6-l, AT =3,

or that there are three feasible subregions as indicated.
In general, the equilibrium equations are satisfied within some subspace of the space

of the bar forces, F. (This subspace is actually the space of the mesh forces F„ .) The stati-
cally determinate substructures, F° (basic solutions of the equilibrium equations) are
points in both Fand F„. Obviously any convex combination Fof these substructures,

F = J] a, F" with Xa,= l, (12)
<

satisfies the equilibrium equations since NF'] = P.
Now let n, the rank of N, be equal to the nodal degrees of freedom and k = b — n be

the degree of statical indeterminacy. Here b, the number of bars in the truss, is the dimen-
sion of F, and k is of course the dimension of Fm . By definition, each of the points F°
must have at least k zero elements.
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The first step in the analysis is to compute, exhaustively, all the basic solutions Fn. As-
sume that there are s of these solutions. Each of these solutions must lie at the intersection
of k hyperplanes which define the k zero elements in each F". (The load vector can be
perturbed at this point to avoid the degenerate case in which there are more than k zeroes
in any F°.) From these basic solutions it is possible to construct the region of feasibility.
This region is composed of subregions within which the member forces do not change
sign which are themselves bounded by surfaces on which particular member forces are
zero. These subregions can be constructed by analyzing the neighborhoods of the stati-
cally determinate substructures. For this analysis it is only necessary to identify the term
in any vector as positive, negative or zero. The specific magnitude of any term is not im-
portant.

Let two statically determinate substructures be termed "adjacent" if their components
"differ" (as implied above) in only two elements, one coming from zero and one going to
zero (as in linear programming, one term entering the basis and one term leaving it). Ad-
jacent substructures now define surfaces which in turn define regions in the neighborhood
of a given substructure. For example, a statically determinate substructure together with
its adjacent points form a set which must be subdivided into sets of "consistent" sub-
structures which bound regions in which bar forces do not change sign. These open re-
gions can be subsequently joined to form the closed global subregions above with which
member forces do not change sign. These subregions themselves comprise the region of
feasibility.

The point is that there is sufficient information within the list of statically determinate
substructures to subdivide their neighborhood into feasible regions which can sub-
sequently be combined to describe the entire feasible region. It is clear that the com-
binatorial aspects of this kind of problem can easily become overwhelming, at which
point it may be worthwhile to have recourse to some of the techniques of logic circuit de-
sign (see, e.g., Roth [6]) in order to establish systematic procedures.
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Appendix 1. The derivative. It can be useful to examine the effect of small variations
in the primitive stiffness matrix K upon the member force matrix F. In order to do so
small variations are introduced into Eq. (1) as

NF = P—* N (F + dF) = P,

F = KA —> F + dF - (K + dk) (A + dA)

A = N8^> A + dA = N(S + dS). (A.l)
After some algebraic manipulation it follows that

dS = (NKNy 1 (-NdKA) (A.2)

and
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dF= [I- KN(NKN)-' N] dKA = Adk\ (A.3)
where

A = I — KN (NKN)~'N. (A.4)

Of primary interest here is the fact that Eq. (A.3) implies that the variation dF is a
well-behaved function of dK whenever the system matrix NKN possesses an inverse. In
other words, for any (geometrically) stable structure the member forces are well-behaved
functions of the primitive stiffnesses.

Furthermore, it can be noted that the matrix A is idempotent, i.e. A.A = A and that A
goes to zero for any statically determinate structure. Finally, Eq. (A.3) implies the ex-
pected result that dF = 0 for the case in which dk ~ k.


