# Elastic scattering of hadrons 

## I.M. Dremin

Lebedev Physical Institute, Moscow
Ginzburg conference, Moscow, 28 May 2012

THREE REGIONS: the diffraction cone, the Orear regime, the hard parton scattering



FIVE characteristics: $\sigma_{t}(s), \sigma_{e l}(s), \frac{d \sigma}{d t}(s, t), \rho(s, t), B(s, t)$
NOTE: $s$-dependence of $\sigma_{t}, \sigma_{e l}$ and $(s, t)$-dependence of $\frac{d \sigma}{d t}, \rho, B$.

$$
\begin{gathered}
\sigma_{t}(s)=\frac{\operatorname{Im} A(p, \theta=0)}{s} \\
\sigma_{e l}(s)=\int_{t_{\min }}^{0} d t \frac{d \sigma}{d t}(s, t) \\
\frac{d \sigma}{d t}(s, t)=\frac{1}{16 \pi s^{2}}|A|^{2}=\frac{1}{16 \pi s^{2}}(\operatorname{Im} A(s, t))^{2}\left(1+\rho^{2}(s, t)\right) \\
\rho(p, \theta)=\frac{\operatorname{Re} A(p, \theta)}{\operatorname{Im} A(p, \theta)}
\end{gathered}
$$

The diffraction cone $\left[s \approx 4 p^{2} ; t=-2 p^{2}(1-\cos \theta) \approx-p^{2} \theta^{2}\right]$

$$
\frac{d \sigma}{d t} /\left(\frac{d \sigma}{d t}\right)_{t=0}=e^{B t} \approx e^{-B p^{2} \theta^{2}}
$$

The amplitude in the diffraction cone (Gaussian, imaginary)

$$
A(p, \theta) \approx i s \sigma_{t} e^{B t / 2} \approx 4 i p^{2} \sigma_{t} e^{-B p^{2} \theta^{2} / 2} \quad\left(\rho^{2}(s, 0)<0.02\right)
$$

## WHERE DO WE STAND NOW?

OUR GUESSES ABOUT ASYMPTOTICS

$$
\sigma_{t}(s) \leq \frac{\pi}{2 m_{\pi}^{2}} \ln ^{2}\left(s / s_{0}\right)
$$

THE BLACK DISK: $\sigma_{t}=2 \pi R^{2} ; R=R_{0} \ln s ; \quad \frac{\sigma_{e l}}{\sigma_{t}}=\frac{\sigma_{\text {in }}}{\sigma_{t}}=\frac{1}{2}$ $B(s)=\frac{R^{2}}{4} ; \rho_{0} \equiv \rho(s, t=0)=\frac{\pi}{\ln s} \quad$ None observed in experiment! THE GRAY DISKS: two parameters - radius+opacity

$$
\text { Gray and Gaussian disks } \quad\left(X=\sigma_{e l} / \sigma_{t} ; \quad Z=4 \pi B / \sigma_{t} ; \alpha \leq 1\right)
$$

| Model | $1-e^{-\Omega}$ | $\sigma_{t}$ | $B$ | $X$ | $Z$ | $X Z$ | $X / Z$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Gray | $\alpha \theta(R-b)$ | $2 \pi \alpha R^{2}$ | $R^{2} / 4$ | $\alpha / 2$ | $1 / 2 \alpha$ | $1 / 4$ | $\alpha^{2}$ |
| Gauss | $\alpha e^{-b^{2} / R^{2}}$ | $2 \pi \alpha R^{2}$ | $R^{2} / 2$ | $\alpha / 4$ | $1 / \alpha$ | $1 / 4$ | $\alpha^{2} / 4$ |

The energy behavior

| $\sqrt{s}, \mathrm{GeV}$ | 2.70 | 4.74 | 6.27 | 7.62 | 13.8 | 62.5 | 546 | 1800 | 7000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| X | 0.42 | 0.27 | 0.24 | 0.22 | 0.18 | 0.18 | 0.21 | 0.23 | 0.25 |
| Z | 0.64 | 1.09 | 1.26 | 1.34 | 1.45 | 1.50 | 1.20 | 1.08 | 1.00 |
| XZ | 0.27 | 0.29 | 0.30 | 0.30 | 0.26 | 0.25 | 0.26 | 0.25 | 0.25 |
| $\mathrm{X} / \mathrm{Z}$ | 0.66 | 0.25 | 0.21 | 0.17 | 0.16 | 0.12 | 0.18 | 0.21 | 0.25 |

