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We consider a one-dimensional elastic string as a set of massless beads interacting through springs charac-
terized by anisotropic elastic constants. The string, driven by an external force, moves in a medium with
quenched disorder. We find that longitudinal fluctuations lead to nonlinear behavior in the equation of motion
that iskinematicallygenerated by the motion of the string. The strength of the nonlinear effects depends on the
anisotropy of the medium and the distance from the depinning transition. On the other hand, the consideration
of restricted solid-on-solid conditions imposed on the string leads to a nonlinear term with adivergingcoef-
ficient at the depinning transition.

PACS number~s!: 47.55.2t

The motion of an elastic string in disordered media has
attracted considerable attention recently, in part due to its
relevance to flux flow in type-II superconductors@1# and
roughening of nonequilibrium interfaces@2#. By means of a
number of numerical@3–8# and analytical@9,10# studies it
has been observed that scaling theory can be used as an
underlying framework to understand and characterize the dy-
namical properties of the elastic string.

Consider a one-dimensional elastic string moving under
the influence of an external driving forceF normal to the
string, in a two-dimensional disordered medium of horizon-
tal sizeL ~along thex axis!. A discrete model for such a
string consists onN massless beads connected by springs.
The string is assumed to be oriented along thex axis and the
position of the i th bead is denoted by a two-dimensional
displacement vectorrW i[(xi ,yi), i51, . . . ,L ~see Fig. 1!.
The disorder in the medium is introduced by uniformly dis-
tributed pinning sites with random strength, which we refer
to as quenched disorder or ‘‘quenched noise.’’ The dynamics
of such a string is the result of the interplay between the
quenched disorder characteristic of the medium and the elas-
tic properties of the string.

A key quantity is the average velocity of the string as a
function of the external force. At small forcesF the string is
pinned by static disorder. Just above the depinning transition
F5Fc , i.e., when the external force overcomes the pinning
effect of impurities, the velocity varies as

v0~ f !; f u, ~1!

where u is the velocity exponent andf[F/Fc21 the re-
duced force.

Neglecting thermal fluctuations and lateral fluctuations of
the beads, the equation of motion for the string in the con-
tinuum limit is the Edwards-Wilkinson equation@11# with
quenched disorder@3–10#

]y~x,t !

]t
5n¹2y1h~x,y!1F. ~2!

The first term in the right-hand side of~2! includes the elastic
effects acting to make the string straight. The second term
mimics the quenched disorder, which has zero mean and is
uncorrelated. The string is driven in they direction by the
external forceF. For large driving force (F@Fc), the
quenched noise becomes effectively time dependent,
h(x,y01vt). It is believed@10,12# that in this regime the
motion of the string induces an additional nonlinear term in
~2!, namely, the Kardar-Parisi-Zhang~KPZ! term l(¹y)2

@13#. However, since this nonlinear term is generated by the
motion of the string,l is expected to vanish as the velocity
goes to zero at the depinning transition, and the critical be-
havior atF5Fc is correctly described by Eq.~2!.

While ~2! can be obtained~using ] ty52dH/dy1F)
from the Hamiltonian

H5E
0

L

dx$n~¹y!21m~x,y!%, ~3!

the KPZ nonlinear terml(¹y)2 cannot be deduced as a
variation of any bounded Hamiltonian. Here the quenched
noise ish(x,y)52dym(x,y).
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FIG. 1. The discrete version of the elastic string is composed of
L massless beads interacting via springs. A driving external force
F acts in they direction. Pointlike quenched disorder~not shown! is
introduced at each site on the lattice. The beads are allowed to
move in thex and y directions and therefore they develop over-
hangs.
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In the Hamiltonian~3!, only transverse fluctuations~along
the y direction! contribute to the elastic energy, forbidding
longitudinal fluctuations~along thex direction!. However,
for a real elastic string, the elastic energy depends on the
distance (rW i2rW i21)

2 between two consecutives beads. Here
we introduce a~111!-dimensional model that allows for
both longitudinal and transverse fluctuations of the beads. In
the model, the elastic energy depends on both
nx(xi2xi21)

2 and ny(yi2yi21)
2, wherenx and ny are the

elastic constants corresponding to displacements in thex and
y directions, respectively. We focus on the determination of
the equation of motion of the string. We find that, even
though the string can form overhangs, at large enough length
scales the string still has a well-defined orientation and pro-
file, and can be described by a continuum theory. The main
results of this paper are as follows:

~a! In the limit «[ny /nx@1, where« is the anisotropy
parameter, the large-scale behavior of the string is described

by the nonlinear equation of motion with quenched noise

]y~x,t !

