
Elastic Scaling of Data Parallel Operators in Stream Processing

Scott Schneider†,♠ Henrique Andrade♠ Buğra Gedik♠ Alain Biem♠ Kun-Lung Wu♠
† Virginia Tech

Department of Computer Science
Blacksburg, VA, USA
scschnei@cs.vt.edu

♠ Thomas J. Watson Research Center
IBM Research

Hawthorne, NY, USA
{hcma,bgedik,biem,klwu}@us.ibm.com

Abstract

We describe an approach to elastically scale the per-
formance of a data analytics operator that is part of a
streaming application. Our techniques focus on dynamically
adjusting the amount of computation an operator can carry
out in response to changes in incoming workload and the
availability of processing cycles. We show that our elastic
approach is beneficial in light of the dynamic aspects of
streaming workloads and stream processing environments.
Addressing another recent trend, we show the importance
of our approach as a means to providing computational
elasticity in multicore processor-based environments such
that operators can automatically find their best operating
point. Finally, we present experiments driven by synthetic
workloads, showing the space where the optimizing efforts
are most beneficial and a radioastronomy imaging appli-
cation, where we observe substantial improvements in its
performance-critical section.

1. Introduction

The area of distributed stream processing has received
significant attention recently. The availability of large-scale
affordable computational infrastructure is making it possible
to implement large, real-world continuous streaming data
analysis applications. The interest is also fueled by the
existence of a plethora of usable academic and commercial
stream processing systems [1], [2], [3], [4], [5], [6].

The implementation of continuous streaming applications
where data is ingested from physical sensors (e.g., hurri-
cane tracking stations) or consumed from business platform
sources (e.g., trading information from stock exchanges),
imposes interesting challenges. First, there is the mindset
challenge. This is how we define the training of applica-
tion developers and analysts alike to create and employ
architectural patterns that are aligned with the streaming
nature of the data. The design work includes ways of
partitioning the incoming workload as well as the processing
in functional components such that the applications can cope
with the sometimes overwhelming rate of data ingest [7].
The second challenge relates to scalability and adaptation to

computational infrastructure changes. In other words, how
can application developers and administrators ensure that
the processing infrastructure will cope with increased needs
(e.g., adding new sensors for tracking weather changes)
and variation in resource availability that happens once
these long-running applications are deployed. Additional
intelligence and appropriate abstractions in the programming
model supporting these applications can help with the mind-
set challenge.

Another aspect is that, for streaming applications, a priori
traditional capacity planning techniques [8], [9] can be
of limited use. On one hand, spikes in data rates can
happen and must be dealt with expeditiously at runtime
(e.g., announcements by the Federal Reserve in the US
usually affect trading patterns almost immediately). On the
other hand, some of the typical streaming applications are
hypothesis-driven (e.g., can I assess whether a competitor
hedge fund is attempting to unload a particular asset?),
which also implies spikes in processing needs. Clearly,
distributed stream processing applications must include ways
of adapting to runtime variations.

A more subtle aspect in designing streaming applications
is the problem of placing its multiple pieces onto the runtime
environment so that it can best utilize the computational re-
sources. In many cases, data analysts and programmers have
a good understanding of how they intend to structure the
data analysis task. Previous work, including our own [10],
[11], has shown that there is benefit in providing a language
and infrastructure where there is explicit decomposition of
the development effort in terms of a logical task (i.e., how
a data analysis application should be implemented in terms
of fundamental building blocks), and a physical task (i.e.,
how the logical task should be mapped onto the physical
resources). Cognitively, the logical task is much closer to
analysts and developers as it is in their domain of exper-
tise. On the other hand, the physical task requires deeper
understanding of processor architectures, networking, and
interactions of other system components. In most cases, only
well seasoned systems developers can do it, and even they
are only effective when dealing with reasonably small ap-
plications [10]. That means that automated help is required.
Presenting an environment where logical and physical tasks

are separated has the advantage of exposing knobs that can
be tweaked at compile-time. This approach can lend itself to
making adjustments of the computational plumbing to better
suit the runtime environment [10]. On the other hand, as we
articulated earlier, even such an approach is inadequate to
cope with variations that happen at runtime. This indicates
that there is value in providing adaptive runtime techniques.
In particular, techniques that are transparent to developers
such that the logical/physical task separation is preserved.

A final motivating aspect is the trend of packing a
large number of processing cores in modern chips. Clusters
of workstations (COWs) currently deployed in most high-
performance computing installations typically have from 2 to
32 cores per node. The trend in chip design is to ramp up the
number of cores to even higher numbers [12]. Considering
such trend, it is imperative that middleware geared towards
different data analysis processing tasks be able to effectively
make use of these large number of cores. This indicates
that the idea of computational elasticity must be directly
supported by middleware and compilers alike.

For these reasons, we propose a strategy that permits
portions of the computation (described as operators) that
are data parallel to transparently make use of additional
cores. This elasticity must come in response to changes
in an operator’s workload or in response to changes in
the availability of processing cycles, because additional
applications may come online and compete for the same
computational resources.

The main contributions of this work are as follows:

1) We formalize what an elastic operator is in the con-
text of stream processing and describe how it fits
in the SPADE language, the programming language
employed by IBM’s System S, a large-scale stream
processing middleware. An important aspect here is
preserving the isolation of a logical view versus a
physical view of the application in the sense that
developers need not change their operator code to
transform them into elastic operators.

2) We propose an adaptive algorithm for assessing
changes in the incoming workload as well as changes
in the availability of computational resources, provid-
ing quick reaction to these changes at runtime. These
reactions cause the operator to tweak the amount
of resources it uses, quickly stabilizing at a new
performance level.

3) We demonstrate through synthetic benchmarks the
space where elasticity is most beneficial as well as
provide an assessment of how it affects the application
in terms of (minimal) additional overheads.

4) We demonstrate experimentally how a performance-
critical operator, central to a large-scale radioastron-
omy application, can substantially profit from the
dynamic adaptation at runtime.

