Elastic scattering of hadrons

I.M. Dremin

Lebedev Physical Institute, Moscow

Ginzburg conference, Moscow, 28 May 2012

THREE REGIONS: the diffraction cone, the Orear regime, the hard parton scattering

FIVE characteristics: $\sigma_t(s)$, $\sigma_{el}(s)$, $\frac{d\sigma}{dt}(s, t)$, $\rho(s, t)$, B(s, t)**NOTE**: *s*-dependence of σ_t , σ_{el} and (s, t)-dependence of $\frac{d\sigma}{dt}$, ρ , *B*.

$$\sigma_t(s) = \frac{\text{Im}A(p, \theta = 0)}{s}$$

$$\sigma_{el}(s) = \int_{t_{min}}^0 dt \frac{d\sigma}{dt}(s, t)$$

$$\frac{d\sigma}{dt}(s, t) = \frac{1}{16\pi s^2} |A|^2 = \frac{1}{16\pi s^2} (\text{Im}A(s, t))^2 (1 + \rho^2(s, t))$$

$$\rho(p, \theta) = \frac{\text{Re}A(p, \theta)}{\text{Im}A(p, \theta)}$$
The diffraction cone $[s \approx 4p^2; t = -2p^2(1 - \cos\theta) \approx -p^2\theta^2]$

$$\frac{d\sigma}{dt} / \left(\frac{d\sigma}{dt}\right)_{t=0} = e^{Bt} \approx e^{-Bp^2\theta^2}$$

The amplitude in the diffraction cone (Gaussian, imaginary)

$$A(p,\theta) \approx is\sigma_t e^{Bt/2} \approx 4ip^2 \sigma_t e^{-Bp^2 \theta^2/2} \qquad (\rho^2(s,0) < 0.02)$$

WHERE DO WE STAND NOW?

OUR GUESSES ABOUT ASYMPTOTICS

$$\sigma_t(s) \leq \frac{\pi}{2m_\pi^2} \ln^2(s/s_0)$$

THE BLACK DISK: $\sigma_t = 2\pi R^2$; $R = R_0 \ln s$; $\frac{\sigma_{el}}{\sigma_t} = \frac{\sigma_{in}}{\sigma_t} = \frac{1}{2}$ $B(s) = \frac{R^2}{4}$; $\rho_0 \equiv \rho(s, t = 0) = \frac{\pi}{\ln s}$ None observed in experiment! **THE GRAY DISKS:** two parameters - radius+opacity

Gray and Gaussian disks $(X=\sigma_{el}/\sigma_t; \ Z=4\pi B/\sigma_t; \ lpha\leq 1)$										
Model	$1-e^{-\Omega}$	σ_t	В	X	Ζ	XZ	X/Z			
Gray	$\alpha\theta(R-b)$	$2\pi \alpha R^2$	$R^{2}/4$	$\alpha/2$	$1/2\alpha$	1/4	α^2			
Gauss	$\alpha e^{-b^2/R^2}$	$2\pi lpha R^2$	$R^{2}/2$	$\alpha/4$	1/lpha	1/4	$\alpha^2/4$			

The energy behavior

\sqrt{s} , GeV	2.70	4.74	6.27	7.62	13.8	62.5	546	1800	7000
Х	0.42	0.27	0.24	0.22	0.18	0.18	0.21	0.23	0.25
Z	0.64	1.09	1.26	1.34	1.45	1.50	1.20	1.08	1.00
XZ	0.27	0.29	0.30	0.30	0.26	0.25	0.26	0.25	0.25
X/Z	0.66	0.25	0.21	0.17	0.16	0.12	0.18	0.21	0.25

THE DIFFRACTION CONE (models of "everything")

THEORETICAL APPROACHES

1. Geometrical picture and eikonal The impact parameter (**b**) representation

$$A(s,t=-q^2)=\frac{2s}{i}\int d^2be^{i\mathbf{q}\mathbf{b}}(e^{2i\delta(s,\mathbf{b})}-1)=2is\int d^2be^{i\mathbf{q}\mathbf{b}}(1-e^{-\Omega(s,\mathbf{b})})$$

Two or three regions of the internal hadron structure. Heisenberg relation: large b (external regions) - small |t|, small b (internal regions) - large |t|. 15-25 parameters! E.g., the diffraction profile ("Fermi") function is

$$\Gamma(s,b) = 1 - \Omega(s,b) = g(s) \left[\frac{1}{1 + e^{(b-r)/a}} + \frac{1}{1 + e^{(-b+r)/a}} - 1 \right]$$

and special shapes for internal regions. UNITARIZATION! but... Geometrical scaling.

