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THREE REGIONS: the di�raction cone,
the Orear regime, the hard parton scattering
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FIVE characteristics: σt(s), σel(s), dσ
dt (s, t), ρ(s, t), B(s, t)

NOTE: s-dependence of σt , σel and (s, t)-dependence of dσ
dt , ρ, B .

σt(s) =
ImA(p, θ = 0)

s

σel(s) =

∫ 0

tmin

dt
dσ

dt
(s, t)

dσ

dt
(s, t) =

1

16πs2
|A|2 =

1

16πs2
(ImA(s, t))2(1 + ρ2(s, t))

ρ(p, θ) =
ReA(p, θ)

ImA(p, θ)

The di�raction cone [s ≈ 4p2; t = −2p2(1− cos θ) ≈ −p2θ2]

dσ

dt
/

(
dσ

dt

)
t=0

= eBt ≈ e−Bp
2θ2

The amplitude in the di�raction cone (Gaussian, imaginary)

A(p, θ) ≈ isσte
Bt/2 ≈ 4ip2σte

−Bp2θ2/2 (ρ2(s, 0) < 0.02)
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WHERE DO WE STAND NOW?

OUR GUESSES ABOUT ASYMPTOTICS

σt(s) ≤ π

2m2
π

ln2(s/s0)

THE BLACK DISK: σt = 2πR2; R = R0 ln s; σel
σt

= σin
σt

= 1
2

B(s) = R2

4 ; ρ0 ≡ ρ(s, t = 0) = π
ln s None observed in experiment!

THE GRAY DISKS: two parameters - radius+opacity

Gray and Gaussian disks (X = σel/σt ; Z = 4πB/σt ; α ≤ 1)
Model 1− e−Ω σt B X Z XZ X/Z

Gray αθ(R − b) 2παR2 R2/4 α/2 1/2α 1/4 α2

Gauss αe−b
2/R2

2παR2 R2/2 α/4 1/α 1/4 α2/4

The energy behavior√
s, GeV 2.70 4.74 6.27 7.62 13.8 62.5 546 1800 7000

X 0.42 0.27 0.24 0.22 0.18 0.18 0.21 0.23 0.25
Z 0.64 1.09 1.26 1.34 1.45 1.50 1.20 1.08 1.00
XZ 0.27 0.29 0.30 0.30 0.26 0.25 0.26 0.25 0.25
X/Z 0.66 0.25 0.21 0.17 0.16 0.12 0.18 0.21 0.25
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THE DIFFRACTION CONE (models of "everything")

THEORETICAL APPROACHES
1. Geometrical picture and eikonal
The impact parameter (b) representation

A(s, t = −q2) =
2s

i

∫
d2be iqb(e2iδ(s,b)−1) = 2is

∫
d2be iqb(1−e−Ω(s,b))

Two or three regions of the internal hadron structure.
Heisenberg relation: large b (external regions) - small |t|,
small b (internal regions) - large |t|. 15-25 parameters!
E.g., the di�raction pro�le ("Fermi") function is

Γ(s, b) = 1− Ω(s, b) = g(s)

[
1

1 + e(b−r)/a
+

1

1 + e(−b+r)/a
− 1

]
and special shapes for internal regions. UNITARIZATION! but...
Geometrical scaling.
2. Electromagnetic analogies
The droplet model and electromagnetic form factors:

F (t) ∝ G 2(t)(a2 + t)/(a2− t); G (t) = (1− t/m2
1)−1(1− t/m2

2)−1.
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3. Reggeon exchanges

Ω(s,b) = S(s)F (b2) + (non− leading terms)

S(s) is crossing symmetric and reproduces Pomeron trajectory

S(s) =
sc

(ln s)c ′
+

uc

(ln u)c ′

F (b2) is the Bessel transform of Pomeron and Reggeon vertices
F (t) with electromagnetic or exponential form factors.

AP(s, t) = i
aPs

bPs0
[r2

1 (s)er
2
1 (s)(αP−1) − εP r2

2 (s)er
2
2 (s)(αP−1)], (1)

where r2
1 (s) = bP + L− iπ/2, r2

2 (s) = L− iπ/2, L = ln(s/s0).

AR(s, t) = aRe
−iπαR(t)/2ebR t(s/s0)αR(t) (2)

with αP(t) = α0 − γ ln(1 + β
√
t0 − t) - non-linear;

αR(t) = aR + bRt - linear trajectories.
4. QCD-inspired approaches
Gluons and quarks as active partons. Similar form factors.
Most approaches are rather successful in �ts of the di�raction cone
slope B(s), σt(s), σel(s) in a wide interval of energies.
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INTERMEDIATE ANGLES � DIP AND OREAR REGIME

All models fail! OCCAM RAZOR!

The unitarity condition

ImA(p, θ) = I2(p, θ) + F (p, θ) =

1

32π2

∫ ∫
dθ1dθ2

sin θ1 sin θ2A(p, θ1)A∗(p, θ2)√
[cos θ − cos(θ1 + θ2)][cos(θ1 − θ2)− cos θ]

+ F (p, θ).

