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Abstract—High density memory is becoming more important
as many execution streams are consolidated onto single chip
many-core processors. DRAM is ubiquitous as a main memory
technology, but while DRAM’s per-chip density and frequency
continue to scale, the time required to refresh its dynamic
cells has grown at an alarming rate. This paper shows how
currently-employed methods to schedule refresh operations are
ineffective in mitigating the significant performance degradation
caused by longer refresh times. Current approaches are deficient
– they do not effectively exploit the flexibility of DRAMs to
postpone refresh operations. This work proposes dynamically re-
configurable predictive mechanisms that exploit the full dynamic
range allowed in the JEDEC DDRx SDRAM specifications. The
proposed mechanisms are shown to mitigate much of the penalties
seen with dense DRAM devices. We refer to the overall scheme
as Elastic Refresh, in that the refresh policy is stretched to fit the
currently executing workload, such that the maximum benefit of
the DRAM flexibility is realized.

We extend the GEMS on SIMICS tool-set to include Elastic
Refresh. Simulations show the proposed solution provides a
∼10% average performance improvement over existing tech-
niques across the entire SPEC CPU suite, and up to a 41%
improvement for certain workloads.

I. INTRODUCTION

Since its invention in the 1970’s, the dynamic memory

cell has become an indispensable part of modern computer

systems. From smartphones to mainframes, these simple one-

transistor-one-capacitor structures provide data storage which

is fast (as compared to disk) and dense (as compared to

on-processor SRAM memory). In the server space, JEDEC-

standardized DDR3 DRAMs are currently prevalent, and

DDR4 is forecast to emerge within the next several years [1].

The frequency and power “walls” of silicon logic tech-

nology scaling have been broadly discussed in recent lit-

erature, and processor designs have been accordingly re-

targeted for throughput, ushering in the many-core era. In

contrast, DRAM, which is manufactured with a different set

of technology steps, and which runs at lower frequencies

than high-performance logic, has continued to scale in several

ways, providing roughly 2x bit-density every 2 years, and

stretching to twice its current frequency within the next 3-

4 years [2]. For example, the specified frequencies for DDR,

DDR2, DDR3, and DDR4 are 200–400 MHz, 400–1066 MHz,

800–1600 MHz, and 1600–3200 MHz, respectively. Despite

this optimism, examining bit-density and frequency does not

tell the full story; one must also consider the overhead of

maintaining these cells’ stored values. While DRAM has not

been declared to have met a “scaling wall,” manufacturers are

continually challenged to find new materials and processes

to create hi-capacity capacitors, small/fast/low-leakage access

transistors, and robust means of supplying power in commod-

ity system environments. Each of these challenges, along with

the total number of bits per DRAM chip, directly impact the

specification of DRAM refresh, the process by which cells’

values are kept readable.

In this paper, we identify a troublesome trend in DRAM

refresh characteristics and show how refresh impacts perfor-

mance, especially for many-core processors. We propose a

new approach to refresh scheduling and provide dynamic,

configurable algorithms which more effectively address the

“refresh wall” than approaches commonly employed in today’s

memory controllers.

II. MOTIVATION

In order to retain the contents of dynamic memory,

refresh operations must be periodically issued. JEDEC-

standard DRAMs maintain an internal counter which des-

ignates the next segment of the chip to be refreshed, and

the processor memory controller simply issues an address-

less refresh command. As more bits have been added to

each DRAM chip, changes have occurred in two key JEDEC

parameters—tREFI and tRFC—which specify the interval at

which refresh commands must be sent to each DRAM and

the amount of time that each refresh ties-up the DRAM

interface, respectively.

Most prior work on memory controller scheduling algo-

rithms has assumed that refresh operations are simply sent

whenever the tREFI-dictated “refresh timer” expires. This is

a sufficient assumption for historical systems, where refresh

overhead is relatively low, i.e. refresh completes quickly, and

does not block read and write commands for very long.