2. System S and SPADE

System S [13], [14], [15] is a large-scale, distributed
data stream processing middleware under development at
the IBM T. J. Watson Research Center. It supports structured
as well as unstructured data stream processing and can be
scaled to a large number of compute nodes. The System S
runtime can execute a large number of long-running jobs,
which take the form of data-flow graphs. A data-flow graph
consists of a set of Processing Elements (PEs) connected
by streams, where each stream carries a series of tuples.
The PEs are containers hosting operators that implement
data stream analytics and are distributed over the compute
nodes. The compute nodes are organized as a shared-nothing
cluster of workstations (COW) or as a large supercomputer
(e.g., Blue Gene). The PEs communicate with each other
via their input and output ports, connected by streams.
PEs can be explicitly connected using name-based static
stream subscriptions that are resolved at compile-time or
through expression-based subscriptions that are established
dynamically at runtime, upon the availability of streams
that match the subscription expression. Besides these fun-
damental functionalities, System S provides several other
services, including fault tolerance, scheduling and placement
optimization, distributed job management, storage services,
and security.

SPADE [11] is a language and a compiler for creating dis-
tributed data stream processing applications to be deployed
on System S. Concretely, SPADE offers: (1) a language
for flexible composition of parallel and distributed data-
flow graphs, which can be used directly by programmers or
sit under task-specific higher-level programming tools and
languages (such as the System S IDE, StreamSQL dialects,
or framework-specific languages [16] for data processing
paradigms such as map-reduce); (2) a toolkit of type-
generic built-in stream processing operators, which include
all basic stream-relational operators, as well as a number of
plumbing operators (such as stream splitting, demultiplexing,
etc.); (3) an extensible operator framework, which supports
the addition of new type-generic and configurable operators
(UBOPs) to the language, as well as new user-defined non-
generic operators (UDOPs) used to wrap existing, possibly
legacy analytics; (4) a broad range of edge adapters used to
ingest data from outside sources and publish data to outside
destinations, such as network sockets, databases, and file
systems.

Programming Model: The SPADE language provides a
stream-centric, operator-based programming model. The
stream-centric design implies a programming language
where an application writer can quickly translate the flows
of data from a block diagram prototype into the application
skeleton by simply listing the stream data flows. The second
aspect, operator-based programming, is focused on design-

ing the application by reasoning about the smallest possible
building blocks that are necessary to deliver the computation
an application is supposed to perform. The SPADE operators
are organized in terms of domain-specific toolkits (signal
processing, data mining, etc). In most application domains,
application engineers typically have a good understanding
about the collection of operators they intend to use. For
example, database engineers typically design their appli-
cations in terms of the operators provided by the stream
relational algebra [1], [17]. Data analysis and data mining
programmers tend to employ signal processing and stream
mining operators [18], [19].

A Code Generation Approach: A key distinction between
SPADE and other stream processing middleware is its em-
phasis on code generation. This distinction enables us to
address the issues we raised in Section 1. Specifically,
hardware architecture designs are changing rapidly. This
changing hardware forms the basis of large parallel process-
ing facilities. However, such diversity makes it challenging
for software developers to write applications that extract the
best performance out of their computational resources. A
code generation framework addresses these challenges by
adapting the logical application to the physical specifics
of a computational platform through simple application
recompilation.

Given an application specification in SPADE’S interme-
diate language, the SPADE compiler generates specialized
application code based on the computation and communica-
tion capabilities of the runtime environment. Currently, this
specialization includes (1) code fusion, the ability to translate
an application logically defined in terms of operators into a
set of processing elements (PEs) such that multiple operators
may be placed inside a single PE and the streams between
them are converted into function calls [7]; (2) vectorization,
where operations expressed in terms of vectors (vectors
are basic types in SPADE) are translated into code that
employs SIMD instructions using SSE or AltiVec instruction
sets [20]; (3) profiling, where performance data collection
employs the different mechanisms provided by a particular
CPU (i.e., hardware counters) for obtaining metrics, which
are later used for optimizing the placement of operators
on processing elements; and (4) operator elasticity, where
operators declared as elastic are placed in a container that
can dynamically adjust its processing level as a function
of available cycles and incoming workload. The focus of
this work is the last of these items, which involves runtime
adaptation, in addition to the compile time optimizations
already performed by SPADE. A detailed discussion of this
idea is the topic of Section 3.

3. Design

Standard SPADE operators perform their computations
sequentially. As tuples arrive, they are processed by a

single flow of control. In this section, we describe a design
that allows such operators to perform their computations
in parallel, while also dynamically adapting their level of
parallelism to obtain the best performance on a particular
node.

This approach, which we refer to as operator elasticity,
applies to operators that are amenable to data parallelism.
In particular, operator elasticity works best with operators
that are pure functions and maintain no state in between
processing different tuples. Stateful operators that are thread-
safe do work in this framework, but their scalability may be
limited by the granularity of synchronization they use to
maintain consistent state. We present an example of such an
operator as an alternate design in Section 4.

Our current implementation also assumes that the results
from tuples do not have to be submitted downstream in the
same order that they arrive. The elastic operator approach
can still be applied in applications that have ordering con-
straints, but the implementation requires a mechanism to
track tuple ordering, introducing additional costs.

Architecture: As shown in Figure 1, we have introduced
new threads and data structures into a SPADE operator to
make it elastic.
• Dispatch thread: The dispatch thread is the focal point

for managing the distribution of incoming work in the
form of tuples carried by the operator’s input streams.
This thread replaces the main thread of execution
originally used by SPADE. It is responsible for receiving
tuples from upstream operators, dispatching them into
a global work queue, and periodically throttling the
thread level to achieve the best instantaneous perfor-
mance. The dispatch thread can increase the degree of
parallelism by creating new workers or waking up old
ones, and it can decrease parallelism by putting workers
to sleep.

• Work queue: This queue enables the reception of
tuples to happen independently of their processing. The
dispatch thread places tuples to be processed in this
queue.

• Worker threads: A worker thread repeatedly pulls the
next available tuple off of the global work queue and
processes it. The operator is parallelized by having
multiple worker threads, each processing their own
tuples. Worker threads also check if they have been
told to go to sleep by the dispatch thread.