The region of integration

|θ1 − θ2| ≤ θ, θ ≤ θ1 + θ2 ≤ 2π − θ
I2 � two-particle intermediate states (σel), F � inelastic ones
(overlap function → σinel). For angles θ outside the di�raction cone
one amplitude in I2 is at small angles and another at large ones.
Thus, the linear integral equation outside the di�raction cone

ImA(p, θ) =
pσt

4π
√

2πB

∫ +∞

−∞
dθ1fρe

−Bp2(θ−θ1)2/2ImA(p, θ1)+F (p, θ).

fρ = 1 + ρ0ρ(θ1).
Analytical solution if F (p, θ)� ImA(p, θ) and fρ ≈const
outside the di�raction cone! page 7/ 14



The elastic di�erential cross section outside the di�raction cone
contains the exponentially decreasing with θ (or

√
|t|) term (Orear

regime!) with imposed on it damped oscillations:

ln

(
dσ

Cdt

)
≈ −2

√
2B|t| ln(Z/fρ)+D exp[−

√
2πB|t|] cos(

√
2πB|t|−φ)

The experimentally measured di�raction cone slope B and total
cross section σt determine mainly the shape of the di�erential cross
section in the Orear region of transition from the di�raction peak
to large angle parton scattering. The value of Z = 4πB/σt is so
close to 1 at 7 TeV that the �t is very sensitive to fρ. Thus, it
becomes possible for the �rst time to estimate the ratio ρ outside
the di�raction cone from �ts of experimental data. NEW!
At the LHC, its average value is negative and equal to -2!

i.e., fρ = 1 + 0.14ρ̄ ≈ 0.72 to �t the slope in Orear region!

Do we approach the black disk limit Z → 0.5?
To �t Orear slope, the decrease of Z must be compensated by the
decrease of fρ = 1 + ρ0ρ but ρ0 ∝ ln−1 s asymptotically! Is it
possible that ρ in Orear region increases in modulus being negative?
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Fit at 7 TeV (dip+Orear in 0.3 < |t| < 1.5 GeV2)
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In the Orear region, the overlap function F (p, θ) was neglected and
fρ = 1 + ρ0ρ(t) was approximated by a constant!
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The proof of the assumption about the small overlap function
F (p, θ) computed from experimental data is negligible outside cone:

F (p, θ) = 16p2

(
π
dσ

dt
/(1 + ρ2)

)1/2

−

8p4fρ
π

∫ 1

−1
dz2

∫ z+
1

z−1

dz1

[
dσ

dt1
· dσ
dt2

]1/2

K−1/2(z , z1, z2),

zi = cos θi ; K (z , z1, z2) = 1− z2 − z2
1 − z2

2 + 2zz1z2,
z±1 = zz2 ± [(1− z2)(1− z2

2 )]1/2
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The real part outside the di�raction cone
At t = 0, it is known from Coulomb-nuclear interference
experimentally (at lower than LHC energies) and from dispersion
relations theoretically. ρ0 at LHC may be about 0.13 - 0.14.
No experimental results for ρ(t) are available.
Our estimate from the �t at 7 TeV is the �rst attempt with
fρ =const, i.e., with ρ(t) replaced by some average value.
However, ρ(t) can be calculated if the imaginary part is known:

ρ(t) = ρ0

[
1 +

t(dImA(t)/dt)

ImA(t)

]
Then the equation for ρ(t) follows from the unitarity condition

dv

dx
= −v

x
− 2

x2

(
Ze−v

2 − 1

ρ2
0

− 1

)

x =
√

2B|t|, v =
√

ln(Z/fρ),

ρ(t) = (Ze−v
2 − 1)/ρ0, where v is the solution of the equation.
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The behavior of ρ(t) in the Orear region

Asymptotics at |t| → ∞ ρ→ −1/ρ0.
Then fρ → 0 and ln(Z/fρ)→∞!
The slope steepens with |t| - see Fig. with the �t
Prediction: some changes are expected in this region of |t|!
The black disk limit requires fρ < 0.5, if some slope survives
asymptotically in the Orear region, and then ρ̄(t) < − ln s

2π . page 12/ 14



LARGE ANGLES � HARD PARTON SCATTERING

Experimentally observed |t|−8-regime in pp-scattering.

The dimensional counting
dσ/dt|AB→CD ∝ s−n+2f (t/s) at large s and t and �xed ratio s/t,
n is the total number of �elds in A,B,C ,D which carry a �nite
fraction of the momentum. Assuming quark constituents, the
s →∞, �xed-t/s prediction for pp-scattering is dσ/dt ∝ s−10.
For n partons participating in a single hard scattering

A1(s, t) ∝
(s0

s

) n
2
−2

f1(s/t)

There exists the formula for m hard scatterings.

The coherent scattering
1. Coherent exchange by three gluons between three pairs of quarks
The propagators of three gluons and their couplings give rise to
α6
S |t|−6-dependence and two powers in the denominator are added

by kinematical factors.
2. Multi-Pomeron exchange with one large-pT Pomeron.
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Conclusions

Models describe the di�raction peak but fail outside it.

At intermediate angles between the di�raction cone and hard
parton scattering region the unitarity condition predicts the
Orear regime with exponential decrease in angles and imposed
on it damped oscillations.

The experimental data on elastic pp di�erential cross section
at low and high (

√
s=7 TeV) energies have been �tted in this

region with well described position of the dip and Orear slope.

The �t allows for the �rst time at 7 TeV to estimate the ratio
of real to imaginary parts of the elastic scattering amplitude ρ
far from forward direction t=0. It happened to be about -2.

This value of ρ is explained by the unitarity condition.

The overlap function is small and negative in the Orear region.
That con�rms the assumption used in solving the unitarity
equation. Important corollary: the phases of inelastic
amplitudes are crucial in any model of inelastic processes.
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