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Abstract

Robotic applications are expanding into dynamic, unstructured, and populated envi-

ronments. Mechanisms specifically designed to address the challenges arising in these

environments, such as humanoid robots, exhibit high kinematic complexity. This cre-

ates the need for new algorithmic approaches to motion generation, capable of perform-

ing task execution and real-time obstacle avoidance in high-dimensional configuration

spaces. The elastic strip framework presented in this paper enables the execution of a

previously planned motion in a dynamic environment for robots with many degrees of

freedom. To modify a motion in reaction to changes in the environment, real-time ob-

stacle avoidance is combined with desired posture behavior. The modification of a mo-

tion can be performed in a task-consistent manner, leaving task execution unaffected by

obstacle avoidance and posture behavior. The elastic strip framework also encompasses

methods to suspend task behavior when its execution becomes inconsistent with other

constraints imposed on the motion. Task execution is resumed automatically, once

those constraints have been removed. Experiments demonstrating these capabilities

on a nine degree-of-freedom mobile manipulator and a 34 degree-of-freedom humanoid

robot are presented, proving the elastic strip framework to be a powerful and versatile

task-oriented approach to real-time motion generation and motion execution for robots

with a large number of degrees of freedom in dynamic environments.

1 Introduction

Roboticists are beginning to direct their efforts towards applications in unstructured and dy-

namic environments populated by humans. To perform tasks robustly and reliably in such

domains, robots with sophisticated kinematic structures and powerful algorithms in con-

trol, planning, and perception are needed. Suitable robotic mechanisms have to overcome a
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variety of challenges imposed by such environments: Locomotion is needed to cover the gen-

erally very large work space; legged locomotion might be required in environments designed

for humans containing steps or stairs. To perform flexible and dexterous manipulation, po-

tentially using tools designed for humans, mechanisms have to be equipped with multiple,

independently controllable end-effectors. Changes in the environment have to be perceived

to achieve robust, collision-free motion, imposing the need for actuated on-board vision sys-

tems. These diverse requirements have lead to the development of humanoid robotic systems

(Brooks 1997; Bischoff and Graefe 1999; Adams et al. 2000; Asfour et al. 2000; Kagami

et al. 2001), which have a complex, branching kinematic structure with a large number of

degrees of freedom and are equipped with vision sensors and multiple end-effectors.

As a result of kinematic complexity, new challenges arise in the fields of motion planning

and control: For mechanisms with many degrees of freedom the computational requirements

of motion planning become increasingly large. Hence, the ability to replan a motion in re-

action to changes in the environment is limited. Nevertheless, the motion executed by the

robot has to reflect the dynamic aspects of the environment. In addition to those real-time

limitations, due to the kinematic redundancy of human-like mechanisms, the specification

of joint positions and trajectories is no longer a practical means of defining a task. Conse-

quently, the representation of a path or a plan has to encompass both the task and specific

joint trajectories, potentially chosen arbitrarily from a set of trajectories consistent with the

task. Finally, motion planning and control algorithms have to enable the generation and

simultaneous execution of independent motion behavior, for example to allow coordinated

manipulation and vision or integrated task execution and obstacle avoidance.

Currently, the areas of motion planning and robot control advance mainly independently

of each other. The introduction of probabilistic methods in motion planning (Kavraki et al.

1996) has resulted in significant progress and the resulting methods can be applied to prob-

lems of high complexity. Similar success has been achieved in the area of control, where

a powerful framework directed towards robots in human environments has been proposed

(Khatib et al. 1999). However, a successful approach to task-driven motion generation and

execution for human-like robots in dynamic and unstructured environments has to integrate

the global aspects of motion planning with the dynamic capabilities and properties of the
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mechanism, as addressed by control methods. The research presented here is concerned

with the integration of motion planning and control methods into a coherent framework of

task-based motion generation and execution.

The elastic strip framework (Brock and Khatib 1997; Brock 2000) allows the integration

of task-oriented dynamic control and motion coordination (Khatib et al. 1996; Khatib et al.

2001) with global motion planning methods (Latombe 1991), and reactive, real-time obstacle

avoidance (Khatib 1986). In this framework tasks can be specified at the object level, leaving

redundant degrees of freedom of the robot unspecified. Using those redundant degrees of

freedom, elastic strips allow the integration of motion behavior in addition to task execution,

such as obstacle avoidance or posture control. These behaviors can be controlled and changed

reactively in real time without violating constraints imposed by the task. Thus elastic strips

provide a powerful approach to motion generation and execution, in particular for robots

with complex kinematic structure operating in unstructured and dynamic environments.

2 Related Work

Research topics related to humanoid robots have recently received much attention. In this

section we will survey work applicable to robots with complex kinematic structures, as well

as discuss those approaches specifically directed towards human-like robots. In the discussion

we restrict ourselves to relevant algorithms concerned with the generation and execution of

motion.

2.1 Motion Planning in High-Dimensional Configuration Spaces

Due to the large number of degrees of freedom required to perform complex tasks in dy-

namic environments, motion planning algorithms specifically addressing high-dimensional

configuration spaces are of particular interest. Since the computational complexity of com-

plete motion planning algorithms is exponential in the dimensionality of the configuration

space (Canny 1988), those approaches are generally not applicable to robots with complex

kinematics. The introduction of probabilistically complete algorithms (Kavraki et al. 1996)

has significantly increased the applicability of motion planning algorithms and remains an
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active research area (Amato et al. 1998; LaValle et al. 1999; Hsu et al. 1999; Bohlin

and Kavraki 2000; Bohlin 2001). Using probabilistic approaches, motion planning problem

in high-dimensional configuration spaces have been solved successfully. Even probabilistic

methods, however, are unable to perform planning operations in high-dimensional configu-

ration spaces in real time.

A particular probabilistic approach, the RTT-method (LaValle and Kuffner 1999), has

been applied to motion planning for humanoid robots with 33 degrees of freedom (Kuffner

et al. 2001). In addition to generating motion avoiding static obstacles, balance constraints

are taken into account to ensure dynamically stable posture during motion. The approach

requires the precomputation of a set of statically stable postures for the robot. As grasped

objects or contact with the environment can change the factors determining stability of the

robot, such an approach is limited to planning motion for the manipulation of objects known

apriori.

Decomposition-based motion planning (Brock and Kavraki 2001) is another approach

to planning in high-dimensional configuration spaces, trading completeness for efficiency.

Based on the assumption that the robot will have a minimum clearance to obstacles along

the resulting trajectory, it decomposes the original planning problem into two subproblems.

One is a simple planning problem in Cartesian space and the other uses the solution to the

first to determine a motion in the high-dimensional space of the original planning problem.

Initial experimentation was able to demonstrate near real-time performance (Brock and

Kavraki 2001).

In addition to involving a high number of degrees of freedom, the motion required for

humanoid robots to perform human tasks can be quite complex. Motion planning algo-

rithms, including the ones discussed above, generally only address the problem of generating

a collision-free motion connecting an initial configuration to a goal configuration, ignoring

the case in which the motion itself constitutes the task. Consequently, motion planning algo-

rithms only address a part of the overall requirements of complex robots performing human

tasks.
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2.2 Motion Coordination for Redundant Manipulators

Redundancy, as often encountered in mobile manipulators and human-like structures, poses

certain difficulties for the automatic generation of motion. Mobile manipulators generally

consist of multiple kinematic structures addressing manipulation and mobility separately.