2. Electromagnetic analogies

The droplet model and electromagnetic form factors:

$$F(t) \propto G^2(t)(a^2+t)/(a^2-t); \ \ G(t) = (1-t/m_1^2)^{-1}(1-t/m_2^2)^{-1}.$$

3. Reggeon exchanges

 $\Omega(s, \mathbf{b}) = S(s)F(\mathbf{b}^2) + (\text{non} - \text{leading terms})$

S(s) is crossing symmetric and reproduces Pomeron trajectory

$$S(s) = rac{s^c}{(\ln s)^{c'}} + rac{u^c}{(\ln u)^{c'}}$$

 $F(\mathbf{b}^2)$ is the Bessel transform of Pomeron and Reggeon vertices F(t) with electromagnetic or exponential form factors.

$$A_{P}(s,t) = i \frac{a_{P}s}{b_{P}s_{0}} [r_{1}^{2}(s)e^{r_{1}^{2}(s)(\alpha_{P}-1)} - \epsilon_{P}r_{2}^{2}(s)e^{r_{2}^{2}(s)(\alpha_{P}-1)}], \quad (1)$$

where $r_{1}^{2}(s) = b_{P} + L - i\pi/2, \ r_{2}^{2}(s) = L - i\pi/2, \ L = \ln(s/s_{0}).$
$$A_{R}(s,t) = a_{R}e^{-i\pi\alpha_{R}(t)/2}e^{b_{R}t}(s/s_{0})^{\alpha_{R}(t)} \quad (2)$$

with $\alpha_P(t) = \alpha_0 - \gamma \ln(1 + \beta \sqrt{t_0 - t})$ - non-linear; $\alpha_R(t) = a_R + b_R t$ - linear trajectories. **4. QCD-inspired approaches** Gluons and quarks as active partons. Similar form factors. Most approaches are rather successful in fits of the diffraction cone slope B(s), $\sigma_t(s)$, $\sigma_{el}(s)$ in a wide interval of energies.

INTERMEDIATE ANGLES – DIP AND OREAR REGIME

All models fail!

OCCAM RAZOR!

The unitarity condition

$$\operatorname{Im} \mathcal{A}(p,\theta) = l_2(p,\theta) + F(p,\theta) = \frac{1}{32\pi^2} \int \int d\theta_1 d\theta_2 \frac{\sin \theta_1 \sin \theta_2 \mathcal{A}(p,\theta_1) \mathcal{A}^*(p,\theta_2)}{\sqrt{[\cos \theta - \cos(\theta_1 + \theta_2)][\cos(\theta_1 - \theta_2) - \cos \theta]}} + F(p,\theta)$$

The region of integration

$$|\theta_1 - \theta_2| \le \theta, \quad \theta \le \theta_1 + \theta_2 \le 2\pi - \theta$$

 I_2 - two-particle intermediate states (σ_{el}), F - inelastic ones (overlap function $\rightarrow \sigma_{inel}$). For angles θ outside the diffraction cone one amplitude in I_2 is at small angles and another at large ones. Thus, the **linear** integral equation outside the diffraction cone

$$\mathrm{Im}\mathcal{A}(p,\theta) = \frac{p\sigma_t}{4\pi\sqrt{2\pi B}} \int_{-\infty}^{+\infty} d\theta_1 f_\rho e^{-B\rho^2(\theta-\theta_1)^2/2} \mathrm{Im}\mathcal{A}(p,\theta_1) + \mathcal{F}(p,\theta).$$

 $f_{\rho} = 1 + \rho_0 \rho(\theta_1).$ Analytical solution if $F(p, \theta) \ll \text{Im}A(p, \theta)$ and $f_{\rho} \approx \text{const}$ outside the diffraction cone! The elastic differential cross section **outside** the diffraction cone contains the exponentially decreasing with θ (or $\sqrt{|t|}$) term (Orear regime!) with imposed on it damped oscillations:

$$\ln\left(\frac{d\sigma}{Cdt}\right) \approx -2\sqrt{2B|t|\ln(Z/f_{\rho})} + D\exp\left[-\sqrt{2\pi B|t|}\right]\cos(\sqrt{2\pi B|t|} - \phi)$$

The experimentally measured diffraction cone slope B and total cross section σ_t determine mainly the shape of the differential cross section in the Orear region of transition from the diffraction peak to large angle parton scattering. The value of $Z = 4\pi B/\sigma_t$ is so close to 1 at 7 TeV that the fit is very sensitive to f_ρ . Thus, it becomes possible for the first time to estimate the ratio ρ outside the diffraction cone from fits of experimental data. NEW! At the LHC, its average value is negative and equal to -2! i.e., $f_\rho = 1 + 0.14\bar{\rho} \approx 0.72$ to fit the slope in Orear region!