]t
5n¹2y1l~¹y!21h~x,y!1F, ~4!

where the nonlinear terml(¹y)2 in ~4! is of kinematic ori-
gin. We find thatl vanishes at the depinning transition as

l~ f !; f ufu→0. ~5!

~b! If longitudinal fluctuations are neglected, we find nu-
merically that nonlinear terms of the typel(¹y)2 are forbid-
den in the growth equation. We argue that this result applies
to a number of previously introduced models@3–8#. In our
model, this limit corresponds to«[ny /nx→0.

~c! A different scenario is found when the rules of motion
of the beads are constrainted to satisfy a restricted solid-on-
solid ~RSOS! conditionuhi612hi u<const@14#. When such a

FIG. 2. Plot of average velocity vs the average tilt of the string for different values of the reduced force ranging fromf50.03 ~bottom
curves! to f50.20 ~top curves!. Results are averaged over 200 independent realizations of the disorder. The system size isL5250 and the
strength of the disorder isd53. ~a! The elastic constants arenx50.1 andny51 («510). The opening of the parabolas as the depinning
transition is approached indicates that a nonlinear term is present in the equation of motion, and that its value converges to zero at the
depinning transition. The continuous lines are the best polynomial fits to the curves. We note that the observed parabolic dependence cannot
be a lattice effect since in this case one expectsv(m50)5v(m51). ~b! The same plot for the case when longitudinal fluctuations are not
energetically favorable, so that overhangs are not observed. The elastic constants arenx51.0 andny50.1 («50.1). The horizontal lines
indicate that the velocity is independent of the average tilt of the string.~c! Tilt dependence of the average velocity of the string when the
RSOS condition is applied showing the closing of the parabolas indicating a divergingl term at the depinning transition. Here is shown the
isotropic casenx5ny51 («51), although the divergency ofl is shown to be independent of the parameter«.
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condition is imposed we find that the equation of motion of
the string is~4! but with a coefficientl that diverges at the
depinning transition as

l~ f !; f2f→`. ~6!

This result is valid for any value of the anisotropy parameter
«, and applies to a number of growth models in the directed
percolation universality class@15–20#.

We now take up each of these results in turn. Before
beginning, we note that for a given model the presence of a
nonlinear terml(¹y)2 can be identified using tilt-dependent
velocity measurements@21,18–20#. Suppose we tilt the elas-
tic string, by imposing helical boundary conditions
y15yL1mL, wherem is the average tilt of the string. Then,
according to~4!, the average tilt-dependent velocity becomes

v~m!5v01lm2, ~7!

wherev0 is the velocity of the untilted string. Ifl50, so that
the motion of the elastic string is described by~2!, then the
velocity does not depend on the average tilt of the interface.
Tilt dependence is expected only if there is a nonlinear term
in the equation of motion of the forml(¹y)2. This property
can be used to gain information on the presence and magni-
tude of the nonlinear terml, by monitoring the velocity of
the string as a function of the average tilt, and fitting to a
parabola the obtained curve@22#.

In the following, we study a generalized model of an elas-
tic string that allows for lateral motions of the beads and
therefore overhangs. The main element of the model, not
included in the Hamiltonian~3!, is the existence of longitu-
dinal motion of the beads. To include this additional degree
of freedom, we use a generalized Hamiltonian

H5(
i51

L

@nx~xi2xi21!
21ny~yi2yi21!

21m~xi ,yi !2Fyi #.

~8!