Many approaches have been proposed for the generation of a coordinated motion of these

structures, in particular for mobile manipulators with nonholonomic motion constraints (Ser-

aji 1993; Desai and Kumar 1997; Perrier et al. 1998). Given a specific trajectory of the

end-effector, methods have been proposed to generate a coordinated motion for the overall

system (Mohri et al. 2001). In all approaches redundancy resolution schemes are used to

determine the trajectory.

Redundancy resolution can also be used to implement different motion behaviors without

affecting the execution of the task. This idea has been exploited for singularity avoidance

(Tanner and Kyriakopoulos 2000) of a mobile manipulator and for system stability (Huang

et al. 1998) to prevent a vehicle/arm system from tipping. Another approach to system

stability exploits the redundancy of a humanoid robot to control its balance, while optimizing

the overall posture for manipulability of the hands (Inoue et al. 2000).

In dynamic environments coordinated motion has to be modified in real time to accom-

modate moving obstacles. An event-based motion generation approach for mobile manipu-

lators commands the base of a vehicle/arm system to stop, while task execution is continued

according to the work space limitations of the manipulator (Tan and Xi 2001). Given a

dynamically generated trajectory of the end-effector, schemes have been devised to move the

base of a vehicle/arm system such that the end-effector remains in the center of its work

space (Yamamoto and Yun 1994). Another method allows reactive obstacle avoidance with

the manipulator arm without affecting the motion of the base (Yamamoto and Yun 1995).

A more general, potential field-based approach combines a task potential, causing the end-

effector to follow a given trajectory, a coordination potential, using the base to center the

end-effector in its work space, and an obstacle avoidance potential, keeping the base at a

safe distance from obstacles, to generate motion for a mobile manipulator in a dynamic

environment (Ögren et al. 2000).

The approach to motion coordination for robots with kinematically complex structures
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presented in this paper relies on the operational space formulation (Khatib 1987), using the

dynamically consistent force/torque relationship (Khatib 1995) to control the end-effector

position and orientation and the redundant degrees of freedom of a mechanism independently.

This approach is described in more detail in Section 3.

2.3 Integration of Planning and Control

A successful strategy for motion generation in dynamic environments necessarily needs to

combine the global aspects of the task, as generated by a planner, with local constraints im-

posed on the motion by, for example, unpredictably moving obstacles, balance constraints,

work space limitations, or singularities of the mechanism. This insight has resulted in nu-

merous approaches to motion generation (Faverjon and Tournassoud 1987; Barraquand and

Latombe 1991; Choi and Latombe 1991; McLean and Cameron 1996; Baginski 1998) at-

tempting to combine the desirable properties of global motion planners (Latombe 1991)

with local control methods, such as the potential field approach (Khatib 1986).

A global path planner was developed by applying control algorithms to the motion plan-

ning problem (Warren 1989). In this approach, a potential function is associated with the

interior of configuration space obstacles. A planning operation is initiated under the as-

sumption that a straight-line path in configuration space connects the initial and the final

configuration. The entire path is then exposed to the potential functions defined by the

obstacles. Following the negative gradient of those potentials, the path is incrementally

modified until it is collision-free. The definition of the potential functions, however, becomes

prohibitively difficult, as the dimensionality of the configuration space increases. In addition,

the computation of the configuration space obstacles is a very costly operation in those cases.

A very similar approach was taken to address the problem of real-time motion modifi-

cation. The elastic band framework (Quinlan 1994b) represents a previously planned path

as a curve in configuration space with properties similar to an elastic band. Obstacles exert

repulsive forces, keeping the trajectory free of collision. However, in contrast to the previ-

ous approach, proximity information from the work space is used to modify the trajectory,

rather than computing the configuration space obstacle. By avoiding the computation of

the configuration space obstacles, the approach is computationally more efficient than the
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one previously presented. It can be used to modify a trajectory during its execution in re-

action to obstacles moving in the environment (Quinlan 1994b). The proximity information

required for motion modification is derived from an estimate of local free space around the

trajectory. As the dimensionality of the configuration space and the geometrical complexity

of the robot increases, however, this estimate becomes excessively conservative, resulting in

loss of real-time performance. In low-dimensional configuration spaces the approach was

applied successfully and even extended to non-holonomic motion of mobile robots (Khatib

1996).

Combining ideas underlying the two previous approaches, a very fast motion planning

method, the BB-method, was introduced (Baginski 1998). Similar to the aforementioned

global path planner, the trajectory is represented as a curve in configuration space and

exposed to potentials resulting from obstacles. But rather than using an explicit represen-

tation of those configuration space obstacles, proximity information is used to approximate

them, as it was the case in the elastic band approach. However, the BB-method is subject

to local minima and might fail to find a collision-free path, even though one might exist.

Furthermore, since it is a motion planning method it cannot incorporate motion constraints

maintained by control methods.

Previous approaches perform an integration of planning and control to achieve faster

motion generation (Faverjon and Tournassoud 1987; Warren 1989; Barraquand and Latombe

1991; McLean and Cameron 1996; Baginski 1998) or to allow motion execution in dynamic

environments (Steele and Starr 1988; Choi and Latombe 1991; Quinlan 1994b). The elastic

strip framework presented here is the first attempt of a general motion generation framework,

addressing a wide range of task-driven aspects of robotic motion.

3 Task-oriented Control

The operational space formulation (Khatib 1987) serves as the underlying control structure

in the elastic strip framework. It decomposes the overall control of a mechanism into task

behavior and posture behavior. The elastic strip framework presented in the subsequent

section relies on this decomposition for the integration of various motion behaviors with task

execution.
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3.1 Task Behavior

The joint space dynamics of a manipulator are described by

A(q)q̈+ b(q, q̇) + g(q) = Γ

where q is the n joint coordinates, A(q) is the n × n kinetic energy matrix, b(q, q̇) is the

vector of centrifugal and Coriolis joint forces, g(q) is the vector of gravity, and Γ is the

vector of generalized joint forces.

The operational space formulation (Khatib 1987) provides an effective framework for

dynamic modeling and control of branching mechanisms (Russakow et al. 1995), with mul-

tiple operational points. The generalized torque/force relationship (Khatib 1987) provides

the decomposition of the total torque Γ into two dynamically decoupled command torque

vectors: the torque corresponding to the task behavior command vector and the torque that

only affects posture behavior in the nullspace,

Γ = Γtask + Γposture. (1)

In this section we will only be concerned with the torque vector Γtask, corresponding to task

behavior. The next section also addresses motion behavior. For a robot with a branching

structure of m effectors or operational points, the task is represented by the 6m× 1 vector,

x, and the 6m × n Jacobian matrix is J(q). This Jacobian matrix is formed by vertically

concatenating the m 6× n Jacobian associated with the m effectors.