However, for the 4Gb DRAM chips which have been recently

demonstrated [3], and would be anticipated to appear on the
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Fig. 1. Refresh performance penalty for emerging DRAM sizes (four-core). See Section V-A for a description of the modeled architecture.

mass market soon, a refresh command takes a very long

time to complete (300ns). The net effect is a measurable

increase in effective memory latency, as reads and writes are

forced to stall while refresh operations complete in the

DRAM. The baseline performance impact of 2Gb, 4Gb, and

8Gb chips is shown across the Spec2006 benchmark suite [17]

in Figure 1, normalized to application performance when run

without DRAM refresh commands. This penalty grows

from negligible to quite severe: up to 30% for memory latency

sensitive workloads with a geometric mean of 13% for integer

and 6% for floating point. As denser memory chips come to

market, this problem will only become worse [4].

A. DRAM Refresh Requirements and Thermal Environment of

Modern Servers

The temperature at which a device is operated significantly

impacts its leakage. For DRAM cells, which consist of a

storage capacitor gated by an access transistor, their ability

to retain charge is directly related to leakage through the

transistor, and thus to temperature. While processors have hit

a power-related “frequency wall,” and have stopped scaling

their clock rates, DRAMs have continued to be offered at

faster speeds, resulting in increased DRAM power dissipation.

At the same time, server designs have become increasingly

dense (e.g., the popularity of blade form-factors), and so main

memory is increasingly thermally-challenged. The baseline

server DRAM operating temperature range is 0◦C – 85◦C, but

the JEDEC standard now includes an extended temperature

range of (85◦C – 95◦C), and this has become the common

realm of server operation [5], [6]. In this extended range,

DRAM retention time is specified to be one-half that of the

standard thermal environment.

In the standard thermal range, each DRAM cell requires

a refresh every 64ms. As the memory controller issues

refresh operations, the DRAM’s internal refresh control

logic sequentially steps through all addresses, ensuring that all

rows in the DRAM are refreshed within this 64ms interval. The

rate at which the memory controller must issue refreshes

was initially determined by dividing 64ms by the number

of rows in the DRAM. This value, referred to as tREFI

(REFresh Interval), was specified to be 7.8µs for 256M DDR2

DRAM. As DRAM density doubles every several lithography

generations, the number of rows also doubles. As such, using

this traditional method, the rate at which refresh commands

must be sent would need to double with each generation.

Instead, in order to reduce the volume of refresh traffic,

DRAM vendors have designed their devices such that multiple

rows are refreshed with one command [7]. While this does

reduce the command bandwidth, the time required to execute

a refresh increases with each generation, as more bits

are handled in response to each refresh command [4].

Ideally, DRAM devices would simply refresh more bits with

each operation, but this would over-tax the current delivery

available. The length of time of this delay is the parameter

tRFC (ReFresh Cycle time). Table I shows the worsening of

tRFC as DRAMs become more dense, along with the impact

of temperature on tREFI. Note that initially the increase in

tRFC was significantly less than 2x (i.e., 512Mb to 1Gb). This

was possible due to constant-time aspects of refresh such as

decoding the command and initiating the engine.

TABLE I
REFRESH PARAMETERS AS DENSITY INCREASES [8]

DRAM type tRFC tREFI@85◦C tREFI@95◦C

512Mb 90ns 7.8µs 3.9µs

1Gb 110ns 7.8µs 3.9µs

2Gb 160ns 7.8µs 3.9µs

4Gb 300ns 7.8µs 3.9µs

8Gb 350ns 7.8µs 3.9µs
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Fig. 2. tRFC Across DDR3 Generations

B. Refresh Cycle Time Beyond JEDEC DDR3

Table I contains the JEDEC DDR3 tRFC values. Pro-

jections to future values are difficult due to the seeming

discontinuity between the trend lines shown in Figure 2. The

linear regression from 512Mbit–4 Gbit would project 550 ns

for 8 Gbit. The actual DDR3 JEDEC value is specified at 350

ns. There is debate in the DRAM community as to what tRFC

values will be required for even higher density DDR4 memory,

especially as new materials must be used to scale DRAM to

higher densities and lower lithographies.

III. BACKGROUND

A. Effective Memory Latency

Baseline memory latency is generally quoted as the time

from a load’s issue until data is returned (from DRAMs

in main memory) to the load/store unit. While average or

cold-start metrics are sometimes used, “memory latency” is

more commonly an optimistic/lower-bound value, and actual

memory commands can be delayed by many architectural and

system-level factors. This brings about the concept of effective

memory latency, which is an average load service time from

memory, and is impacted by collisions at, and delays in,

queues, buses, DRAM banks, and other physical resources.