• Alarm thread: The alarm thread periodically wakes
up and tells the dispatch thread it is time to reevaluate
the thread level. For the experiments in Section 5, this
period is set to 1 second1. If this period is too short,
then performing the calculation itself can impact perfor-

1. The default time slice for a process in the Linux kernel is 100
milliseconds. A period of 1 second allows worker threads to get 10 time
slices before the dispatch thread evaluates their performance.

Processing Element

Operator

Alarm thread

Dispatch thread

Worker threads

Figure 1: Elastic operator architecture.

mance. If it is too long, then the system cannot quickly
adapt to changes. This work focuses on adjusting the
level of parallelism in a single node. We assume that
for time periods significantly longer or shorter than 1
second, the adjustment will be handled by other means.

There are two designs that are present in other similar
systems that we explicitly decided against: private work
queues and work stealing [21]. Private work queues alleviate
contention on global data structures, which can reduce
the overhead costs of parallelization. The main benefit of
reducing this cost is that we can exploit a smaller granularity
of parallelism. However, it also introduces the problem of
load balancing. The classic solution to load balancing with
private queues is to allow threads to steal work from other
threads. The granularity of parallelism that we aim to exploit
is coarse enough that the overhead from a global queue
does not dominate. This was revealed by earlier studies we
conducted. Ultimately, using a global queue allows us to get
the best load distribution. Further, we are also in a system
with a constant stream of data. If we assume that tuples from
upstream operators arrive in steady fashion (as is the case
in an oversubscribed system), then there would be no need
to steal work even if there were private queues.

Rates are measured in tuples per second. We do not
measure rates in bytes per second because there is a weak
correlation between the size of a tuple and the time it
takes to process it. If this assertion seems counter-intuitive,
consider that the SPADE language and runtime system are
meant to work with any arbitrary application that can be
expressed using a streaming model. Consequently, small
tuples can still require large computations. The best measure
of performance in our computational model is the rate at
which whole computations can be carried out, which is
independent of the size of the messages that initiated the
computations.

The tuples per second rate is calculated by maintaining a
sliding window of timestamps for how many total number
of tuples have entered the operator. We average the most
and least recent entries for a rate that represents the recent
past.

We chose tuples processed per second as our metric be-
cause in a streaming application which will run indefinitely,
it is the best indication of total system performance. Locally
observed rates can indicate what is going on in the rest of the
system, as the rate at a single node is the result of more than
just how fast that node can process its tuples. Local rates
depend on how quickly upstream nodes can feed it tuples,
and back-pressure from downstream nodes will prevent a
particular node from submitting more tuples.

Elastic Operator Algorithm: When the dispatch thread
reevaluates the thread level, the goal was to both aggres-
sively seek out higher levels of parallelism, yet recognize
when increased parallelism is detrimental. Further, we also
want it to adjust parallelism at runtime based on measured
performance, even if the workload of the application or load
on the system changes. The algorithm presented in Figure 2
meets these requirements.

The variable n in Figure 2 represents the active thread
level. Threads are created, suspended and woken up, but they
are never destroyed. The active thread level is the number of
threads that are actively processing tuples; it does not include
suspended threads. Never destroying threads is a deliberate
design decision. Thread creation is relatively expensive—it
is the cost of a pthread create(), which on a Linux system is
the same as a process fork. Waking up a suspended thread
is cheap; the dispatch thread signals a condition variable
and the worker wakes up from blocking on that condition.
Suspended threads also have a negligible impact on overall
system performance, even if they are around for a long
time. They do not impact system scheduling and the only
resource they consume is their local call stack. These reasons
lead us to conclude that suspending threads, rather than
destroying them, was the best design. In Section 5, we
present experiments which show the thread level changing
frequently in response to both external system load and the
influence of other elastic operators.

For each thread level, we record both the peak rate seen
at that level (peak) and the last seen rate at that level
(last). The peak rates are used to detect performance decline.
Comparing peak rates across thread levels is used to detect
the best thread level on a stable system with a steady
workload. Comparing the current rate with the peak rate
at that thread level is used to detect when the system is no
longer stable, either due to a change in workload or a change
in the system.

Initially, the algorithm continually increases the thread
level as long as the peak performance increases, creating
threads along the way (lines 28–30). Once a thread level

i n t n = 0;
bool peaking = fa lse ;
ThreadL is t threads ;
DoubleL is t peak ;
DoubleL is t l a s t ;

bool l ess (double a , double b)
{

return ((b − a) / a) >= TOLERANCE;
}

void set (DoubleL is t& p , i n t n , double c)
{

/ / New peak .
i f (c > p [n]) {

i f (less (p [n] , c)) {
/ / I n v a l i d a t e peaks .
for (i n t i = n+1; i < p . s ize () ; ++ i) {

p [i] = INFINITY ;
}

}
p [n] = c ;

}

/ / Decay peak ra te .
else {

p [n] −= p [n] ∗ DECAY RATE;
}

}

1 double curr = calcAverageRate () ;
2 set (peak , n , curr) ;
3 l a s t [n] = curr ;
4

5 i f (peaking) {
6 i f (curr < l a s t [n+1]) {
7 threads [n+1]−>wakeup () ;
8 ++n ;
9 }

10 peaking = false ;
11 }
12

13 / / I n fe r a busy system .
14 else i f (less (curr , peak [n]) | | (n && less (peak [n] , peak [n−1]))) {
15 / / Never suspend thread 0.
16 i f (n != 0) {
17 threads [n]−>suspend () ;
18 −−n ;
19 peaking = true ;
20 }
21 }
22

23 / / I f we only have one act ive thread , or i f peak performance at
24 / / the leve l below us i s s i g n i f i c a n t l y less than current level ,
25 / / then maybe we can s t i l l improve performance .
26 else i f (! n | | less (peak [n−1], peak [n])) {
27 / / Probe higher .
28 i f (n+1 == threads . size ()) {
29 threads . create () ;
30 ++n ;
31 }
32 / / Only wakeup thread i f i t performed bet ter .
33 else i f (peak [n] < peak [n+1]) {
34 threads [n]−>wakeup () ;
35 ++n ;
36 }
37 / / else , stable from above
38 }
39 / / else , stable from below

Figure 2: The variables used to infer the state of the system and their initial conditions are show in the left column. The Elastic Operator
algorithm is shown in the right column.

is reached at which there was no significant improvement
compared to the last thread level, there is stability from
below (line 39). The assumption with this approach is that
if there is a performance increase going from thread level
N − 1 to N , then there will probably be a performance
increase with thread level N + 1. The first time this is not
true, we settle at that thread level. We consider this stability
from below because we infer stability by only looking at the
thread levels below the current one. If performance has not
improved significantly from thread level N−1 to N , then it
is likely that thread level N+1 will either harm performance
or remain the same. In either case, the best thing to do is to
stay at thread level N .