The task dynamic behavior without posture specification is described by the operational

space equations of motion (Khatib 1995)

Λ(x)ẍ+ µ(x, ẋ) + p(x) = F,

where x, is the vector of the 6m operational coordinates describing the position and orien-

tation of the m effectors, Λ(x) is the 6m × 6m kinetic energy matrix associated with the

operational space. µ(x, ẋ), p(x), and F are respectively the centrifugal and Coriolis force

vector, gravity force vector, and generalized force vector acting in operational space.

The joint torque corresponding to the task command vector F, acting in the operational

space is given by

Γtask = J
T (q) F (2)
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The task dynamic decoupling and control is achieved using the control structure

Ftask = Λ̂(x)F
⋆
motion + µ̂(x, ẋ) + p̂(x)

where, F⋆task represents the inputs to the decoupled system, and .̂ represents estimates of

the model parameters. This control structure enables us to control a robot with multiple

operational points in terms of the task, rather than the joint coordinates.

3.2 Posture Behavior

For non-redundant manipulators the task specification as described in Section 3.1 suffices

to control all degrees of freedom of the manipulator. For redundant manipulators, however,

this framework becomes incomplete. The specification of the redundant degrees of freedom

is given by a desired posture for the robot. Such posture behavior can then be treated

separately from the task, allowing intuitive task and posture specifications and effective

whole-robot control. The overall control structure for task and posture is

Γ = Γtask + Γposture,

where

Γposture = N
T (q) Γd-posture

with

N(q) =
[
I − J̄(q) J(q)

]

where J̄(q) is the dynamically consistent generalized inverse (Khatib 1995), which minimizes

the robot kinetic energy,

J̄(q) = A−1(q) JT (q) Λ(q)

and

Λ(q) = [J(q) A−1(q) JT (q)]−1.

Γd-posture refers to the desired posture torque. After mapping it into the nullspace we obtain

Γposture, which is the posture toqrue applied to the robot. The overall control structure is

now given by

Γ = JT (q) F+NT (q) Γd-posture. (3)
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This relationship provides a decomposition of joint forces into two control vectors: joint

forces corresponding to forces acting at the task, JTF, and joint forces that only affect the

robot posture, NT (q)Γd-posture. For a given task this control structure produces joint motions

that minimize the robot’s instantaneous kinetic energy. As a result, a task will be carried

out by the combined action of the set of joints that reflect the smallest effective inertial

properties.

To control the desired posture of the robot, the vector Γd-posture can be selected as the

gradient of a potential function constructed to meet the desired posture specifications. Later

we will see how such a gradient can be defined in terms of proximity to obstacles to realize

obstacle avoidance, for example. The interference of posture behavior with the task dy-

namics is avoided by projecting it into the dynamically consistent nullspace of JT (q), i.e.

NT (q)Γd-posture.

3.3 Branching Mechanisms

Task-oriented control for one task represented by a single operational point as described

above, has been extended to branching mechanisms, such as human-like robots, with multiple

operational points in a straight-forward manner (Russakow et al. 1995; Chang and Khatib

2000). For m end effectors, F and J from equation 3 are obtained by simple concatenation:

x =



x1
...
xm


 , F =



F1
...
Fm


 and J =



J1
...
Jm


 ,

where xi represents the coordinates of the ith operational point, Fi represents the forces and

moments acting at the ith operational point, and Ji is the Jacobian at the ith operational

point. Using this simple extension, multiple operational points of a branching mechanism

can be controlled (Russakow et al. 1995).

4 Elastic Strip Framework

The motion required for a robot to execute a sophisticated task necessarily combines global

and local criteria. One example of such a task is the execution of a planned a motion to
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reach a goal configuration (global behavior), while allowing reactive obstacle avoidance (local

behavior) to accommodate changes in the environment. The elastic strip approach provides

a framework for the integration of these behaviors, enabling reactive motion execution while

maintaining the global properties of the motion relating to the task. This is accomplished

by incremental modification of previously planned motion. The method of modification

guarantees that the resulting motion maintains the topological properties of the path as well

as the contraints imposed by the task and therefore represents a valid path from the current

to the goal configuration consistent with the task.

In this section the elastic strip framwork is introduced. First, obstacle avoidance be-

havior in high-dimensional configuration spaces is demonstrated. The approach differs from

purely reactive methods in that it maintains the global properties of the path and thus is not

succeptible to local minima. Subsequently, the integration of more sophisticated motion be-

havior is introduced. These encompass posture behavior and the concept of task-consistency.

In addition, a general method for transitioning between different motion behaviors, based

on motion constraints, is presented. Finally, the problem of local replanning is addressed.

The integration of these diverse aspects renders the elastic strip framework a very powerful

approach to motion generation for complex robots in dynamimc environments.

4.1 Sets of Homotopic Paths

The fundamental idea underlying the elastic strip framework is to represent a set of homo-

topic paths by the union of the work space volumes a robot would sweep out along them.

This can be done without exploring the configuration space, by simply considering geometric

and kinematic properties of the robot. The prerequisite for the computation of a work space

volume representing a set of homotopic paths is the existence of a valid planned motion,

called candidate path. Assume a planner has generated such a candidate path and it lies en-

tirely in free space. A robot moving along the candidate path sweeps out a certain volume in

the work space. This volume can be seen as an alternate representation for the path, which

conventionally is viewed as a one-dimensional curve in the configuration space. A slight,

continuous modification of the configuration space curve will result in a path homotopic to

the candidate path. Again, there is a work space volume associated with this modified path,
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differing slightly from the volume of the candidate path. We will exploit the property that

slight modifications of the curve in configuration space result in a slightly modified work

space volume.

Intuitively, we can grow the work space volume swept by the robot along the candidate

path to contain the volume swept along a modified path. It becomes evident that by growing

the free space around the candidate path, the volume will contain the volumes swept by the

robot along a whole set of paths. Because these paths resulted from continuous map of the

candidate path, they are homotopic to the candidate path (Latombe 1991). These homotopic

paths are represented implicitly by an approximation of the free space around the candidate

path, rather than as a set of curves in the configuration space.

Using such a set of homotopic paths represented by a work space volume, planning and

control can be integrated very tightly: The path generated by a motion planner is trans-

formed into a more general representation by augmenting it with an implicit representation

of paths homotopic to it. Control algorithms can then be used during execution to efficiently

search that space to find a valid and collision-free trajectory, representing incremental mod-

ifications to the candidate path.

4.2 Augmented Path Representation

Let Pc be a path generated by a planner. This path represents a collision free motion

accomplishing a given task; we will call it candidate path. Furthermore, let V RP be the work

space volume swept by robot R along trajectory P.1 This work space volume can be seen

as an alternative representation of the one-dimensional curve P in configuration space. Let

V δP be defined as

V δP = (VP ⊕ bδ)\VO,

where ⊕ is the Minkowski sum operator, bδ designates a ball of radius δ centered around the

origin, and VO is the work space volume occupied by obstacles. V
δ
P corresponds to VP grown

by δ in all directions, excluding the work space volume occupied by obstacles. Assuming

that the robot is not in contact with obstacles along the entire path, it is obvious that there

1For simplicity we will drop the exponent R in the remainder of this paper. Unless otherwise noted

variables refer to the robot R.
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exists a path P ′ 6= P homotopic to P and obtained from P by a slight modification, such

that VP ′ ⊂ V
δ
P
. Therefore, V δ

P
can be seen as an implicit representation of paths homotopic

to the candidate path Pc.