Do we approach the black disk limit $Z \to 0.5$? To fit Orear slope, the decrease of Z must be compensated by the decrease of $f_{\rho} = 1 + \rho_0 \rho$ but $\rho_0 \propto \ln^{-1} s$ asymptotically! Is it possible that ρ in Orear region increases in modulus being negative?

Fit at 7 TeV (dip+Orear in $0.3 < |t| < 1.5 \text{ GeV}^2$)

In the Orear region, the overlap function $F(p, \theta)$ was neglected and $f_{
ho} = 1 + \rho_0 \rho(t)$ was approximated by a constant!

The proof of the assumption about the small overlap function $F(p, \theta)$ computed from experimental data is negligible outside cone:

The real part outside the diffraction cone At t = 0, it is known from Coulomb-nuclear interference experimentally (at lower than LHC energies) and from dispersion relations theoretically. ρ_0 at LHC may be about 0.13 - 0.14. No experimental results for $\rho(t)$ are available. Our estimate from the fit at 7 TeV is the first attempt with $f_{\rho} = \text{const}$, i.e., with $\rho(t)$ replaced by some average value. However, $\rho(t)$ can be calculated if the imaginary part is known:

$$ho(t) =
ho_0 \left[1 + rac{t(d \mathrm{Im} \mathcal{A}(t)/dt)}{\mathrm{Im} \mathcal{A}(t)}
ight]$$

Then the equation for ho(t) follows from the unitarity condition

$$\frac{dv}{dx} = -\frac{v}{x} - \frac{2}{x^2} \left(\frac{Ze^{-v^2} - 1}{\rho_0^2} - 1 \right)$$

 $x = \sqrt{2B|t|}, v = \sqrt{\ln(Z/f_{
ho})},$ $ho(t) = (Ze^{-v^2} - 1)/
ho_0$, where v is the solution of the equation.

The behavior of $\rho(t)$ in the Orear region

Asymptotics at $|t| \to \infty$ $\rho \to -1/\rho_0$. Then $f_{\rho} \to 0$ and $\ln(Z/f_{\rho}) \to \infty$! The slope **steepens** with |t| - see Fig. with the fit Prediction: some changes are expected in this region of |t|! The black disk limit requires $f_{\rho} < 0.5$, if some slope survives asymptotically in the Orear region, and then $\bar{\rho}(t) < -\frac{\ln s}{2\pi}$.

page 12/14

LARGE ANGLES – HARD PARTON SCATTERING

Experimentally observed $|t|^{-8}$ -regime in *pp*-scattering.

The dimensional counting

 $d\sigma/dt|_{AB\to CD} \propto s^{-n+2}f(t/s)$ at large s and t and fixed ratio s/t, n is the total number of fields in A, B, C, D which carry a finite fraction of the momentum. Assuming quark constituents, the $s \to \infty$, fixed-t/s prediction for pp-scattering is $d\sigma/dt \propto s^{-10}$. For n partons participating in a single hard scattering

$$A_1(s,t)\propto \left(rac{s_0}{s}
ight)^{rac{n}{2}-2}f_1(s/t)$$

There exists the formula for m hard scatterings.

The coherent scattering

1. Coherent exchange by three gluons between three pairs of quarks The propagators of three gluons and their couplings give rise to $\alpha_S^6 |t|^{-6}$ -dependence and two powers in the denominator are added by kinematical factors.

2. Multi-Pomeron exchange with one large- p_T Pomeron.

Conclusions

- Models describe the diffraction peak but fail outside it.
- At intermediate angles between the diffraction cone and hard parton scattering region the unitarity condition predicts the Orear regime with exponential decrease in angles and imposed on it damped oscillations.
- The experimental data on elastic *pp* differential cross section at low and high ($\sqrt{s}=7$ TeV) energies have been fitted in this region with well described position of the dip and Orear slope.
- The fit allows for the first time at 7 TeV to estimate the ratio of real to imaginary parts of the elastic scattering amplitude ρ far from forward direction t=0. It happened to be about -2.
- This value of ρ is explained by the unitarity condition.
- The overlap function is small and negative in the Orear region. That confirms the assumption used in solving the unitarity equation. Important corollary: the phases of inelastic amplitudes are crucial in any model of inelastic processes.