The other kind of stability, stability from above, is
achieved when the peak rate from thread level N − 1
indicates that the performance will probably improve if the
thread level is increased (i.e., there exists an upward trend;
line 26), but the peak rate from thread level N + 1 indicates
otherwise (line 33). This situation can occur because at some
previous point, thread level N + 1 was explored, but not
chosen because it harmed performance.

If external load is placed on the system or if the workload
itself changes, the measured rate may fall significantly below

the peak observed rate (line 14). When this happens, the
algorithm tries decreasing the thread level and asserts that it
actually increases performance (lines 16–19). Note that even
on a busy system, decreasing the thread level might harm
performance. Our goal is to maintain the highest possible
performance for the application, not necessarily be a fair
consumer of system resources. This assumption means that
we rely on fair scheduling at the kernel level. For this
reason, we decrease the thread level, but enter a peaking
state (line 19). We only settle on the lower thread level if,
during the next thread throttling period, the measured rate
is better than the higher thread level (lines 5–10). Note that
in this case, we use a strict comparison (line 6) in order to
prevent performance from gradually creeping downwards.
Once pressure on the system is relieved, the algorithm
will again seek out higher thread levels that yield better
performance.

The external load placed on an elastic operator can actu-
ally come from another elastic operator. If multiple instances
of this algorithm are running on the same node, they will
compete for resources, even though they are part of the same
application. However, since they are both greedily trying

to maximize their performance—not system utilization—we
postulate that they will end up with a fair configuration
that still benefits total application performance. We will
experimentally show whether this claim holds in Section 5.

There is a fundamental conflict between maintaining
stability and continually trying to improve performance by
changing thread levels. Once stability is reached—either
from above or from below—the thread level is not “set.”
The fitness of this decision is constantly reevaluated. While
reaching stability is one of our goals, we still want the
system to be nimble; it should react quickly to changes in the
system and the workload. For this reason, the algorithm does
two things to the observed peak rates: decay and invalidation
(line 2).

If the current rate is larger than the peak rate for a
thread level, then the current rate becomes the peak rate.
However, if the current rate is less than the peak rate, we
decay the peak rate by a small percentage. This technique
allows us to converge on a stable thread level faster than
always maintaining the peak. It also means the algorithm is
less susceptible to anomalous effects; e.g., queueing artifacts
during application initialization can result in inflated rates.
Rate decay ensures that only recent history, not ancient
history, is used for making decisions. However, if the current
rate is significantly larger than the peak rate, then the
algorithm assumes that there has been a fundamental change
in either the workload or the system itself. In this case,
we invalidate the peak rates for all thread levels above the
current one, which spurs renewed probing into those levels.
This technique facilitates adaptation and enables recovery
from an overloaded system.

4. Case Study – Radio Imaging

To assess the effectiveness of the Elastic Operator algo-
rithm, we will carry out experimental evaluation (see Sec-
tion 5) using synthetic workloads as well as a radioastron-
omy application, being developed as part of the Australian
Square Kilometre Array Pathfinder Project (ASKAP) [22].
Here we briefly describe the structure of a radio imaging
application, developed in collaboration with ASKAP.

Synthesis radio imaging is the process of transforming
radio data collected from an array of antennas (the inter-
ferometer) into a visible image. A key component in the
radio imaging is the process of gridding, which transforms
spatial frequency data into a regular grid on which Fast
Fourier Transform (FFT) can be carried out. Gridding is the
most computationally expensive component of the imaging
process.

Considering 3-D coordinates (u, v, w) measuring the dis-
tances in wavelengths between two antennas and two di-
rectional angles to a point-object in the sky (l,m), the sky
image I(l,m) is related to the output of the interferometer
V (u, v, w), called visibility, by the following equation [23]:

V (u, v, w) =

∫
I(l,m)√

(1− l2 −m2)
Gw(l,m)e−2πi[ul+vm]dldm

(1)
where kernel Gw(l,m) = e−2iπ[w(

√
1−l2−m2−1)]. Equa-

tion (1) is the Fourier transform of the product of Gw(l,m)
and I(l,m), which is equivalent to the Fourier transform of
V (u, v, w = 0).

The visibility is measured at a pre-defined location deter-
mined by the architecture of the antenna array, resulting into
the sampled visibility:

Vs(u, v, w) = V (u, v, w)∆(u, v, w) (2)

where ∆(u, v, w) is the M-points, 3-D sampling function
at location uj , vj , wj :

∆(u, v, w) =

M∑
j=1

δ(u− uj , v − vj , w − wj) (3)

Gridding is done by convolving the sampled visibility
with a function gw(u, v), which is the inverse Fourier trans-
form of the kernel Gw(l,m), where the kernel is sampled
onto a regular grid:

Vg(u, v, w) = [gw(u, v) ⊗ Vs(u, v, w = 0)] Ω(u, v) (4)

Where gw(u, v) is the inverse Fourier transform of
Gw(l,m) and the Ω(u, v) is a Comb function (sum of
regularly spaced Dirac functions). Note that the convolution
function depends of the third coordinate w. In practice, a
finite set of gw(u, v) is used by quantizing the w-axis into a
finite number of planes. Also, note that the above equation
transforms the 3-D data into a 2-D grid, thus creating the
resulting image.