In the elastic strip framework a work space volume of free space surrounding VPc is

computed. Since, depending on the method of computation, it might not be identical to V δPc

we will denote it by TPc and call it elastic tunnel of free space. This tunnel represents a work

space volume implicitly describing a set of paths P (TPc) homotopic to Pc:

P (TPc) = { P | VP ⊆ TPc and P ≃ Pc } ,

where ≃ denotes the homotopy relation between two paths. The condition VPc ⊆ TPc is

called the containment condition. A criterion to determine the containment of the work

space volume VP swept by the robot along P in the tunnel TPc for a particular implementation

of the elastic strip framework is described in Section 5.3.

Given a candidate path Pc, a corresponding tunnel TPc can be easily computed (Brock

2000) using distance computations in the work space. An elastic strip S is a tuple consisting

of a candidate path and its corresponding elastic tunnel; it is defined as S = (Pc, TPc).

An example of an elastic tunnel, given a particular scheme of free space computation, is

shown in Figure 1. Five configurations of the Stanford Mobile Platform along a given path

are displayed. The overlapping, transparent spheres indicate the computed free space. The

union of those spheres represents the elastic tunnel. The spherical obstacle in the middle of

the trajectory is restricting the size of the tunnel. It can also be seen, how the robot lowers

its arm to avoid collision with the obstacle. The resulting deformation of the represented

free space volume is the reason for naming it elastic tunnel.

4.3 Obstacle Avoidance Behavior

Given an elastic strip S, an algorithm is required to efficiently select a new candidate path P ′c,

completely contained by the elastic tunnel. Using a potential field-based control algorithm

real-time performance can be achieved for this operation. Rather than exploring the entire

configuration space, the algorithm maps proximity information from the environment into

the configuration space, using the kinematic structure of the manipulator. The elastic strip
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Figure 1: Elastic tunnel: The union of the local free space, shown as transparent spheres, of
five configurations along the elastic strip make up the elastic tunnel. A spherical obstacle
has modified the trajectory and the associated representation of free space.

framework differs from other reactive approaches in that potential fields are applied to a

discretized representation the entire trajectory and not only to a particular configuration of

the robot.

The candidate path Pc is represented as a discrete set of consecutive configurations.

Virtual robots at these configurations are exposed to forces, acting in the work space, incre-

mentally modifying the candidate path to yield a new one. The forces are derived from two

potential functions, the external and internal potential, Vexternal and Vinternal, respectively.

The external, repulsive potential Vexternal is defined as a function of proximity to obstacles.

Minimizing this potential effectively maximizes the clearance the path has to obstacles in the

environment. For a point p on a configuration of the robot along the trajectory the external

potential is defined as follows:

Vexternal(p) =

{
1
2
kr(d0 − d(p))

2
if d(p) < d0

0 otherwise
,

where d(p) is the distance from p to the closest obstacle, d0 defines the region of influence

around obstacles, and kr is the repulsion gain. The force resulting from this potential that

acts on point p is given by:

Fextp = −∇Vexternal = kr (d0 − d(p))
d

‖d‖
,

where d is the vector between p and the closest point on an obstacle. Intuitively, the repulsive

potential pushes the trajectory away from obstacles, if it is inside their influence region. Using
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the external forces to select a new candidate path maintains the global properties of the path

and local minima can be avoided.

The external potential alone would suffice in most cases to select a new candidate path.

The resulting repulsive forces keep the trajectory in free space. If an obstacle deforming

a path would recede, however, the path would never shorten. Virtual springs attached to

control points on consecutive configurations of the robot along the elastic strip can achieve

this effect. Let pij be the position vector of the control point attached to the j-th link of

the robot in configuration qi along the elastic strop. The internal contraction force acting

at control point pij caused by the virtual spring connecting it to the configurations qi−1 and

qi+1 along the elastic strip S, is defined as:

Finternali,j = kc

(
di−1j

di−1j + d
i
j

(pi+1j − p
i−1
j )− (p

i
j − p

i−1
j )

)
,

where dij is the distance ‖p
i
j − p

i+1
j ‖ in the initial, unmodified trajectory and kc is a constant

determining the contraction gain of the elastic strip.

The definition of internal forces causes the tension in the elastic strip to be dependent

upon the local curvature of the strip, rather than its length. If the internal tension of the

strip were dependent on its length, the distance to obstacles would reduce with elongation.

Furthermore, by introducing the scaling factor
di−1
j

di−1
j
+di
j

, relative distance between consecutive

configurations along the elastic strip does is preserved. Without this factor the configurations

representing the candidate path would tend to drift away from obstacles into regions of the

trajectory where no external forces act.

Exposed to external and internal forces, the elastic strip behaves like a strip of rub-

ber. Obstacles cause it to deform, and as obstacles recede it assumes its previous shape.

The forces are mapped to joint displacements using a kinematic model of the manipulator.

This effectively replaces configuration space exploration with a directed search, guided by

work space forces. The computation is virtually independent of the dimensionality of the

configuration space. It mainly depends on the geometric properties of the robot and the en-

vironment (Brock 2000). The kinematic mapping obviously still depends on the number of

degrees of freedom of the robot, but in practice its computational requirements are dwarfed

by the cost of the free space computation.
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The virtual robots along the elastic strip are exposed to torques given by equation 2,

which can be extended to

Γavoidance =
∑

p∈R

JTp (q)
(
Finternalp + Fexternalp

)
, (4)

where Jp(q) represents the Jacobian in point p on the robot R and Fp designates a force

acting at p. Forces resulting from external and internal potentials are simply mapped into

torques; these torques are then used to simulate the behavior of the robot in a configuration

along the elastic strip.

Figure 2 shows the obstacle avoidance behavior, resulting from internal and external

potentials for two Stanford Mobile Platforms (Brock and Khatib 1999), consisting of a holo-

nomic base and a PUMA 560 manipulator arm with six degrees of freedom (see also Exten-

sions 1 and 2). The upper and lower row of three pictures show the same experiment from

different perspectives. Lines indicate the elastic strip: vertical lines indicate those configura-

tions of the robot which are represented by the elastic strip. Control points on consecutive

configurations are connected by horizontal lines to indicate the trajectory. The images show

how the trajectory of the robot to the left is incrementally modified as the other manipulator

moves into its path. Note how base as well as arm motion is generated by the elastic strip

framework to avoid the obstacle.

Figure 3 (Extension 3) shows the same experiment conducted on the real robots. The

sequence of images shows how the trajectory is modified in real time, based on information

about the configuration of the robot representing the obstacle. Perception of the moving

obstacle is addressed by querying the robot’s configuration at regular intervals and using a

geometric model of the robot to update the world model.

The trajectory of the base in the x/y plane and the joint angles as a function of time for

the waist, shoulder, and elbow of the PUMA are shown in Figure 4 a) and b) respectively.