We simulate the discrete version of~8!, concentrating on
the zero-temperature dynamics of the string~only motions
that decrease the total energy of the string are allowed!. A
standard Monte Carlo algorithm, by choosing randomly a
site on the interface, induces time-dependent noise. Since at
zero temperature the motion of the string is deterministic, we
have employed an algorithm with parallel updating, during
which even and odd sublattices are updated simultaneously.
The quenched noise is introduced by defining at every site of
the two-dimensional lattice uncorrelated random numbers
m( i , j ), uniformly distributed between2d andd.

During the simulations, the chosen bead is allowed to
move to one of itsfour nearest neighbors, if that motion
decreases the total energy of the string given by~8!. If there
is more than one possible move withDH,0, then the one
with most negativeDH is chosen. We focus on the deter-
mination of the nonlinear terml, measuring the tilt-
dependent velocity of the string.

~a! Figure 2~a! shows the velocity of the driven elastic
string as a function of the average tilt for different driving
forces. The results correspond to the anisotropic motion
characterized bynx50.1 andny51 («510), and disorder
strengthd53. We see that the velocity follows a parabola

with the tilt, indicating the presence of a nonlinear term
l(¹y)2 above the depinning transition~moving phase,
F.Fc). However, the parabolas become flatter as the depin-
ning transition is approached. Our calculations indicate that
l→0 asF→Fc as in ~5!. These results are obtained for the
anisotropic casenx,ny («.1), and further increasing the
anisotropy, the observed behavior does not vanish.

~b! The other limit of the model leads to known results: a
finite ny andnx→` means that longitudinal fluctuations are
energetically very expensive, allowing only transversal fluc-
tuations. In this limit, the model reduces to the models of
Refs.@3–8#, where longitudinal fluctuations are not allowed.
In this case the nonlinear term isexactlyzero@see Fig. 2~b!#.
Thus asnx→`, a decrease ofl toward zero is expected.

Our simulations at the isotropic point«51 (nx5ny51)
show the following results:~i! for large disorder strength
(d53.nx5ny51) we find a coefficientl→0 asF→Fc;
~ii ! for disorder strengthd515nx5ny we findl50 for any
value of the force. Thus, there are two scenarios compatible
with our results. According to the first,l→0 as «→0
~strong disorder!. The second scenario~small disorder! says
that l50 for «<1 andlÞ0 for «.1.

~c! Figure 2~c! shows the results of our simulations when
the RSOS condition is applied to the growth of the string: for
a given i th bead, if hi612hi.2 then we increment
hi→hi11 regardless of the energy value of the new configu-
ration. In contrast with the results of~a! and~b!, in this case
we find that the parabolas become steeper asF→Fc , corre-
sponding to an increase inl as the depinning transition is
approached as in Eq.~6! @18–20#.

A typical system to which this study may be relevant is
the motion of a single flux line in a type-II superconductor,
directed along the external magnetic fieldH @1#. At moderate
fields, when the separation of the vortex lines is sufficiently
large, the intervortex interaction can be neglected. In this
regime, the dynamics of the vortex phase can be understood
by studying the motion of a single vortex. We argue that the
conditionnx,ny can be met in some anisotropic supercon-
ductors. Thus our results might be important in understand-
ing the driven diffusion of the flux line. The variation of the
velocity with tilt suggests that a tilted external magnetic field
H changes the velocity of the flux line, the effect decreasing
as we approach the depinning transition.

In summary, we present a model to describe the motion of
an elastic anisotropic string in a disordered medium. We find
that when transverse fluctuations~along the driving force!
are energetically more favorable than longitudinal fluctua-
tions, the string is described by Eq.~2! not only at the de-
pinning transition but only in the moving phase. However, if
longitudinal fluctuations are more favorable, a kinematic
nonlinear term is induced so that its coefficient vanishes as
we approach the depinning transition. The directed percola-
tion depinning universality class is obtained when a RSOS
condition is applied that favors the growth of regions with
large local slopes. This last result is shown to be valid for
any value of the anisotropic parameter«.
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