The application (seen in Figure 3), as implemented in
SPADE, comprises the following:

Data ingestion: The visibility data is typically collected
from the antennas after long hours of observations in the
form of complex-valued V (u, v, w) readings. For the pur-
poses of performance evaluation, data ingestion is simulated
in System S by two SPADE operators. The first operator gen-
erates the coordinates (u, v, w) as random values between
0 and 1 and a sequence number seq—the data is not read
from a file, but generated at runtime. The second operator
is a Functor2 that generates the visibility (i.e., the output of
the interferometer) as a complex number (two real-valued
number) from their coordinates. The process generates a
set of complex-valued samples with real-valued coordinates
(u, v, w)[i], where i = 0...N − 1).

2. The Functor is a SPADE operator that can perform data transformations
through algebraic operations as well as projections and data filtering.

scaling and
channel-blocking

data ingestion

aggregation

convolution

(a) Reference implementation

elastic

elastic

elastic

elastic

elastic convolution operator

(b) Elastic implementation

Figure 3: The Radio Imaging application

Scaling and channel-blocking: Scaling is the transforma-
tion of the coordinate (u, v, w)[i] units from meter-distances
into wavelengths within pre-selected frequencies of analy-
sis. For a frequency f , the coordinates are converted into
wavelengths by a Functor performing the following vectorial
transformation:

(uf , vf) = (u, v) ∗ f/CellSize; wf = f ∗ w/wCellSize

where CellSize and wCellSize are pre-selected parameters
that define the required granularity of analysis in the 3-D
space. This scaling process is carried out for each frequency
of interest (16384 in total), generating a 16384 dimensional
data for each incoming tuple. Next, scaled data is grouped
into block of frequencies and each block is processed
independently.

Indexing: Within each block of frequencies, data is indexed
for data distribution and partitioning. Two types of indexing
are performed. Indexing to map data to sectors in the
convolution matrix and indexing to the final grid. Indexing
is carried out by two Functors running in parallel, and then
joined back into single set of tuple using a Join operator3.

Convolution: The data is convolved with the matrix using a
Convolution user-defined operator (UDOP). The convolution
matrix is divided into L×L sub-areas, where each sub-area
is convolved separately. Each of these areas generate a local
grid that holds the results of convolving the data with that
specific matrix region.

Aggregation: All local grids from each block of frequencies

3. A Join operator performs a stream-based relational join, correlating
tuples originated from two separate streams.

are summed back into a final image grid. This is done by
two set of operators. The first set aggregates4 the local grid
corresponding the matrix sub-areas, resulting into a grid for
that particular block of channels. Next another Aggregate
operator sums up these local grids into a final grid, producing
the final image.

Note that in Figure 3(a), it can be seen that we have
multiple instances of the Convolution operator. This is
another degree of freedom in parallelizing this application as
it allow us to have concurrent instances of the same operator
working on disjoint regions of the convolution matrix. As
will be seen in Section 5, we implemented the Convolution
operator (Figure 3(b)) as an elastic operator as its operations
are commutative and associative and can be carried out in
parallel, but we also employed multiple instance of that
operator. We used this method as a means of partitioning
the work and, hence, reducing contention in accessing the
shared matrix data structures.

We also experimented with an alternate parallelization
strategy. What limits parallelism in this application is that, in
the end, one matrix must be the aggregate of all matrix oper-
ations. Our initial parallelization maintained one copy of the
matrix and each operator updated that matrix using lock-free
sychronization (specifically, wait-free compare and swaps).
While this implementation was both correct and in parallel,
it was in fact slower than the sequential version—the syn-
chronization overhead was too great for the parallelism to
overcome. The design depicted in Figure 3 and used in the
experiments in Section 5 maintains separate, local copies of
the matrix inside each operator. Synchronization is delayed

4. SPADE supplies an Aggregate operator that can be used for regular
group-by aggregations.

�

��

��

��

��

��

��

��

� ��� � ��� � ��� �

�
��
�
�
��
�
��
�
��
�
�
��

������������

��������������������������

������
�������

��
��
��
��
��
��
��
��
��
��
��

� �� �� �� �� ��

�
��
�
�
��

�
��
�
��

�
�
��

������������

��������������������������

������
�������

(a) Light workload: AMD (left-side), Power5+ (right-side)

�

�

��

��

��

��

��

��

� ��� � ��� � ��� �

�
��
�
�
��
�
��
�
��
�
�
��

������������

���������������������������

������
�������

��

��

��

��

��

��

��

��

��

� �� �� �� �� ��

�
��
�
�
��
�
��
�
��
�
�
��

������������

���������������������������

������
�������

(b) Medium workload: AMD (left-side), Power5+ (right-side)

Figure 4: Algorithm stability with light and medium synthetic workloads

�

�

�

�

�

��

��

� ��� � ��� � ��� �

�
��
�
�
��
�
��
�
��
�
�
��

������������

��������������������������

������
�������

�
�
��
��
��
��
��
��
��
��
��
��

� �� �� �� �� ��

�
��
�
�
��
�
��
�
��
�
�
��

������������

��������������������������

������
�������

(a) Heavy workload: AMD (left-side), Power5+ (right-side)

����
����
����
���
����
����
����
����
���
����

� ��� � ��� � ��� �

�
��
�
�
��
�
��
�
��
�
�
��

������������

�������������������������������

������
�������

�

���

���

���

���

���

���

���

���

� �� �� �� �� ��

�
��
�
�
��
�
��
�
��
�
�
��

������������

�������������������������������

������
�������

(b) Extra heavy workload: AMD (left-side), Power5+ (right-side)

Figure 5: Algorithm stability with heavy and extra heavy synthetic workloads

and done in stages, allowing the overall execution time to
benefit from the parallelism. As with other data processing
domains, how an application is parallelized matters.

5. Results

We ran two sets of experiments to analyze the effective-
ness of the Elastic Operator algorithm: experiments using a
synthetic benchmark and experiments using a real applica-
tion.