Graph 4 a) shows how the base deviates increasingly from the initial straight-line trajectory,

as the obstacle approaches. Once the obstacle is passed, a straight-line trajectory to the

goal configuration is assumed. The joint trajectories in Figure 4 b) are plotted relative to

the final desired arm configuration; only the portion of the overall trajectory is shown, for

which the joint angles deviate from that position. The arm moves in a smooth manner to
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Figure 2: Obstacle Avoidance: The trajectory of a Stanford Robotic Platform, which is
indicated by a wire frame representation, is modified in real-time as another robot, serving
as an obstacle, moves into the path.

perform obstacle avoidance.

4.4 Posture Behavior

To generate a collision free motion, the elastic strip framework uses proximity information

from the work space in order to guide the search in the configuration space, as described

in equation 4. When the proximity information is mapped into the configuration space,

undesired motion behavior may result. This is illustrated in Figure 5 a) (Extension 4) .

A humanoid robot with 34 degrees of freedom – seven in each leg and arm and three at

the waist and neck – passes underneath a descending beam. Note that the complexity of

legged locomotion is ignored; instead the humanoid robot is treated as floating in the plane.

Repulsive forces exerted by the beam result in an unnatural and physically unstable motion.

This is avoided by imposing an additional posture potential, which can describe a preferred

posture for the robot, keep joint angles in a desire range to avoid joint limits, or prevent

self-collision.

For instance, the robot posture can be controlled to maintain the robot total center-of-
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Figure 3: Obstacle avoidance behavior using the elastic strip framework is demonstrated on
the Stanford Robotic Platform. The experiment corresponds to the one shown in Figure 2.
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Figure 4: Graphs showing the base trajectory and the joint motion for the waist, shoulder
and elbow of the Stanford Robotic Platform during the experiment shown in Figure 3.

mass aligned along the z axis of the reference frame. This posture can be simply implemented

with a posture energy function

Vposture(q) =
1

2
k (x2CoM + y

2
CoM) (5)

where k is a constant gain, xCoM, and yCoM are the x and y coordinates of the center of mass.

The gradient of this function

Γposture = J
T
CoM (−∇Vposture-energy),

where JCoM is the Jacobian associated with the center of mass of the manipulator, provides

the required attraction to the z axis of the robot center of mass. The resulting torque can

simple be added to the torques resulting from obstacle avoidance, as defined in equation 4:

Γ = Γavoidance + Γposture.
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a) b)

Figure 5: Posture behavior: Motion of a humanoid robot passing under a beam, which is
being lowered. Figure a) shows the motion of the robot without posture control. The motion
in Figure b) is generated with a posture energy causing the upper body to remain upright
and the legs to bend.

Imposing a posture as the one described in equation 5 based on the center of mass of the

robot would ensure physical feasibility. The resulting behavior could be a bending the trunk

backwards while reaching forward with the arms. Such a motion would ensure stability, but

would not necessariy look natural. Figure 5 b) (Extension 5) shows the same motion as part

a) of that figure when the posture of the robot is controlled to bend the knees in reaction to a

bent upper body. In addition, a restoring potential for the upper body posture is added. The

resulting motion appears more natural. Note that an arbitrary number of posture energies

can be added to the motion by summing the resulting torques. It would thus be possible to

combine the natural looking motion with the physically motivated potential from equation

5.

Figure 6 (Extension 6) shows an example of posture control and obstacle avoidance as it

could be used in character animation. A skiing humanoid figure evades a moving snowman

and crouches to pass under the banner, which is lowered continuously. Note how the ski

poles are moved closer to the body when passing the snow man and the gate. This illustrates

how complex motion behavior consisting of obstacle avoidance and posture control can be

generated in real time for mechanisms with high kinematic complexity.

4.5 Task-consistent Behavior

The path modification and posture control performed above employs all degrees of freedom of

the manipulator to ensure obstacle avoidance. In other words, obstacle avoidance is regarded
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Figure 6: A human figure skies around an approaching snowman and passes through a gate,
while the banner is being lowered. Note how all degrees of freedom of the robot are used
to avoid collision in real time, as indicated by the ski poles moving closer to the body when
passing the snowman and the gate. Posture energy causes the skier to maintain a human-like
posture.

as the task of the robot as it moves along the elastic strip towards its goal configuration.

For non-redundant manipulators this is necessary, as any deviation from the original motion

would necessarily violate task constraints. In the case of redundant manipulators, however,

task execution and posture behavior can be performed simultaneously. Since the manipulator

is redundant with respect to the task given by forces and moments described by F, the

nullspace of the associated Jacobian has a non-zero rank. Obstacle avoidance and posture

behavior can be performed in that nullspace.

The overall motion behavior and the associated torques can be devided into three different

components: the task, constraint satisfaction, and posture behavior. The task relates to

desired forces and moments at the end-effectors. Constraints encompass those requirements

of the motion, which should be maintained at all times, as their violation could potentially

be fatal to the mechanism. They include, for example, obstacle avoidance, joint limit and

self-collision avoidance, and balance control. Combining the corresponding toqures yields
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the overall torque applied to the robot:

Γ = Γtask + Γconstraints + Γposture

To perform motion behavior in a task-consistent manner, control is then performed using

equation 3:

Γ = JT (q) F+NT (q) (Γd-constraints + Γd-posture, ) (6)

where F represents an aribtrary task described by forces and moments at the end-effectors.

Only considering obstacle avoidance constraints, Γd-constraints is defined like Γd-avoidance in

equation 4. The subscript d− indicates the desired torques. The actual torques result from

mapping the desired quantities into the nullspace associated with the task. The properties of

the operational space formulation guarantee that posture behavior mapped into the nullspace

will not affect the task. Obstacle avoidance is performed in a task-consistent manner. Using

this formulation, an aribitrary number of desired posture behaviors, like the ones described

in Section 4.4 can be realized in a task-consistent manner by simply mapping them into the

nullspace of the task. Thus, a more general definition of Γd-posture is given by

Γd-posture =
∑

i

ki Γi,

where ki are constant gains and Γi is the torque resulting from the forces derived from an

aribitrary posture energy function, such as the one given in equation 5.

The following experiments demonstrate the integration of task behavior and obstacle

avoidance. The examplary task consists of the end effector following a straight line trajec-

tory. Figure 7 a) (Extension 7) shows five consecutive configurations of the Stanford Mobile

Platforms along a trajectory. The shown trajectory resulted from a straight-line trajectory

which was modified by two small mobile robots moving into the path from opposite direc-

tions. Lines indicated the trajectory of the base, elbow, and end-effector. The end-effector

error of this motion with respect to the desired task is shown in Figure 7 b); the end-effector

follows the base trajectory in avoiding the two obstacles and results in a large error.

In Figure 7 c) (Extension 8) the obstacle robots perform the idential motion, but the

elastic strip is modified in a task-consistent manner, enabling the end-effector to remain on

the straight-line trajectory, as indicated by the corresponding end effector error graph in

Figure Figure 7 d).
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a) c)

b) d)

Figure 7: Task-consistency: A comparison of task-inconsistent and task-consistent obstacle
avoidance. Figure a) shows obstacle avoidance of two mobile robots without task consistency
by a Stanford Robotic Platform. The graph in Figure b) depicts the associated end effector
error, relative to the task of following a straight line. The end-effector performs a motion
similar to the base, resulting in large error. Figures c) and d) show the correspond image
and graph for task-consistent obstacle avoidance. The obstacle perform the same motion as
in Figure a), but the end-effector error is minimal.