These factors can be significant, and must be included for

accurate performance projection [9]. In this paper, we focus

on the emerging impact of refresh on effective memory

latency.

Memory-Level Parallelism (MLP) is the degree to which

computation can continue on a processor, despite delays as

data is fetched from memory. For workloads with low MLP,

memory latency becomes a significant contributor to overall

performance, and we later demonstrate that such workloads

require new approaches to refresh scheduling, in order to avoid

detrimental effects of future DRAM refresh durations.

B. Deferral of Refresh Operations

The JEDEC DDRx standards allow flexibility in the spacing

of refresh operations. Delaying a specific command for

small numbers of tREFI periods does not result in loss of

data, assuming the overall average refresh rate is maintained

(i.e., all bits of the DRAM are touched within their retention
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Fig. 3. Baseline Memory Controller

time). For this reason, commodity DRAMs allow deferral of

some number of refresh operations, presuming that the

memory controller then “catches up” when the maximum

deferral count is reached. For the current DDR3 standard, this

maximum refresh deferral count is eight [8]. In this work

we use the term postponed to describe the number of tREFI

intervals across which a refresh operation was deferred.

Exploiting this elasticity in the scheduling of refresh oper-

ations is the key focus of this work.

C. Baseline Memory Controller

Figure 3 shows the queue structure of the memory controller

used in this work. The read and write operations accepted

by the controller from the CPUs (via the cache controller) are

first placed in the Input Queue. Operations are moved to the

appropriate Bank Queue as space is available. In our analysis

in Section V-A, we specified 32 entries for each of these

queues. The memory controller must also execute refresh

operations; these are created as the tREFI counter expires,

and stored in the Refresh Queue until they are executed.

Selection between the various operations in the Bank Queues

and the Refresh Queue is managed by the overall memory

scheduler, of which only the Refresh Scheduler is shown. The

Refresh Scheduler is explicitly shown, as the focus of this

work explores the policy and priority with which refresh

operations are intersperse with read and write requests.

D. Typical Approach to Refresh Scheduling

As previously suggested, most memory controllers have

paid little attention to the scheduling of refresh commands,

as the penalties have not warranted the complexity of a sophis-

ticated algorithm. In this section, we examine current policies,

referring to the memory controller logic which decides when

to issue refresh commands as the refresh scheduler (shown

in Figure 3).

The most straight-forward refresh scheduling algorithm

simply forces a refresh operation to be sent as soon as

the tREFI interval expires. This approach is commonplace

due to the simplicity of the required hardware control logic.

Historically, tRFC penalties were low enough to not warrant

additional complexity. This algorithm can be found in readily-

available memory simulators, such as DRAMsim [10] and

GEMS [11]. In addition, even work dealing in sophisticated

operation schedulers have employed this method [12]. This

paper refers to this common policy as Demand Refresh (DR).
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Fig. 4. Refresh Latency Penalty Example

In a more sophisticated policy that exploits the ability to

postpone refresh commands [13], refresh operations are

treated as low priority (never chosen over read or write

traffic) until the postponed count reaches seven refresh

operations. At this point, refreshes become higher priority

than all other operations, to ensure the maximum deferral

limit (eight) is not reached. Deferral-based designs do enable

bursts of operations to proceed without refresh penalties, but

as described in the next section, they fall short of isolating

refresh penalties in several important scenarios. We refer to

this policy as Defer Until Empty (DUE).

E. Examples of Where Typical Approaches Break Down

In the following sections, we describe several examples

in which current refresh scheduling approaches fail to iso-

late refresh operations, including cases where ample idle

DRAM cycles are available.

1) Low-MLP Workloads: Traditional approaches behave

poorly while running low-MLP workloads. In low-MLP work-

loads, memory utilization is often quite light, but each ref-

erence to memory is critical to the workload’s execution

progress. A classic example of such an algorithm/workload is

the traversal of pointer-based large data structures. For these

applications, each execution thread generates only one miss

to memory at a time. As such, there are many periods of

time where the memory controller Bank Queues are empty. In

these cases, the refresh scheduler will often execute refreshes

immediately when the tREFI counter expires. The problem is

that even though the scheduler is often empty, memory traffic

is still present. This, combined with the very long refresh

completion delay of high-density DRAMs (300 ns+), results

in large penalties for operations received by the memory

controller in the interval after the refresh was scheduled.