## THE DIFFRACTION CONE (models of "everything")

## THEORETICAL APPROACHES

1. Geometrical picture and eikonal

The impact parameter (b) representation
$A\left(s, t=-q^{2}\right)=\frac{2 s}{i} \int d^{2} b e^{i \mathbf{q} \mathbf{b}}\left(e^{2 i \delta(s, \mathbf{b})}-1\right)=2$ is $\int d^{2} b e^{i \mathbf{q} \mathbf{b}}\left(1-e^{-\Omega(s, \mathbf{b})}\right)$
Two or three regions of the internal hadron structure.
Heisenberg relation: large $b$ (external regions) - small $|t|$, small $b$ (internal regions) - large $|t|$. $15-25$ parameters!
E.g., the diffraction profile ("Fermi") function is

$$
\Gamma(s, b)=1-\Omega(s, b)=g(s)\left[\frac{1}{1+e^{(b-r) / a}}+\frac{1}{1+e^{(-b+r) / a}}-1\right]
$$

and special shapes for internal regions. UNITARIZATION! but...
Geometrical scaling.
2. Electromagnetic analogies

The droplet model and electromagnetic form factors:
$F(t) \propto G^{2}(t)\left(a^{2}+t\right) /\left(a^{2}-t\right) ; \quad G(t)=\left(1-t / m_{1}^{2}\right)^{-1}\left(1-t / m_{2}^{2}\right)^{-1}$.
3. Reggeon exchanges

$$
\Omega(s, \mathbf{b})=S(s) F\left(\mathbf{b}^{2}\right)+(\text { non }- \text { leading terms })
$$

$S(s)$ is crossing symmetric and reproduces Pomeron trajectory

$$
S(s)=\frac{s^{c}}{(\ln s)^{c^{\prime}}}+\frac{u^{c}}{(\ln u)^{c^{\prime}}}
$$

$F\left(\mathbf{b}^{2}\right)$ is the Bessel transform of Pomeron and Reggeon vertices $F(t)$ with electromagnetic or exponential form factors.

$$
\begin{equation*}
A_{P}(s, t)=i \frac{a P s}{b_{P} s_{0}}\left[r_{1}^{2}(s) e^{r_{1}^{2}(s)\left(\alpha_{P}-1\right)}-\epsilon_{P} r_{2}^{2}(s) e^{r_{2}^{2}(s)\left(\alpha_{P}-1\right)}\right] \tag{1}
\end{equation*}
$$

where $r_{1}^{2}(s)=b_{P}+L-i \pi / 2, r_{2}^{2}(s)=L-i \pi / 2, L=\ln \left(s / s_{0}\right)$.

$$
\begin{equation*}
A_{R}(s, t)=a_{R} e^{-i \pi \alpha_{R}(t) / 2} e^{b_{R} t}\left(s / s_{0}\right)^{\alpha_{R}(t)} \tag{2}
\end{equation*}
$$

with $\alpha_{P}(t)=\alpha_{0}-\gamma \ln \left(1+\beta \sqrt{t_{0}-t}\right)$ - non-linear; $\alpha_{R}(t)=a_{R}+b_{R} t$ - linear trajectories.

## 4. QCD-inspired approaches

Gluons and quarks as active partons. Similar form factors.
Most approaches are rather successful in fits of the diffraction cone slope $B(s), \sigma_{t}(s), \sigma_{e l}(s)$ in a wide interval of energies.

## INTERMEDIATE ANGLES - DIP AND OREAR REGIME

All models fail!