Task-consistent modification in the elastic strip framework was also demonstrated in

experiments on the Stanford Robotic Platform (see Figure 8 and Extension 9). During

these experiments the end-effector error generally did not exceed 2mm; in some experiments

motion with sub-millimeter error was achieved. The motion of the obstacle, a Scout robot,

is perceived using a SICK laser range finder.

4.6 Suspending Task Behavior

The integration of task execution, obstacle avoidance, and posture behavior as described

above can only be performed as long as the torques resulting from mapping Γd-contraints and
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Figure 8: Demonstrating task-consistent obstacle avoidance with the Stanford Robotic Plat-
form. The end-effector performs a straight-line motion, while the base avoides the obstacle,
which is perceived using a laser range finder.

Γd-posture into the nullspace (see equation 6) yield sufficient motion to accomplish the desired

overall behavior. The ability to move inside the nullspace of the task is significanlty reduced,

for example, when the manipulator reaches the limits of its workspace or a singularity.

Furthermore, it is possible for desired posture or obstacle avoidance behavior to directly

conflict with the task. In such a situation is desireable to suspend task execution in order to

perform motion necessary to fulfill the required motion constraints. Once the task execution

has been suspended, the constraint behavior previously executed in the nullspace of the task

can now be executed using all degrees of freedom of the robot. When possible, task execution

should be resumed. In this section, we introduce cirteria for determining when a transition

is required and methods for performing such a transition.

While the task does not conflict with the constraints the robot can be controlled using

the equation 6, which maps constraint satisfaction and posture torques into the nullspace:

Γ = JT (q) F+NT (q) (Γd-constraints + Γd-posture) .

The transition criteria determine under which conditions the task is suspended or re-

sumed. The criterion to suspend the task should maintain task behavior as long as possible,

while the criterion to resume the task should be fulfilled as early as possible. Their op-

timality with repsect to those requirements depends on properties of the robot and the

environment. Here, we present simple and quite general cirteria that do not depend upon a
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specific mechanism.

Let NT (q) =
[
I − JT (q) J̄T (q)

]
be the dynamically consistent nullspace mapping of the

Jacobian J(q) assoicated with the task. We define the coefficient

c =
‖Γconstraints‖

‖Γd-constraints‖
,

where Γconstraints = N
T (q) Γd-constraints, to correspond to the quotient of the magnitude of

the mapped and unmapped constraint satisfaction torque vector. The value c ∈ [0..1] is an

indication of how well the behavior represented by Γd-posture can be performed inside the

nullspace of the task.

To determine when a transition to suspend the task needs to be initiated, we empirically

determine a value csuspend at which it is desireable to suspend task execution in favor of

the behavior previously mapped into the nullspace. Once the coefficient c assumes a value

c < csuspend, a transition is intiated. During this transition, task and posture behavior at the

joint are gradually suspended and constraint satisfaction behavior, previously performed in

the nullspace, is now transitioned from the nullspace into the full space, using all degrees

of freedom of the manipulator. For large values of csuspend the task is maintained longer,

whereas small values result is a fast suspension of the task. To ensure the avoidance of

kinematic singularities or collisions with obstacles, i.e., the violation of motion constraints,

csuspend should not be choosen too close to 1. During the experiments presented in Figure 9

a value of csuspend = 0.8 was choosen.

The reverse transition to resume task behavior is initiated when the magnitude of the

vector F, representing the forces and moments applied at the end effector to resume the

task, becomes smaller than a threshold ǫ, ‖F‖ ≤ ǫ, and simultaneously c > cresume, where

cresume is the threshold for resuming the task. This condition is an indication that the task

can be executed while realizing the posture behavior entirely in the nullspace. The value for

cresume is chosen so that cresume > csuspend; this deadband between csuspend and cresume avoids

unnecessary transitions.

Above criteria determine when to initiate a transition to suspend or resume task behavior

at a given joint. The actual transition to suspend the task execution is performed based on

the coefficient c and a desired duration tsuspend for the transition. Transitions are character-
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ized by a transition variable α ∈ [0, 1]. When suspending the task, αsuspend for a given degree

of freedom i is given by

αsuspend =

{
min( c

csuspend
, 1− t−t0

tsuspend
) if t− t0 < tsuspend

0 otherwise
,

where t is the current time t0 is the time at which the transition was initiated. The time-based

component allows a smooth transition under normal circumstances, whereas considering c

permits to react more rapidly to extreme situations, in which the mapping into the nullspace

yields only very minimal torques.

The transition to resume the task is performed entirely based on the desired duration

tresume; the transition variable αresume for a given degree of freedom i is defined as

αresume =

{
t−t0
tresume

if t− t0 < tresume
1 therwise

.

The parameters tsuspend and tresume can be chosen based upon the acceleration capabilities

of the manipulator and the expected rate of change in the environment. They affect the

appearance of the resulting overall motion.

The transitions are performed based on the transition variable α as defined above. This

variable is used as an argument to the transition function f(·). By varying f(·) different

transition behaviors can easily be accomplished. The simplest choice for f(·) is the identity

function, in which case the transition variable α will generate a linear transition over time.

Other choices include the sigmoidal function f(x) = 1
1+e−x

, scaled and translated to the

interval [0, 1]. The condition of f(αi) + f(1− αi) = 1 for all α ∈ [0, 1] is not necessary for a

particular choice of f ; it is desirable, however, to maintain this property at the end points

of that interval.

The motion of the manipulator is generated using the equation

Γ = f(α) JT (q) F +

f(α) NT (q) (Γd-constraints + Γd-posture) +

f(ᾱ) Γd-constraints

where ᾱ = (1−α) is defined as the complement of the transition variable α, given by αsuspend

or αresume depending on the transition.
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The process of suspending and resuming task behavior is illustrated in in Figure 9 a)

(Extension 10). The graph in Figure 9 b) shows the deviation from the task for the base

and the end-effector. In the inital portion of the graph the base starts deviating to avoid

the obstacle, while the end-effector continues to execute the task. Once the base deviates

approximately 0.6m, the task is suspended and the end-effector deviated follows the base

trajectory up to a deviation of over 0.2m. After t = 24s the obstacle is passed and the

end-effector deviation is reduced until the task can be resumed. The graph resulted from

an experiment on the Stanford Robotic Platform; the obstacle was perceived using a SICK

laser range finder. For this paricular experiment the maxiumum end-effector error during

task-consistent execution was 3mm.

a) b)

Figure 9: Suspension and resumption of task-consistent obstacle avoidance: the obstacle, a
small mobile robot, moves into the path of a Stanford Robotic Platform. Figure a) shows
five configurations along the trajectory. Lines indicate the trajectory of the based, elbow,
and end-effector. As the graph of Figure b) indicates, the base diviates signifianctly from
the straight-line trajectory. The end effector follows the task with neclegible error, until the
task is supended. Once the obstacle is passed the end-effector error is reduced until the task
can be resumed.