The magnitude of this effect is significantly larger than ex-

pected when only considering the fraction of time the DRAM

is executing the refresh. In Figure 4(a), we graphically

show the magnitude of the delay experienced by a read

received just after a 300ns refresh operation of 4Gbit

DRAM, compared to the typical closed page access latency of

26ns to accomplish a typical read operation. In Figure 4(b),

we show graphically the fraction of time the DRAM bus

is executing refresh operations over a tREFI interval.

DRAM read operations are shown to give a scale of the

relative bus busy time. This disproportionate busy time drives

the very significant latency penalties.

Table II shows the first-order refresh-associated perfor-

mance penalties across DRAM types. Bandwidth overhead is

calculated by taking the refresh time (tRFC) over the refresh

interval (tREFI). This gives the fraction of time that a DRAM

chip is off-line from mainline traffic to execute refresh

operations. This grows to over a 9% bandwidth tax in the

densest DDR3 technology.

The latency overhead of refresh is more disruptive. To

illustrate this, the first-order latency overhead, as shown in the

fourth and sixth columns of Table II, is calculated assuming an

idle system. In an idle system, a read request would incur

a latency penalty if the DRAM scheduler had recently sent

a refresh request to the needed DRAM device. Note that, in

general, the scheduler would delay a refresh if a read

operation was queued; the values shown represent the case

where the read is unlucky. In this case, the latency penalty

is on average one-half the tRFC time. The rate at which this

higher effective read latency event occurs is indicated by

the bandwidth overhead calculation. As Table II illustrates,

this latency penalty can be very significant. For example, a

modern processor might achieve a baseline memory latency

of ∼50ns. For 8Gb DRAM, the penalty of 15.7ns represents a

31% memory latency increase due to refresh. Beyond the sheer

magnitude of a 31% latency penalty, the cost in performance is

higher in modern, speculative, out-of-order processors than the

average latencies implies [9]. While in general memory latency

can be hidden through hardware features such as prefetch

and out-of-order execution, the reach of such mechanisms is

limited by total hardware capacity. As such, designing for high

latency events requires much larger structures than needed

when latency is more uniform.

2) Medium to High Utilization Workloads: The general

problem of refresh penalties due to scheduler inefficiencies

also applies to workloads with high DRAM bus utilization.

While the refresh timer may expire when the operation queues

are not empty, in many cases the memory controller becomes

idle for at least some period of time relatively soon compared

to the tREFI interval. Though the bus may be idle, new opera-

tions could arrive shortly after the refresh is sent, incurring

the large refresh penalty. Current designs do nothing to judge

how long the controller will be empty, and are ineffective at

avoiding these penalties. Our analysis indicates that traditional

refresh deferral solutions reach significant backlogs only in



TABLE II
REFRESH PENALTY AS DENSITY INCREASES

DDR3

DRAM

capacity

tRFC

bandwidth

overhead

(85◦C)

latency

overhead

(85◦C)

bandwidth

overhead

(95◦C)

latency

overhead

(95◦C)

512Mb 90ns 1.3% 0.7ns 2.7% 1.4ns

1Gb 110ns 1.6% 1.0ns 3.3% 2.1ns

2Gb 160ns 2.5% 2.4ns 5.0% 4.9ns

4Gb 300ns 3.8% 5.8ns 7.7% 11.5ns

8Gb 350ns 4.5% 7.9ns 9% 15.7ns

workloads with saturated memory buses. In these cases, the

refresh scheduler is constantly forcing refresh operations,

since there are never free intervals to hide the refresh.