## OCCAM RAZOR!

The unitarity condition

$$
\operatorname{Im} A(p, \theta)=I_{2}(p, \theta)+F(p, \theta)=
$$

$$
\frac{1}{32 \pi^{2}} \iint d \theta_{1} d \theta_{2} \frac{\sin \theta_{1} \sin \theta_{2} A\left(p, \theta_{1}\right) A^{*}\left(p, \theta_{2}\right)}{\sqrt{\left[\cos \theta-\cos \left(\theta_{1}+\theta_{2}\right)\right]\left[\cos \left(\theta_{1}-\theta_{2}\right)-\cos \theta\right]}}+F(p, \theta
$$

The region of integration

$$
\left|\theta_{1}-\theta_{2}\right| \leq \theta, \quad \theta \leq \theta_{1}+\theta_{2} \leq 2 \pi-\theta
$$

$I_{2}$ - two-particle intermediate states $\left(\sigma_{e l}\right), F$ - inelastic ones (overlap function $\rightarrow \sigma_{\text {inel }}$ ). For angles $\theta$ outside the diffraction cone one amplitude in $I_{2}$ is at small angles and another at large ones.
Thus, the linear integral equation outside the diffraction cone
$\operatorname{Im} A(p, \theta)=\frac{p \sigma_{t}}{4 \pi \sqrt{2 \pi B}} \int_{-\infty}^{+\infty} d \theta_{1} f_{\rho} e^{-B p^{2}\left(\theta-\theta_{1}\right)^{2} / 2} \operatorname{Im} A\left(p, \theta_{1}\right)+F(p, \theta)$.
$f_{\rho}=1+\rho_{0} \rho\left(\theta_{1}\right)$.
Analytical solution if $F(p, \theta) \ll \operatorname{Im} A(p, \theta)$ and $f_{\rho} \approx$ const outside the diffraction cone!

The elastic differential cross section outside the diffraction cone contains the exponentially decreasing with $\theta$ (or $\sqrt{|t|}$ ) term (Orear regime!) with imposed on it damped oscillations:
$\ln \left(\frac{d \sigma}{C d t}\right) \approx-2 \sqrt{2 B|t| \ln \left(Z / f_{\rho}\right)}+D \exp [-\sqrt{2 \pi B|t|}] \cos (\sqrt{2 \pi B|t|}-\phi)$
The experimentally measured diffraction cone slope $B$ and total cross section $\sigma_{t}$ determine mainly the shape of the differential cross section in the Orear region of transition from the diffraction peak to large angle parton scattering. The value of $Z=4 \pi B / \sigma_{t}$ is so close to 1 at 7 TeV that the fit is very sensitive to $f_{\rho}$. Thus, it becomes possible for the first time to estimate the ratio $\rho$ outside the diffraction cone from fits of experimental data. NEW!
At the LHC, its average value is negative and equal to -2 ! i.e., $f_{\rho}=1+0.14 \bar{\rho} \approx 0.72$ to fit the slope in Orear region!

Do we approach the black disk limit $Z \rightarrow 0.5$ ?
To fit Orear slope, the decrease of $Z$ must be compensated by the decrease of $f_{\rho}=1+\rho_{0} \rho$ but $\rho_{0} \propto \ln ^{-1} s$ asymptotically! Is it possible that $\rho$ in Orear region increases in modulus being negative?

Fit at $7 \mathrm{TeV}\left(\mathrm{dip}+\right.$ Orear in $\left.0.3<|t|<1.5 \mathrm{GeV}^{2}\right)$


In the Orear region, the overlap function $F(p, \theta)$ was neglected and $f_{\rho}=1+\rho_{0} \rho(t)$ was approximated by a constant!

The proof of the assumption about the small overlap function $F(p, \theta)$ computed from experimental data is negligible outside cone:

$$
\begin{array}{r}
F(p, \theta)=16 p^{2}\left(\pi \frac{d \sigma}{d t} /\left(1+\rho^{2}\right)\right)^{1 / 2}- \\
\frac{8 p^{4} f_{\rho}}{\pi} \int_{-1}^{1} d z_{2} \int_{z_{1}^{-}}^{z_{1}^{+}} d z_{1}\left[\frac{d \sigma}{d t_{1}} \cdot \frac{d \sigma}{d t_{2}}\right]^{1 / 2} K^{-1 / 2}\left(z, z_{1}, z_{2}\right)
\end{array}
$$