The experiments with the synthetic benchmark had two
main purposes. First, to verify that the control algorithm was
able to seek the best operating point irrespective of how
much work that had to be carried out per tuple. Second,
to assess whether the additional overhead imposed by the
Elastic Operator algorithm was small, even when compared
to a hand-tuned application. Moreover, using synthetic work-
loads, we also wanted to make sure that the algorithm would
quickly adapt to changes in the availability of computational
resources and tweak its behavior in light of changes in the
availability of computing cycles.

The second batch of experiments was carried out using
the Radio Imaging application, where we focused our anal-
ysis on the Convolution operator. Our primary aim was to
demonstrate how effective elasticity is for a real application.
Furthermore, we wanted to verify experimentally that even
though multiple elastic operators would be independently
seeking out their highest operating point (in this case,
defined as operator throughput) that, globally, the application
would settle on its highest throughput level.

We employed two machines in our tests. A quad-core
machine running at 2.6 GHz (specifically, it has two dual-

core AMD Opteron 2218 processors) and a 16-core Power5+
machine, where each core runs at 1.9 GHz with simultaneous
multithreading (SMT) capabilities. In all cases, we were
running RedHat Linux with a stock installation of System
S and SPADE, including the compiler and code generation
support for generating elastic operators.

Synthetic Study: Figures 4 and 5 summarize our results
with the synthetic benchmarks on the AMD and Power5+
machines. In these experiments, we controlled the amount
of computation by varying the number of floating point
operations carried out on behalf of each incoming tuple.
Specifically, we employed a light workload where 1 floating
point operation was carried out per incoming tuple. We also
used a medium workload—1000 floating point operations per
tuple; a heavy workload—10,000 floating point operations
per tuple; and an extra heavy workload—1 million floating
point operations per tuple. These experiments also capture
the amount of overhead the Elastic Operator algorithm incurs
as it performs data copying, queue and thread manage-
ment, among other bookkeeping operations required by the
algorithm. This overhead is most apparent with the light
and medium workloads, where the granularity of work is
sometimes too small to overcome the synchronization and
bookkeeping overhead. When this happens, adding more
threads actually decreases throughput. The Elastic Operator
algorithm detects this decrease in throughput and backs off
the level of parallelism accordingly.

In Figures 4 and 5, we plot a straight line (labeled
dynamic) with the throughput that was observed throughout
the experiment when the Elastic Operator was employed.

It can be seen in Figure 4 that once the Elastic Operator

algorithm settles on its best and steady operating point, that
it is at or very near the best static configuration. Again, we
emphasize that picking the right static configuration requires
manual tuning. We can also see that for light and medium
workloads, not too many additional threads are required
as the ratio of computation to the extra overhead imposed
by the Elastic Operator algorithm has diminishing returns.
Note that this is discovered quickly during probing. More
interestingly, in Figure 5, when the ratio of computation
per tuple is much higher, the benefits of elasticity become
evident. We notice that the steady throughput enjoyed by
the elastic implementation corresponds to the maximum
throughput seen by the static implementation as it uses a
number of threads close to the physical number of cores in
the machine (close to 4 for the AMD machine and 16 for the
Power5+ machine). For the Power5+ machine, we see that
in those circumstances the SMT capability does not help as
the thread level settles on 16, rather than 32. In both cases,
using more than the number of physical cores present is
not helpful because the operator does mostly floating point
operations.

The Elastic Operator algorithm is fundamentally a simple
control algorithm. We wanted to study how quickly and
accurately the dynamic adjustments happen in reaction to
changes in the availability of computational cycles from
scarcity to abundance and other points in between. This new
experiment simulates how a runtime system hosting multiple
applications would behave. We wrote an application that
can as, time passes, emulate spikes in utilization by pegging
one or more logical cores (recall that the Power5+ machine
has 32 of those). Figure 6 depicts timelines where we
track both the effective throughput and multithreading level
for the heavy workload configuration. Not surprisingly,
Figure 6(a) shows an inverse correlation between spikes
in external utilization and dips in throughput. But, more
interestingly, we can clearly see in Figure 6(b) the probing
up and down by the Elastic Operator algorithm and its
tracking the external load curve.

Radio Imaging Application: Our next set of experiments
employed the Radio Imaging application described in Sec-
tion 4, running on the Power5+ machine. Here our aim was
to observe the performance of elastic operators in a real ap-
plication. Furthermore, we wanted to visualize the effects of
having a collection of elastic operators individually seeking
out their best operating point at the same time. Figure 7(a)
shows the throughput for the Elastic Operator in the Radio
Imaging application. It settles on a throughput level that is
within less than 10% of the best static configuration. We
should point out that in Figure 7(a), we show the number of
threads per instance of the Convolution operator on the x-
axis, rather than the total number of threads for all operators.

We also observe that competition among independent

copies of the Elastic Operator algorithm results in good over-
all system performance. We broke down the multithreading
level and throughput per instance of the elastic Convolution
operator—recall that we have 4 copies of the operator (see
Figure 3(b)). While they are all sharing the same physical
resources, they are independently pursuing their best oper-
ating point (Figure 7(b)). The reliance on the fairness of the
Linux scheduler ensures that the operators eventually settle
on doing about the same amount of work, steadying the
overall throughput a short time into the experiment (see the
total curve in Figure 7(b)). Likewise, about the same number
of threads (Figure 7(c)) are steadly active on the behalf of
each instance of the elastic operator.

Figures 6(b) and 7(c) show thread levels changing in
real time. The thread level in Figure 6(b) changes in
response to external system load. This experiment shows
that both the Elastic Operator algorithm and the thread
synchronization mechanisms can respond quickly to changes
in the system. The eventual stability of the individual—
but interacting—thread levels in each Elastic Operator in
Figures 7(b) and 7(c) shows that independent operators,
each trying to maximize their own performance in a closed
system, will eventually settle on a configuration good for the
entire system.

Finally, it should be noted that the system support for
the Elastic Operator algorithm changes the default threading
model used by the SPADE code generator. In the default
model, each independent processing element starts a new
thread and, independently, each new source edge adapter
responsible for ingesting the external data into the streaming
application also starts one. The processing of tuples is
driven by that thread and the flow of execution is such
that each tuple causes a depth-first traversal of the operator
flowgraph. From the onset, we were surprised to observe
that the elastic implementation running with a single thread
in its static configuration produced a 2-fold improvement in
speedup. This is seen as the reference curve in Figure 7(a).
This occurrence is a beneficial side effect of decoupling
operator data ingestion from data processing. Ultimately,
with 4 elastic operators, we obtained a 5-factor throughput
improvement over the original implementation.