F. Refresh Beyond DDRx SDRAM

In addition to the emerging tRFC penalties we have iden-

tified for dense commodity DRAM, there has been much

interest in non-DRAM memory technologies which may come

to market in the next 10 years (such as PCM, RRAM, and

STT-RAM). Many recent works have assumed a primary

advantage of these technologies is their non-volatility. While

these are indeed “non-volatile” technologies at traditional

Flash temperatures (≤ 55◦C), several of these suffer from

accelerated drift effects at temperatures in the range of server

main memory (≤ 95◦C) [14]. Drift causes a change in the

memory cell’s resistance value. While drift may be manage-

able in the initial single-bit-per-cell PCM implementations

which are currently on the market, dense multi-level cell PCM

relies on storing and sensing finer resistance granularities,

and drift will become more of an issue. Dense, multi-bit

implementations which are currently envisioned for hybrid

and tiered memory systems, are thus likely to require a

refresh-like command to combat drift in high-temperature

server environments. The length of such an operation may be

similar to these technologies’ write/programming times (much

longer than DRAM, generally). For one leading emerging

memory contender, phase-change memory, its write time could

result in a drift-compensating tRFC easily 3x that currently

specified for DRAMs. From the above, it is clear that simple

refresh scheduling mechanisms will not be sufficient for future

memory.

IV. ELASTIC REFRESH SCHEDULING

We address the behavior observed in current refresh

scheduling algorithms by decreasing the aggressiveness with

which refresh operations are scheduled. In being less ag-

gressive, the proposed mechanisms more effectively exploit the

available refresh deferral dynamic range. This is accomplished

by waiting to issue a refresh command, even when the bus

is idle. At the most fundamental level, we use predictive mech-

anisms that decrease the probability of a read or write’s

collision with a recently issued refresh operation.

!"#$

%&'()

*+,$-+&#"

.$/,$-+01234#&5
6 7 8 9 : ; < =

>,&?&,)@&(2#%&(-)2()
A@5+

>,@&,@)B

Fig. 5. Idle Delay Function (IDF)

The Elastic Refresh algorithm we propose differs from

the best existing approach (DUE) in the mechanism used to

issue low priority refresh operations. Current mechanisms

consider low priority refresh operations eligible to be sent

when all Bank Queues for a rank are empty (structure in

Figure 3). In our method we wait an additional period of time

for the rank to be idle before issuing the refresh com-

mand. The usage of this additional delay, effectively lowering

refresh priority further, exploits typical system behavior where

memory operations arrive in bursts. Using this assumption, as

the time since a prior operation increases, the probability of

receiving future memory operations decreases. This reduces

the likelihood that a new operation will collide with an

executing refresh. We extend this idea with the following

observation: at low postponed refresh counts, the prediction

can aggressively choose to not send an operation. As the

postponed refresh count increases, this bias is reduced by

decreasing the idle delay period.

A. Idle Delay Function

We can express the idle delay as a function of the refresh

postponed count. The general form of this function, referred to

as the Idle Delay Function (IDF), is shown in Figure 5. Note,

in our proposal, the parameters of the IDF are dynamically

adjusted based on the workload characteristics. We define three

regions of delay characteristics:

1) Constant: In our analysis, we found many workloads have

a characteristic idle delay period, where the probability of

receiving a future command in the tRFC interval is very

low. The constant region effectively sets the maximum IDF

at this value.

2) Proportional: This region represents the area where the

postponed refresh count approaches the maximum allowed

value, and we must begin to more aggressive issuing of

refresh operations. The slope of the proportional region

is tuned such that the full dynamic range of postponed

operations is exploited.

3) High Priority: As the number of postponed requests ap-

proaches the maximum, the delay strategy must be aban-

doned, as the refresh must be issued within one ad-

ditional tREFI interval. From this perspective, the High

Priority region has two phases, both with an idle delay

of zero. At a count of seven, the scheduler will send

the refresh as the bank queue becomes empty. At a



TABLE III
IDLE DELAY FUNCTION PARAMETERS

Parameter Units Description

Max Delay Memory Clocks
Sets the delay in the

constant region

Proportional
Slope

Memory Clocks
Postponed Step

Sets slope of the
proportional region

High Priority
Pivot

Postponed Step
Point where the idle delay

goes to zero

count of eight, the refresh will be sent before any other

commands, as soon as the DRAM bus parameters allow.

B. Idle Delay Function Control

As the optimal characteristics of the idle delay function are

workload-dependent, we must define a set of parameters to

configure the delay equation. These are listed in Table III.