$z_{i}=\cos \theta_{i} ; \quad K\left(z, z_{1}, z_{2}\right)=1-z^{2}-z_{1}^{2}-z_{2}^{2}+2 z z_{1} z_{2}$,
$z_{1}^{ \pm}=z z_{2} \pm\left[\left(1-z^{2}\right)\left(1-z_{2}^{2}\right)\right]^{1 / 2}$


The real part outside the diffraction cone
At $t=0$, it is known from Coulomb-nuclear interference experimentally (at lower than LHC energies) and from dispersion relations theoretically. $\rho_{0}$ at LHC may be about 0.13-0.14. No experimental results for $\rho(t)$ are available.
Our estimate from the fit at 7 TeV is the first attempt with $f_{\rho}=$ const, i.e., with $\rho(t)$ replaced by some average value.
However, $\rho(t)$ can be calculated if the imaginary part is known:

$$
\rho(t)=\rho_{0}\left[1+\frac{t(d \operatorname{Im} A(t) / d t)}{\operatorname{Im} A(t)}\right]
$$

Then the equation for $\rho(t)$ follows from the unitarity condition

$$
\frac{d v}{d x}=-\frac{v}{x}-\frac{2}{x^{2}}\left(\frac{Z e^{-v^{2}}-1}{\rho_{0}^{2}}-1\right)
$$

$x=\sqrt{2 B|t|}, \quad v=\sqrt{\ln \left(Z / f_{\rho}\right)}$,
$\rho(t)=\left(Z e^{-v^{2}}-1\right) / \rho_{0}$, where $v$ is the solution of the equation.

The behavior of $\rho(t)$ in the Orear region


Asymptotics at $|t| \rightarrow \infty \rho \rightarrow-1 / \rho_{0}$.
Then $f_{\rho} \rightarrow 0$ and $\ln \left(Z / f_{\rho}\right) \rightarrow \infty$ !
The slope steepens with $|t|-$ see Fig. with the fit
Prediction: some changes are expected in this region of $|t|$ !
The black disk limit requires $f_{\rho}<0.5$, if some slope survives asymptotically in the Orear region, and then $\bar{\rho}(t)<-\frac{\ln s}{2 \pi}$.

## LARGE ANGLES - HARD PARTON SCATTERING

Experimentally observed $|t|^{-8}$-regime in $p p$-scattering.

## The dimensional counting

 $d \sigma /\left.d t\right|_{A B \rightarrow C D} \propto s^{-n+2} f(t / s)$ at large $s$ and $t$ and fixed ratio $s / t$, $n$ is the total number of fields in $A, B, C, D$ which carry a finite fraction of the momentum. Assuming quark constituents, the $s \rightarrow \infty$, fixed- $t / s$ prediction for $p p$-scattering is $d \sigma / d t \propto s^{-10}$. For $n$ partons participating in a single hard scattering$$
A_{1}(s, t) \propto\left(\frac{s_{0}}{s}\right)^{\frac{n}{2}-2} f_{1}(s / t)
$$

There exists the formula for $m$ hard scatterings.

## The coherent scattering

1. Coherent exchange by three gluons between three pairs of quarks The propagators of three gluons and their couplings give rise to $\alpha_{S}^{6}|t|^{-6}$-dependence and two powers in the denominator are added by kinematical factors.
2. Multi-Pomeron exchange with one large- $p_{T}$ Pomeron.

- Models describe the diffraction peak but fail outside it.
- At intermediate angles between the diffraction cone and hard parton scattering region the unitarity condition predicts the Orear regime with exponential decrease in angles and imposed on it damped oscillations.
- The experimental data on elastic pp differential cross section at low and high ( $\sqrt{s}=7 \mathrm{TeV}$ ) energies have been fitted in this region with well described position of the dip and Orear slope.
- The fit allows for the first time at 7 TeV to estimate the ratio of real to imaginary parts of the elastic scattering amplitude $\rho$ far from forward direction $t=0$. It happened to be about -2 .
- This value of $\rho$ is explained by the unitarity condition.
- The overlap function is small and negative in the Orear region. That confirms the assumption used in solving the unitarity equation. Important corollary: the phases of inelastic amplitudes are crucial in any model of inelastic processes.

