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THREE REGIONS: the diffraction cone,
the Orear regime, the hard parton scattering
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FIVE characteristics: o+(s), oe/(s), 9%(s, t), p(s, t), B(s, t)

dt
NOTE: s-dependence of o4, o¢ and (s, t)-dependence of Z—ft’, p, B.
ImA(p,60 =0
oe(s) = (ps )

0
do
= dt— t
rol) = | (s

dr (57 t) - 167'['52 |A’ - 167752 (ImA(Sa t)) (1 + P (57 t))
_ ReA(p,0)

The diffraction cone  [s ~ 4p?; t = —2p%(1 — cosf) ~ —p?6?]

E ﬁ — Bt & e—szf)2
ac! \dt ),

The amplitude in the diffraction cone (Gaussian, imaginary)

Bt/2

A(p,0) ~ isore”* & 4ip’oe BP0/ (p?(s,0) < 0.02)
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WHERE DO WE STAND NOW?

OUR GUESSES ABOUT ASYMPTOTICS

™

2
oe(s) < o2 In“(s/s0)
THE BLACK DISK: o; = 27R? R=Rylns; 24 =22 —
B(s) = RTZ; po = p(s,t =0) = ;== None observed in experiment!

THE GRAY DISKS: two parameters - radius+opacity

Gray and Gaussian disks (X = o0¢/0t; Z =4nB/oy; a<1)
Model | 1 — e~% o B X | Z XZ | X/Z
Gray | ad(R—b) | 2raR? | R?/4 | a/2 | 1/2a | 1/4 | o?

Gauss | ae P/R* | 27aR2 | R2/2 | a/4 | 1/a | 1/4 | a?/4

The energy behavior
Vs, GeV | 2.70 | 4.74 | 6.27 | 7.62 | 13.8 | 62.5 | 546 | 1800 | 7000
X 0.42 | 0.27 | 0.24 | 0.22 | 0.18 | 0.18 | 0.21 | 0.23 | 0.25
z 064|109 |126|134| 145|150 | 1.20| 1.08 | 1.00
XZ 0.27 | 0.29 | 0.30 | 0.30 | 0.26 | 0.25 | 0.26 | 0.25 | 0.25
X/Z 0.66 | 0.25 | 0.21 | 0.17 | 0.16 | 0.12 | 0.18 | 0.21 | 0.25
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THE DIFFRACTION CONE (models of "everything")
THEORETICAL APPROACHES

1. Geometrical picture and eikonal
The impact parameter (b) representation

A(S,t: _q2) 25/d2b iqb( 2i6(s,b) 1y _ 2Is/d2belqb Q(s,b))

)

Two or three regions of the internal hadron structure.
Heisenberg relation: large b (external regions) - small |t],
small b (internal regions) - large |t|.  15-25 parameters!
E.g., the diffraction profile ("Fermi") function is

1 1
M(s,b) =1 —Q(s, b) = g(s) [1 R Ve R s T 1}

and special shapes for internal regions. UNITARIZATION! but...
Geometrical scaling.

2. Electromagnetic analogies

The droplet model and electromagnetic form factors:

F(t) o G*(t)(a* +1)/(a*—t); G(t) = (1—t/m})" (1 —t/mj)~"

page 5/ 14




3. Reggeon exchanges
Q(s,b) = S(s)F(b?) + (non — leading terms)

S(s) is crossing symmetric and reproduces Pomeron trajectory

C C

€, _u
(Ins)<" ~ (Inu)
F(b?) is the Bessel transform of Pomeron and Reggeon vertices
F(t) with eIectromagnetic or exponential form factors.

S(s) =

AP(S, t) —I [r ( ) I’l(S ap— 1) 6Pf22(5)er22(5)(ap_1)], (1)
where r2(s) = bp +L—im/2, r3(s) =L—in/2, L=1In(s/s0).
AR(S, t) = ape /waR(t)/2ebRt(s/sO)aR(t) (2)

with ap(t) = ag — vIn(1 + By/to — t) - non-linear;

ar(t) = ag + bgt - linear trajectories.

4. QCD-inspired approaches

Gluons and quarks as active partons. Similar form factors.

Most approaches are rather successful in fits of the diffraction cone
slope B(s), 0¢(s), oe/(s) in a wide interval of energies.
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INTERMEDIATE ANGLES — DIP AND OREAR REGIME

All models fail! OCCAM RAZOR!
The unitarity condition
ImA(p, 0) = h(p,0) + F(p,0) =
sin 01 sin 02A(p, 01)A*(p, 02)
5 d61db,
32 \/[cos @ — cos(61 + 62)][cos(61 — 62) — cos ]

The region of integration
61 —62] <6, 6<601+6,<2wr—0

I, — two-particle intermediate states (o), F — inelastic ones
(overlap function — oj,e). For angles 6 outside the diffraction cone
one amplitude in k is at small angles and another at large ones.
Thus, the linear integral equation outside the diffraction cone