4.7 Replanning

In the elastic strip framework the modification of a trajectory is accomplished by the appli-

cation of local potential fields. Like any other method generating global motion based on

local information, it can fail. We differentiate two failure modes. One kind of failure results

from a topolocial change of the configuration free space of the robot. The candidate path Pc

of an elastic strip S represents a curve in configuration free space connecting the inital con-
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figuration of the robot with the goal confiuration. Should changes in the environment result

in the elimination of a passage in the configuration free space through which Pc passes, the

elastic strip framework will fail. This failure cannot generally be avoided, as the topological

information provided by the planner in form of the initial candidate path has become invalid.

A planner has to be invoked to compute a new candidate path.

A second kind of failure can occur, when the passage in the configuration free space

around Pc has become so narrow that a valid candidate path cannot be determined by

reactive motion modification due to the initial conditions represented by the configuration

of the robot. This situation corresponds to a structural local minimum of the manipulator.

It reflects the incompleteness of reactive motion modification as a search method in the

configuration space, rather than a change the configuration space connectivity. Again, a

planner has to be invoked to determine a path passing through the narrow passage in the

configuration free space.

In addition to those two failures which can only be addressed by a global planning

operation, the elasic strip framework can exhibit suboptimalities of the path, due to the

fact that only local information is used to modify the path. Such suboptimalities can arise,

for example, when an obstacle moves through the robot’s path and continues to deform the

path, even after the obstacle has crossed and passed the original trajectory. We consider

these to be local minima in the optimality space of all paths, as opposed to local minima

in the configuration space of the robot. Rather than preventing the robot from reaching

the goal, they cause it to take a suboptimal path to the goal: Initially the candidate path

represents a “good” trajectory, based on criteria established by the planning problem. With

respect to these criteria the candidate path represents a local minimum close to or identical

to the global mimimum. As changes in the environment occur, the local minimum containing

the candidate path might become significantly worse that the global minimum.

An two-dimensional example of such a situation is illustrated in Figure 10. Part a) of

that figure shows a straight-line trajectory for the robot. In Figure 10 b) the path is modified

by the approaching obstacle, but it still represents an optimal trajectory. Further motion

of the obstacle causes the path to become suboptimal, as shown in Figure 10 c), where

a topologically different straigh-line trajectory becomes feasible. The original path would
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have to be transformed into a disconnected, suboptimal one, before it could reach the global

maximum of the optimality space again.

a)
Robot

Goal

Obstacle

b) c)

Figure 10: A candidate path becomes suboptimal after the environment changes

This problem of suboptimality due to a passing obstacle can be resolved by the invokation

of a global path planner to determine a new candidate path Pc for the elastic strip. But

since such obstacle behavior is likely to occur frequently in dynamic environments, we would

like to be able to address it within the framework itself.

In Section 4.3 the internal forces acting on consecutive configurations along the elastic

strip were defined in order to keep internal tension and relative distance constant as the strip

deforms. If the component of the repulsive force in the opposite direction of the internal

force exceeds the magnitude of the external force, two adjacent configurations along the

elastic strip start to separate. If this separation results in two disjunct components of the

strip, the effect of repulsive forces at the separated configurations is suspended. The obstacle

can then pass through the opening and internal forces will “repair” the strip, by joining the

two disjunct pieces. Please note that this behavior is a direct consequence of the definition

of internal and external forces in Section 4.3 and therefore represents behavior inherent to

elastic strips. The process of splitting the elastic strip, letting an obstacle pass through it,

and then merging it again is illustrated in Figure 11 (Extension 11).

If an obstacle comes to rest on the optimal path, the internal forces will not be able to

reconnect the elastic strip during this procedure. By maintaining two versions of the elastic

strip, one which is continuously modified to avoid the obstacle and one which is broken in an

attempt to let it pass through, this difficulty can be avoided. This procedure guarantees that

as long as none of the aforementionend failure modes occur, the elastic strip will represent
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Figure 11: This series of images shows how two moving obstacle pass through the elastic strip
after a given local elongation is exceeded. The images show the elastic strip immediately
before the split occurs, during the split, and immediately after the strip has been reconnected
by internal forces.
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a valid path, maintaining opitimatlity criteria as closely as possible, while avoiding costly

planning operations.

5 Implementation

This section discusses a particular implementation (Brock 2000) of the elastic strip frame-

work, which was the basis for the experimental results presented in the previous section.

Since most of the computational requirements arise from free space computation, special

attention is paid to distance computation, rigid body representation, and the geometric cri-

teria employed to determine the containment of a volume swept by the robot along a path

within the elastic tunnel.

5.1 Rigid Body Representation

To ensure collision avoidance the elastic strip framework maintains a representation of free

space, called elastic tunnel, along the entire trajectory. Its computation requires the distance

information between rigid bodies in space; as a result, distance computatoin is the most

frequently executed algorithmic primitive in the elastic strip framework. The efficiency of

this operation has a crucial impact on the overall performance. Various distance computation

methods are presented in the literature (Gilbert et al. 1988; Lin 1993; Mirtich 1997; Ong

and Gilbert 1997). For this particular implementation of the elastic strip framework we

have chosen a hierarchical bounding sphere method (Quinlan 1994a). The representation

of rigid bodies described in this section was chosen to optimize the performace of distance

computation using that method.

A rigid body can be approximated by a line segment with associated width, varying

linearly along the line segment. We call such a parametrized line segment the spine of the

rigid body. The width specifies the free space required around the line segment for the body

to be free of collision. The volume described by a spine and its width parameterization is

a generalized cylinder with caps on its circular faces. This representatin is motivated by

the resulting simplification of the distance computation: rather than computing the distance

between two bodies, the distance between a line and a body is computed. Figure 12 shows
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the spine of a PUMA 560 link as the black line; the volume associated with the spine encloses

the link.

Figure 12: Illustration of a spine and the associated volume approximating a rigid body:
the spine is indicated by the black line along the principal axis of the PUMA 560 link. The
transparent cloud indicates the width parametrization of the spine.

This spine model is only a very coarse approximation of the rigid body. It can be

assumed, however, that in most cases the robot will maintain a safe distance to obstacles.

The computationally more efficient check against a coarse representation of its volume then

suffices to ensure collision avoidance. As a rigid body comes closer to obstacles, the model

described above might result in incorrect collision detection. To address this difficulty the

representation of rigid bodies with spines can be generalized to describe rigid bodies at an

arbitrary level of detail.

Figure 13: Covering a body with an increasing number of spines: The figure shows a rigid
body and associated hulls viewed along the spines. The number of spines and also the
accuracy or representation increases from left to right.

The basic idea of this generalization is to introduce more spines to cover the volume of

the rigid body with increasing accuracy. In Figure 13 the rectangular cross section of a body

and its circular covering by spines are shown for different resolutions. The spines are situated

at the centers of the circles orthogonal to the paper. The radius of the circle indicates the

width parametrization.

For the sake of simplicity we assume in the remainder of this paper that the volume of
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rigid bodies is described by a single spine. The extension to a multi spine-representation is

can be accomplished by examining every spine of the body individually.