The Max Delay and Proportional Slope parameters are de-

termined with the use of two hardware structures that profile

the references. The High Priority Pivot (the transition from

Proportional to High Priority) is fixed at seven postponed

refreshes, as this was effective to prevent forcing High Priority

unnecessarily.

1) Max Delay Control: We found that delays greater than

some threshold were counter-productive in exploiting the full

dynamic range of the DRAM postponed refresh capability.

Through manual exploration of a range of delays, we found

the average delay of all idle periods was an effective value

across a range of workloads. As such, we devised a circuit to

estimate the average delay value. This is accomplished without

the logic complexity of a true integer divide circuit. The

circuit maintains a 20-bit accumulator and a 10-bit counter.

As every idle interval ends, the counter increments by one,

while the number of idle cycles in the interval are added to the

accumulator. The average is calculated every 210 = 1024 idle

intervals with a simple shift-left of 10 bits. If the accumulator

overflows, a maximum average value of 1024 is used.

2) Proportional Slope Control: The goal of the proportional

region is to dynamically center the distribution of refresh

operations in the postponed spectrum. This is accomplished by

tracking the relative frequency of refresh operations across

a postponed pivot point. This postponed point is the target

average refresh execution point. We used a postponed count

threshold of four in our system, reflecting the midpoint of the

deferral range.

The hardware structure to implement this function is shown

in Figure 6. The structure maintains two counters containing

the frequency of operations that fall on the low and high sides

of the pivot threshold. When either of the counters overflow,

all related counters (the Low and High counters of Figure 6(a),

in this case) are divided in half by right-shifting each register

by one. The scheme operates over profiling intervals, which

are followed by adjustments at the end of each interval. At

each adjustment interval, the logic subtracts the values of the
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(b) Proportional Slope control circuit

Fig. 6. Proportional Slope Control Circuit

High and Low counters. The value is applied to a Proportional

Integral (PI) (shown in Figure 6(b)) control circuit to update

the Proportional Slope parameter for the subsequent interval.

Not shown in Figure 6 is the reset of the High and Low

counters after each adjustment interval.

For our analysis, we use the following parameters which

were determined to be effective through simulation analysis.

The High, Low, and Integral counters are 16 bits in width. A

relatively short adjustment interval of 128k memory clocks is

used, since the profiling structure has a fairly small amount of

state and stabilizes quickly. The Proportional Slope value is a

7-bit register, which represents the slope of the proportional

region (units of decrease in delay cycles per postponed step).

The w(p) and w(i) weighting functions of the PI controller

use simple power-of-two division accomplished by truncating

the value to largest 5-bit value (shifting off up to 11 leading

zeros).

C. Elastic Refresh Queue Overhead

Table IV shows a summary of all the components of the

Elastic Refresh scheduler. The overhead of the Elastic Refresh

Queue can be divided into the basic static control mechanism



TABLE IV
REFRESH SCHEDULING MECHANISMS

Name Description Dynamic Control

Fixed
Delay

Sets the maximum
delay value of the Idle

Delay Function

Detection of average
delay of workload

Proportional
Delay

Idle Delay which scales
based on number of
deferred refresh

operations

Adjust with PI based
control of Figure 6 to
exploit full deferral

capability

(FD) and the additional hardware to dynamically tune the pa-

rameters (DD). For the FD system, each memory rank requires

a 10 bit idle counter. In addition, the max delay, proportional

slope, and high priority pivot parameters require 10, 7, and

3 bit registers. In total this overhead is negligible (an 8 rank

memory control would gain 100 register bits). The hardware

to dynamically adjust the Max Delay parameter requires the

addition of a 20 bit wide, 10 bit input accumulator and a 10

bit counters. The Proportional Slope logic consist of two 16

bit High/Low counters, a 16 bit Integral accumulator, and a

7 bit two input accumulator for the Proportional Slope term

generation. All of these components are negligible compared

to the size of a typical memory controller which would contain

this logic.