+ F(p, 6

+
pot —Bp2(0—01)2/2
ImA(p, 0 do.f,e”"P U< ImA(p, 01)+F(p, 0
(p)Mﬁ 1 (p,01)+F(p,0).
f, = 1+ pop(61).
Analytical solution if F(p,0) < ImA(p,6) and f, ~const
outside the diffraction cone! page 7/ 14



The elastic differential cross section outside the diffraction cone
contains the exponentially decreasing with 6 (or \/|t|) term (Orear
regime!) with imposed on it damped oscillations:

In (ggt> ~ —24/2B|t|In(Z/f,)+D exp|—+/27B|t|] cos(+/ 27 B|t|—)

The experimentally measured diffraction cone slope B and total
cross section o; determine mainly the shape of the differential cross
section in the Orear region of transition from the diffraction peak
to large angle parton scattering. The value of Z = 47B /o is so
close to 1 at 7 TeV that the fit is very sensitive to f,. Thus, it
becomes possible for the first time to estimate the ratio p outside
the diffraction cone from fits of experimental data. NEW!

At the LHC, its average value is negative and equal to -2!
i.e., f, =1+ 0.14p ~ 0.72 to fit the slope in Orear region!

Do we approach the black disk limit Z — 0.57
To fit Orear slope, the decrease of Z must be compensated by the
decrease of f, = 1+ pop but po ox In~1 s asymptotically! Is it

possible that p in Orear region increases in modulus being negative?
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Fit at 7 TeV (dip+Orear in 0.3 < |t| < 1.5 GeV?)
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In the Orear region, the overlap function F(p, 6) was neglected and
f, = 14 pop(t) was approximated by a constant!
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The proof of the assumption about the small overlap function
F(p,0) computed from experimental data is negligible outside cone:

. 1/2
Fp.) = 160 (n57 /1)) -

8p4fp 1 z do  do/? _1
d d ——| K2
T /1 22 /Zl “ dt; dty (Z’ 21 22)’

zi =cosb; K(z,z1,22) =1— 2% — 722 — 22 + 22712y,
zli =zzpt[(1—- 22)(1 — 222)]1/2
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The real part outside the diffraction cone

At t =0, it is known from Coulomb-nuclear interference
experimentally (at lower than LHC energies) and from dispersion
relations theoretically. pg at LHC may be about 0.13 - 0.14.

No experimental results for p(t) are available.

Our estimate from the fit at 7 TeV is the first attempt with

f, =const, i.e., with p(t) replaced by some average value.
However, p(t) can be calculated if the imaginary part is known:

o(2) = po [1+ r(dImA(t)/dt)}

ImA(t)

Then the equation for p(t) follows from the unitarity condition

dv. v 2 Ze V' —1 1
dx x X2 P}

x =+/2B|t|, v=+/In(Z/1,),
p(t) = (Ze_"2 — 1)/po, where v is the solution of the equation.
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The behavior of p(t) in the Orear region
03 07 11 15 It

T ¥ T

Asymptotics at |t| = co p — —1/po.

Then f, — 0 and In(Z/f,) — oc!

The slope steepens with || - see Fig. with the fit
Prediction: some changes are expected in this region of |t|!
The black disk limit requires f, < 0.5, if some slope survives

asymptotically in the Orear region, and then p(t) < —';‘—:. e 12/ 14



LARGE ANGLES — HARD PARTON SCATTERING

Experimentally observed |t|~8-regime in pp-scattering.

The dimensional counting

do/dt|ag_scp o< sT"T2f(t/s) at large s and t and fixed ratio s/t,
n is the total number of fields in A, B, C, D which carry a finite
fraction of the momentum. Assuming quark constituents, the

s — oo, fixed-t/s prediction for pp-scattering is do/dt o< s710.
For n partons participating in a single hard scattering

S0

22
2
Arls e) o (2)° 7 A(s/1)
There exists the formula for m hard scatterings.

The coherent scattering

1. Coherent exchange by three gluons between three pairs of quarks
The propagators of three gluons and their couplings give rise to
al|t|~6-dependence and two powers in the denominator are added
by kinematical factors.

2. Multi-Pomeron exchange with one large-pr Pomeron.
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Conclusions

@ Models describe the diffraction peak but fail outside it.

@ At intermediate angles between the diffraction cone and hard
parton scattering region the unitarity condition predicts the
Orear regime with exponential decrease in angles and imposed
on it damped oscillations.

@ The experimental data on elastic pp differential cross section
at low and high (1/s=7 TeV) energies have been fitted in this
region with well described position of the dip and Orear slope.

@ The fit allows for the first time at 7 TeV to estimate the ratio
of real to imaginary parts of the elastic scattering amplitude p
far from forward direction t=0. It happened to be about -2.

@ This value of p is explained by the unitarity condition.

@ The overlap function is small and negative in the Orear region.
That confirms the assumption used in solving the unitarity
equation. Important corollary: the phases of inelastic

amplitudes are crucial in any model of inelastic processes.
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