Lessons Learned and Critique: While we originally de-
signed the operator abstraction in SPADE to be the smallest
granular computational block in a streaming application, we
have seen that decoupling the operator’s internal processing
from data ingestion is particularly beneficial for data parallel
operations. We have seen that even for modestly large
computations, elasticity is a win. But, more important is
the fact that the Elastic Operator algorithm performs the dy-
namic tweaks automatically and transparently. The runtime
performance optimization task, a potentially time-consuming
undertaking and, typically, outside of the area of expertise
of many application developers, would otherwise have to be

�

�

�

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ���
�
�
�
�
�
��
��
��
��
��
��

�
�
�
��
�
��
�
�
�
�

�
�
�
��
�
�
��
�
��
�
�
�
�
�

��������������������������

��������������������

����������
����

(a) External load and throughput correlation

�

�

�

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ���
�

�

�

��

��

��

��

��

��

�
�
�
��
�
��
�
�
�
�

�
�
��
�
�
�

��������������������������

����������������������

�������
����

(b) External load and multithreading level

Figure 6: Dynamic adjustments to external loads

�

���

���

���

���

�

� � � � � � � �

�
��
�
�
��
�
��
�
��
�
�
��

������������

�������������

�������
���������

������

(a) Static and dynamic results

��������������������������

���������������������������������

����

� ��� ��� ��� ��� ��� ���

��
�
��
��
�
�
��
�
��
��
��
�
��
�
�
��
�

����
����
����
����

���

�����

(b) Per operator instance throughput

�

�

�

�

�

�

�

�

� ��� ��� ��� ��� ��� ���

�
��
��
�
�
��
�
�
��
�
��
�
�
�

��������������������������

����������������������������������

����
����
����
����

(c) Per operator instance thread level

Figure 7: Radio Imaging Application

done manually for every performance-hungry application.
We have experimented with adding more information for
making adaptation decisions, from longer histories to more
control knobs. Ultimately, we verified that the simplicity of
the current algorithm ensures low overhead and results in
substantial throughput improvements in practice.

6. Related Work

Stream processing has been an active research area over
the last few years. In the relational data processing world,
frameworks such as STREAM [1], Borealis [2], Stream-
Base [3], TelegraphCQ [4], among others, have focused
on providing stream processing middleware and, in some
cases, declarative languages for writing applications. On the
programming language side, approaches such as StreamIt [5]
and the Aspen language [6] share some commonalities with
SPADE–the most important being the philosophy of pro-
viding a high-level programming language, shielding users
from the complexities of a distributed environment. Another
similar approach is Pig Latin [16].

However, many distinctions exist when contrasting other
works with our basic principles in terms of language and
systems design. In addressing this point, we will focus the
rest of the discussion on ideas for maximizing computational
performance for streaming and non-streaming applications.

In terms of streaming and distributed middleware, we
have observed three distinct approaches in the literature.
First, there is the deterministic scheduling approach. In
this case, operators declare a priori their communication
patterns such that a steady state schedule can be computed
at compile/planning time. This approach is used by, for
example, StreamIt [5]. The limitation here is that in many
cases, one cannot predict traffic rates beforehand nor can it
be assumed that a single application will be running alone.
Both issues are particularly true to the application domains
targeted by System S [15]. Second, there is the compile-
time/multiple-copy approach. In this case, experience in run-
ning/tuning an application in a particular platform provides
enough information to an application developer to decide
how many copies of a particular data-parallel segment should
be spawned in the production environment. DataCutter [24],
with its transparent filter copies, is an example of such an
idea. It should be noted, however, that this is a common
design pattern in parallel computing, in general—where
it is known as a a master/slave configuration. The two
approaches described so far rely on compile-time decisions,
with minimal runtime adaptation support (e.g., DataCutter
can dynamically assign work to the different transparent
filter copies, but not change the number of filter copies at
runtime).

This brings us to runtime adaptation techniques. An

example of these techniques is implemented in the System
S Nanoscheduler [25]. In this case, the goal is to maximize
the weighted throughput of an application by dynamically
adjusting to traffic bursts. In our case, we aim at maxi-
mizing application throughput by ensuring that all elastic
operators can seek their highest operating point possible,
automatically, as seen in Section 3. In SPADE’S case, we
rely on code generation to only include this capability
if it is deemed useful, rather than embedding it in the
communication substrate, as done in an earlier version of
System S that employed the Nanoscheduler. And, this leads
to the general paradigm of auto-tuning. An earlier approach
that illustrates the auto-tuning idea was carried out in the
Atlas project [26], which was aimed at automatic generation
and optimization of linear algebra functions for a particular
hardware architecture. Atlas is only one example of auto-
tuning; the literature on compiler optimization has many
more and we refer the reader to an example of exploiting this
approach to optimizing the tiling of parallel for loops [27].
Finally, we point out that Hadoop [28], a map-reduce
framework, is an example of runtime adaptation that is closer
in spirit to our work. When spawning additional mapper
or reducer tasks, it does so as the need arises. The main
difference to our work is the fact that we are addressing
stream processing rather than map-reduce batch jobs; where
there is little a priori knowledge of the incoming workload.

7. Conclusions

In this work, we have demonstrated the idea of opera-
tor elasticity in the context of streaming middleware. The
importance of employing runtime elasticity for streaming
applications is that not only do traffic patterns vary, but
resource availability fluctuates as these long-running appli-
cations perform their data analysis tasks while coexisting
with other applications that share the same computational
environment.

We have shown experimentally that the Elastic Operator
algorithm generally finds the best operating level, has low
overhead, and quickly adapts to changing conditions. More
importantly, in situations where a collection of elastic op-
erators is employed, our algorithm, in conjunction with the
operating system’s fairness policy, ensures that all operators
run at the best efficiency level. This is important because
it globally speeds up the whole application, under the
assumption that the application’s physical layout cannot be
changed at runtime.