V. EVALUATION

A. Simulation Methodology

To evaluate the proposed Elastic Refresh policies, we

utilized the Gems toolset [11], built on top of the Simics

[15] functional simulator. Gems provides a cycle-accurate

out-of-order processor model along with a detailed memory

subsystem. Gems was configured to simulate from 1 to 8

aggressive out-of-order cores. The memory subsystem model

uses a directory-based MOESI cache coherence protocol and

a detailed memory controller. The Gems default memory con-

troller was augmented to simulate a First-Ready, First-Come-

First-Served (FR FCFS) [16] memory controller that supports

two separate baseline refresh policies: a) Demand Refresh

(DR) and b) Defer Until Empty (DUE) (see Section III-D)

along with the proposed Elastic Refresh policies. Table V

includes the basic system parameters.

For the memory refresh parameters, we evaluated a configu-

ration representing what tRFC could be in the 16Gbit DRAM

time-frame. The exact value of tRFC is difficult to narrow

down due to the irregularities between DDR3 values for 4

GBit and 8 GBit devices (described in Section II-B). Based

on this, we chose a value of 550ns for tRFC. For tREFI,

we selected the 95◦C interval of 3.9µs, as this reflects usage

in dense server environments, where CMP systems and large

memory configurations are common [5], [6].

The SPEC CPU2006 benchmark suite [17] was compiled

to the SPARC ISA with full optimizations (peak flags). To

estimate representative average behavior, for each experiment

eight segments of 100M instructions were simulated, selected

TABLE V
CORE AND MEMORY-SUBSYSTEM PARAMETERS USED FOR

CYCLE-ACCURATE SIMULATIONS

CPU
Frequency Pipeline

Branch

Predictor

4 GHz
30 stages /

4-wide fetch /
decode

Direct YAGS
/ indirect 256

entries

L1 Data &
Inst. Cache

L2 Cache
Memory

Bandwidth

Memory

64 KB, 2-way
associative, 3
cycles access

time, 64 Bytes
block size, LRU

8 MB, 8 ways
associative, 12

cycles bank
access, 64 Bytes
block size, LRU

21.33 GB/s

DRAM
Controller

Organization

Controller

Queue Sizes

8GB
DDR3-1333

8-8-8

2 Memory
Controllers
2 Ranks per
Controller

8 DRAM chips
per Rank

32 Read
Queue & 32
Write Queue

Entries

evenly along the whole execution of the benchmark. To do so,

each benchmark was fast-forwarded to the beginning of each

segment; the next 100M instructions were used to warm up the

last-level cache and memory controller structures; and finally

the following 100M instructions were used to evaluate the

Elastic Refresh policies. The performance of each experiment

is estimated based on the average behavior along the eight

100M instructions segments. In simulations involving multiple

cores, each processor’s instruction count can drift, though this

effect is extremely small amounts in the homogeneous SPEC

Rate benchmarks. In any case, we measured the total IPC

across all cores in the interval in which core 0 executed 100M

instructions.

B. Performance of Refresh Mitigation Policies

The net performance benefit of the Elastic Refresh scheme

are analyzed in this section. All results are relative to the best

known algorithm DUE. Single core SPEC Speed [17] results

are shown in Figure 7; four core SPEC Rate [17] results

in Figure 8; and eight core SPEC Rate results in Figure 9.

In general, we observe the most significant throughput gains

on workloads that exhibit high levels of memory traffic.

Interestingly, these workloads include the classic high memory

bandwidth workloads libquantum and bwaves, but also

include more moderate bandwidth workloads that exhibit low

MLP, such as omnetpp and xalancbmk. This reflects the

refresh problem is more tied to latency penalties rather than

simply bandwidth overhead.

1) Fixed Delay Results: For the Fixed Delay runs we

selected static values for each of the parameters that seemed to

be effective for most workloads (an exhaustive search would

be prohibitive, considering the number of simulation cycles

required). These values were a Constant region value of 400

memory clocks and a Proportional Slope value of 40 memory

clocks per deferral. On average, we observed performance
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Fig. 7. IPC improvement of proposed refresh policy techniques over baseline refresh policy on 1 core
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Fig. 8. Relative IPC improvement of proposed refresh policy techniques over baseline refresh policy on 4 cores
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Fig. 9. Relative IPC improvement of proposed refresh policy techniques over baseline refresh policy on 8 cores



improvements of Integer (5.9%, 4.1%, 3.7%) and Floating-

Point (6.5%, 2.8%, 1.6%) across one, four, and eight CPUs.