5.2 Free Space Representation

Given the representation of a rigid body, the elastic strip framework requires the computation

and representation of the local free space around that body. The concept of a bubble as

an efficiently computable representation of local free space was introduced in in conjunction

with the elastic band framework (Quinlan 1994b). A bubble captures a spherical region of

free space around a given point p. Let d(p) be the function that computes the minimum

distance from a point p to any obstacle. The workspace bubble of free space around p is

defined as

B(p) = { r : ‖p− r‖ < d(p)} .

An approximation of the local free space around a rigid body b in configuration q can be

computed by generating a set of overlapping workspace bubbles centered on the spine. This

set of bubbles is called protective hull Hbq. It can be computed by computing bubbles at the

ends of the line segment associated with the spine and recursively subdividing the portion

of the spine not enclosed by the bubbles. The protective hull narrows at the intersection

of two adjacent bubbles. To accurately capture local free space around the rigid body, the

procedure for computing the protective hull requires the width at such an intersection point

to be close to the minimum radius of the adjacent bubbles.

The local free space or protective hull Hq of a robot R at a configuration q is described

by the union of protective hulls of each rigid body of R,

Hq =
⋃

b∈R

Hbq.

Figure 14 shows two protective hulls of the Stanford Mobile Platform in different configu-

rations. Note that a single workspace bubble may contain multiple rigid bodies or even the

entire robot, implying that for large clearances a simple description of the local free space

suffices.

Given a candidate path Pc = (q1, . . . , qn) of an elastic strip S, the corresponding elastic
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Figure 14: Protective hull: The union of bubbles desribing the local free space around the
Stanford Mobile Platform makes up its protective hull. Spherical obstacles limit the size of
the bubbles.

tunnel TPc is given by

TPc =
⋃

qi

Hqi.

An elastic strip is considered valid, if the containment condition

VPc ⊆ TPc =
⋃

qi

Hqi (7)

holds; otherwise it is considered invalid. The criterion to determine whether the containment

condition holds or not is described in the next section.

5.3 Containment Criterion

To determine if the volume VPc swept by a robot along the path Pc is contained within the

corresponding tunnel TPc , it suffices to describe a procedure that verifies the existence of a

path between two consecutive protective hulls HRi and H
R
i+1 along the path. The repeated

application of this procedure so all neighboring configurations qi and qi+1 along the path Pc

represents a criterion for the containment condition given by equation 7.

To determine if the volume swept by a robot when transitioning from qi to qi+1 is con-

tained within the volume Hqi ∪Hqi+1, we will make the assumption that every point on the

robot moves on a straight line as it transitions from qi to qi+1. This ignores the effect of

rotation. However, this effect can be bounded and taken into account at a computational

expense, when computing the protective hull. The justification for this assumption is that
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when the robot is close to an obstacle two adjacent configurations on the elastic strip will be

similar enough for this effect to be insignificant. This assumption represents simplification

but not an inherent limitation of the approach. Using this assumption the path of each rigid

body b of the robot R can be examined independently. If a trajectory between qi and qi+1

exists for all rigid bodies b ∈ R, one exists for R.

The existence of a path Pi,i+1 for a rigid body b from configuration qi to qi+1 is guaranteed

if the volume V bPi,i+1 swept by b along Pi,i+1 is contained within the protective hulls of the

configuration qi and qi+1,

V bPi,i+1 ⊆
(
Hbi ∪H

b
i+1

)
. (8)

To verify condition (8) the union U = Hbi ∪H
b
i+1 is examined. If b can pass through U on

a straight line trajectory from qi to qi+1 the existence of a trajectory V
b
Pi,i+1

contained within

Hbi ∪ H
b
i+1 is guaranteed. If for all rigid bodies b ∈ R the union of their protective hulls

Hbi ∪ H
b
i+1 is large enough to allow a straight-line trajectory, we say that two consecutive

protective hulls HRi andH
R
i+1 are connected.

The containment condition for a single rigid body is verified by traversing the protec-

tive hulls at two adjacent configurations. During the traversal the intersection of triplets

of bubbles are examined. Two of the bubbles are adjacent in the protective hull of one

configuration, the third one is part of the protective hull at the adjacent configuration. The

intersection of three bubbles designates the locally narrowest passage. By verifying that all

intersections are wide enough to let the rigid body pass, the connectedness for two adjacent

protective hulls for a rigid body can be verified. Using the simplifying assumptions stated

above it follows that the containment condition can be computed.

5.4 Motion Execution

The elastic strip represents a trajectory as a sequence of discrete configurations. These

configurations are changed in real time by various forces, as described above. Before a

trajectory can be executed, however, it needs to be converted into a trajectory, taking

into account the current configuration of the robot and its actuation constraints. Since no

time requirements are imposed on reaching the goal configuration, this can be accomplished

by choosing an adequate time parametrization. The interpolation between to consecutive
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configurations along the elastic strip has to be performed in a manner consistent with the

associated free space representation (Brock and Khatib 1999).

When task execution is combined with other motion behavior, the discrete configurations

along the elastic strip are modified in a task-consistent manner. Configurations obtained by

interpolating between two task-consistent configurations, however, will not necessarily be

task-consistent themselves. This can be addressed by mapping the resulting interpolated

trajectory into the nullspace of the task, as described in equation 3. The contoll structure

will ensure that only such motions not affecting task behavior are executed. This approach

also smoothens the nullspace motion and specifies a behavior for those degrees of freedom

not required by the task and the required additional behavior.

6 Conclusion

The applications of robotic technology is beginning to extend beyond the assembly line

into unstructured, dynamic, and populated environments. Robotic systems capable of per-

forming complex tasks in such environments generally require high kinematic complexity, as

evidenced by humanoid robots, posing new challenges in the field of robot motion generation

and control. We presented the elastic strip framework, which allows the integration of global

motion planning, reactive obstacle avoidance, and a task-based control formulation. Using

this framework, globally planned motion for robots with many degrees of freedom can be

modified in real time in reaction to changes in the environment, thus enabling the robust

execution of collision-free motion in dynamic environments. The generation of this motion

can be guided by arbitrary posture behavior to optimize aspects of the resulting motion,

such as maintaining stability, avoiding singularites, or preventing self-collision.

Desired task behavior can impose constraints on the motion of the end effector. For

example, when wiping a window, the end-effector is constrained to move in the plane defined

by the window pane. The elastic strip framework allows obstacle avoidance and posture

behavior to be performed in a task-consistent manner. Task consistency guarantees that

desired motion behavior does not interfere with task execution. This is accomplished by

performing such motion behavior in the nullspace of the task. Should the mechanism, due

to obstacle movement, kinematic liminations, or other constraints, become incapable of
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exucting this behavior, the elastic strip framwork can automatically suspend task behavior.

Execution of the task is resumed, once the prohibiting constraints have been removed.

Experimental applications of the elastic strip framework to the nine degree-of-freedom

Stanford Robotic Platform and to a 34 degree-of-freedom humanoid robot were presented.

Obstacle avoidance, posture behavior, task-consistent obstacle avoidance, and task suspen-

sion and resumption were demonstrated in simulalation and on real robots. The results

illustrate the effectiveness of the elastic strip framework as a general and powerful task-

oriented approach to motion generation for robots with many degrees of freedom, such as

humanoid or human-like structures, in dynamic and unstructured environments.
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