As we have stated, the aim for providing such capability
in SPADE was to decrease the amount of guesswork and
calibration time typical developers have to allocate as they
deploy their applications on different platforms and runtime
infrastructures. Recently, we have also looked at using code
generation techniques for transparently specializing the code
that is issued for an operator so that it can make use of SIMD

instructions should they be available on the computational
nodes hosting the applications [20].

In the near future, we plan to extend the concept of
elasticity to go beyond a single multicore node, such that
we can better leverage distributed resources. We also aim
to address other kinds of parallelism common in streaming
applications such as task parallelism and pipelining.

References

[1] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,
I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and
J. Widom, “STREAM: The Stanford stream data manager,”
IEEE Data Engineering Bulletin, vol. 26, 2003.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik,
“The design of the Borealis stream processing engine,” in
Proceedings of Conference on Innovative Data Systems Re-
search (CIDR 05), 2005.

[3] “StreamBase Systems,” http://www.streambase.com.
[4] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,

J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Mad-
den, V. Raman, F. Reiss, and M. A. Shah, “TelegraphCQ:
Continuous dataflow processing for an uncertain world,”
in Proceedings of Conference on Innovative Data Systems
Research (CIDR 03), 2003.

[5] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt:
A language for streaming applications,” in Proceedings
of the International Conference on Compiler Construction
(CC 2002), April 2002.

[6] G. Upadhyaya, V. S. Pai, and S. P. Midkiff, “Expressing and
exploiting concurrency in networked applications with aspen,”
in Proceedings of the ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP 2007),
2007.

[7] H. Andrade, B. Gedik, K.-L. Wu, and P. S. Yu, “Scale-up
strategies for processing high-rate data streams in System
S,” in Proceedings of the International Conference on Data
Engineering (ICDE 2009) – to appear, 2009.

[8] D. A. Menascé and V. A. F. Almeida, Capacity Planning For
Web Performance, 1998.

[9] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, Capacity
Planning and Performance Modeling, 2000.

[10] B. Gedik, H. Andrade, and K.-L. Wu, “A code generation
approach for optimizing high performance distributed data
stream processing,” in Proceedings of the USENIX Annual
Technical Conference (USENIX 2009) – submitted for publi-
cation, 2009.

[11] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo,
“SPADE: The System S declarative stream processing en-
gine,” in Proceedings of the ACM International Conference
on Management of Data (SIGMOD 2008), 2008.

[12] P. Gepner and M. F. Kowalik, “Multi-core processors: New
way to achieve high system performance,” in Proceedings
of the International Conference on Parallel Computing in
Electrical Engineering (PARELEC 06), 2006, pp. 9–13.

[13] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King,
P. Selo, Y. Park, and C. Venkatramani, “SPC: A distributed,
scalable platform for data mining,” in Workshop on Data
Mining Standards, Services and Platforms (DM-SSP 06),
Philadelphia, PA, 2006.

[14] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and

C. Venkatramani, “Design, implementation, and evaluation of
the linear road benchmark on the Stream Processing Core,”
in Proceedings of the ACM International Conference on
Management of Data (SIGMOD 2006), 2006.

[15] K.-L. Wu, P. S. Yu, B. Gedik, K. W. Hildrum, C. C. Aggarwal,
E. Bouillet, W. Fan, D. A. George, X. Gu, G. Luo, and
H. Wang, “Challenges and experience in prototyping a multi-
modal stream analytic and monitoring application on System
S,” in Proceedings of the International Conference on Very
Large Data Bases Conference (VLDB 2007), 2007.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig Latin: A not-so-foreign language for data processing,”
in Proceedings of the ACM International Conference on
Management of Data (SIGMOD 2008), 2008.

[17] J. D. Ullman, Database and Knowledge-Base Systems. Com-
puter Science Press, 1988.

[18] G. Hulten and P. Domingos, “VFML – a toolkit for min-
ing high-speed time-changing data streams,” http://www.cs.
washington.edu/dm/vfml, October 2003.

[19] D. S. Turaga, O. Verscheure, J. Wong, L. Amini, G. Yocum,
E. Begle, and B. Pfeifer, “Online FDC control limit tuning
with yield prediction using incremental decision tree learn-
ing,” in Sematech AEC/APC, 2007, 2007.

[20] H. Wang, H. Andrade, B. Gedik, and K.-L. Wu, “Using
vectorization through code generation for high throughput
stream processing applications,” in Proceedings of the ACM
International Conference on Supercomputing (ICS 2009) –
submitted for publication, 2009.

[21] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implemen-
tation of the Cilk-5 multithreaded language,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 1998), 1998, pp. 212–223.

[22] “The Australian Square Kilometre Array Pathfinder,” http:
//www.atnf.csiro.au/projects/askap.

[23] T. Cornwell, K. Golap, and S. Bhatnagar, “W projection: A
new algorithm for wide field imaging with radio synthesis
arrays,” in Proceedings of the Astronomical Data Analysis
Software and Systems XIV ASP Conference Series, vol. 347,
December 2005, p. 86.

[24] M. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz,
“DataCutter: Middleware for filtering very large scientific
datasets on archival storage systems,” in Proceedings of the
8th Goddard Conference on Mass Storage Systems and Tech-
nologies/17th IEEE Symposium on Mass Storage Systems,
College Park, MD, Mar. 2000.

[25] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure,
“Adaptive control of extreme-scale stream processing sys-
tems,” Lisbon, Portugal, July 2006.

[26] R. C. Whaley, A. Petitet, and J. Dongarra, “Automated
empirical optimizations of software and the atlas project,”
Parallel Computing, vol. 27, no. 1-2, pp. 3–35, 2001.

[27] L. Renganarayanan and S. Rajopadhye, “Positivity, posyn-
omials and tile size selection,” in Proceedings of the
ACM/IEEE SC Conference (SC 2008), Austin, TX, November
2008.

[28] “Hadoop,” http://hadoop.apache.org.