These improvements are quite significant given the very simple

mechanism and extremely low logic required. That said, as

the delay intervals present in high bandwidth workloads (more

pervasive as the core count is increased) are inherently shorter,

a a static setting simply cannot work across all cases. Note

the most effective static settings favored lower bandwidth

workloads as the improvements were larger in these cases.

This biased the selection of the static parameters for the single

core runs.

2) Dynamic Delay Results: The Dynamic Delay results

show greater gains across the different workloads and system

sizes with improvements of Integer (9.8%, 10.3%, 11.2%)

and Floating-Point (10.2%, 7.0%, 7.9%) across one, four, and

eight CPUs simulations. As expected, the improvements for

high bandwidth single core workloads such as libquatum,

bwaves, and milc are significant with Dynamic Delay. The

improvement using dynamic parameters is very significant

in the 8 core simulations, increasing the meager 3% fixed

delay to a 9% gain. These results are particularly impressive

considering the trivial logic area overhead of the mechanisms.

VI. RELATED WORK

Avoiding Refresh: One option to help reduce refresh penal-

ties is to avoid sending some fraction of the operations that are

determined to be unneeded. In the Smart Refresh work, the

authors propose taking advantage of the inherent refresh that

occurs through existing read and write operations when

ranks are precharged [18]. In ESKIMO, methods are proposed

to utilize semantic knowledge, such as “deleted” dynamically

allocated memory, to avoid refreshing memory regions which

the program is no longer using [19]. While both of these

refresh avoidance techniques are potentially quite useful, they

are incompatible with existing commodity DRAM devices.

In addition, the significant design changes required would be

difficult and timely to negotiate through JEDEC committees,

and proprietary DRAM designs, such as Rambus DRAM, have

been challenging to bring to market.

Hiding Refresh: It is straight-forward to envision a DRAM

architected such that read and write commands may be

completed in other sections of the memory at the same time

as refresh is taking place elsewhere in the bit-arrays or

banks. Indeed, such concurrent refresh schemes have been

implemented outside the commodity server DRAM space [20].

However, for commodity DRAMs, this approach has not been

taken, due to the high current draw of a refresh operation,

and the added design and system expense that might be

required to support multiple simultaneous operations, from a

power supply/noise perspective.

As irregular memory latency can be detrimental to real

time systems, memory refresh prevents dynamic memory

adoption in many embedded application spaces. In “Making

Refresh Predictable” [21], the program itself can specify when

refresh operations can be sent, thus avoiding penalties.

Extending this idea to the more general server computation

space may be possible, but the irregularity and complexity of

multi-programmed system operation increases the difficulties

of deploying this solution compared to more explicitly con-

trolled real time systems.

Memory Request Prediction: The concept of predicting

future memory references has been proposed as a method to

decide when to enter latency-penalizing lower power DRAM

states [22]. The fundamental difference between the prediction

for low power states as compared to refresh is centered in the

functional requirement of refresh (to prevent loss of memory

data). As such, the urgency aspect of refresh, which drove the

dynamic nature of the prediction in this work is very different

from this prior work. Another important difference between

refresh and powerdown scheduling policies is highlighted by

Fan et al. in [23], which demonstrates lower DRAM power

if idle-time predictors are ignored, and memory is put in

low power states as soon as possible. With powerdown, it

is beneficial to drive to the lower power state as often as

possible, whereas refresh must be driven at a specific rate.

Fan’s observations about powerdown essentially reflect the

traditional Demand Refresh scheduling policy, which we found

to be quite poor.

VII. CONCLUSIONS

This work has shown that Elastic Refresh mechanisms

are effective in mitigating much of the increasing penalty

of DRAM refresh, providing a ∼10% average performance

improvement across the SPEC CPU suite on one, four, and

eight core simulations. These gains were achieved using very

low overhead mechanisms, that are easily incorporated into

existing memory schedulers, and are effective on commodity

JEDEC DDRx SDRAM memory devices.

The relatively large gains compared to the very small logic

overhead highlight the importance of the memory interface in

multi-core designs, and particularly “background” operations

such as memory refresh. As memory technologies become

more complex, operations beyond typical reads and writes will

become more important. These future memories include both

future DDRx memories (and more complex 3D packagings),

but also non-DRAM memories such as PCM, RRAM, and

STT-RAM.
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