
Elastic Structural Matching for On-line Handwritten
Alphanumeric Character Recognition

Kam-Fai Chan & Dit-Yan Yeung �

Department of Computer Science
Hong Kong University of Science & Technology

Clear Water Bay, Kowloon, Hong Kong
E-mail: fkchan,dyyeungg@cs.ust.hk

Abstract

In this paper, we will propose a simple yet robust struc-
tural approach for recognizing on-line handwriting. Our
approach is designed to achieve reasonable speed, fairly
high accuracy and sufficient tolerance to variations. Exper-
imental results show that the recognition rates are 98.60%
for digits, 98.49% for uppercase letters, 97.44% for low-
ercase letters, and 97.40% for the combined set. When
the rejected cases are excluded from the calculation, the
rates can be increased to 99.93%, 99.53%, 98.55% and
98.07%, respectively. On the average, the recognition speed
is about 7.5 characters per second running in Prolog on a
Sun SPARC 10 Unix workstation and the memory require-
ment is reasonably low.

1. Introduction

Character recognition has been an active research area
for more than 30 years [12]. Different approaches, such as
statistical, syntactic and structural, and neural network ap-
proaches, have been proposed. Characters consist of line
segments and curves. Different spatial arrangements of
these elements form different characters. In order to recog-
nize a character, we should find out the structural relation-
ships between the elements which make up the character.
However, in the pattern recognition community, the syntac-
tic and structural approach is always considered a nice idea,
but is not particularly promising in most applications [8].
One of the concerns is the need for robust extraction of
primitives. This issue will be addressed later in this section.

Using the structural approach, two-dimensional patterns,
such as characters, can be represented in at least two differ-
ent ways. The first one is to use a representation formal-
ism which is by nature of high dimensionality, such as an

�This research work is supported in part by the Hong Kong Research
Grants Council (RGC) under Competitive Earmarked Research Grant
HKUST 746/96E awarded to the second author.

array, a tree or a graph [9, 10]. The second one is to in-
corporate additional relationships between primitives into
a one-dimensional representation form. Two well-known
methods using the latter approach are the picture descrip-
tion language (PDL) [11] and the plex grammar [5].

Note that we need to consider the trade-off between ex-
pressive power and time complexity for processing when
we choose any representation formalism. Graphs have
the highest expressive power, but the detection of exact
or approximate subgraph isomorphism is known to be in-
tractable [2]. On the other hand, string matching is of poly-
nomial time complexity, but its expressive power is much
lower. When efficiency is one of our major concerns, then
string representations are generally preferred.

The PDL and the plex grammar are mainly used to de-
scribe how primitives are connected. These schemes may
become very tedious when there exist large variations in the
character classes. Berthod and Maroy’s primitives [1] at-
tempt to address the problem of high variability. However,
their method does not make use of directional information.
On the other hand, Freeman’s chain code [6] and some ex-
tended schemes (e.g., [13]) use directional information to
form primitives, although the resulting representations are
often not compact enough.

In this paper, we will propose a simple structure which
is compact and at the same time contains useful directional
information. Then we will discuss how to extract structural
primitives from the input in a robust manner. Afterwards,
we will explain how to perform classification through model
matching. Finally, we will present and discuss some exper-
imental results followed by concluding remarks.

2. Primitives of the structure

Characters are composed of line segments and curves.
Every line segment or curve can be extended along a cer-
tain direction. A curve that joins itself at some point forms
a loop. Hence, in our representation, we will use as primi-

This is the Pre-Published Version

tives different types of line segments and curves with some
directional information. Note that there may be several dif-
ferent primitives in even just one stroke. Basically, there are
five types of primitives:

� line,

� up (curve going counter-clockwise),

� down (curve going clockwise),

� loop (curve joining itself at some point), and

� dot (a very short segment which may sometimes be
just noise; we, however, cannot simply ignore it since
it may be part of a character, like in “i” and “j”).

To represent the directional information, we will use
Freeman’s chain code [6] which uses eight values, i.e., 0
to 7 (corresponding to 0 ˚ , 45 ˚ , . . . , 315 ˚ , respectively), to
indicate how the current point is connected to the next one.

Note that no directional information is associated with
dots. Also, for simplicity, we do not associate directions
with loops at this stage. The direction of a line or a curve
depends on the starting and ending points. Figure 1 shows
some examples.

{{{line, 0}}, {{line, 6}}}

{{{up, 0}, {down, 5}}}

{{{up, 5}, loop}}

Figure 1. Examples of the representations for
some characters

3. Structure extraction

In a character, there may be one or more strokes. Each
stroke consists of a number of points that trace out a path
on the writing surface from pen-down to pen-up in normal
handwriting style. Every pair of consecutive points induces
a direction. For points that follow the same direction or
have only a slight turn, we will group them into one line
segment. On the other hand, if there is a sharp turn along
a stroke, we will represent it with multiple line segments.
Figure 2 shows the steps taken to extract the structure of a
digit “3”.

In practice, some writers may produce characters which
are hard to recognize. Such examples include zig-zag line
segments, broken strokes, and writing strokes in reverse di-
rections. Such problems can be fixed during the preprocess-
ing stage or some later stages. Due to the paper size limit,

(0, 85)
(6, 92)
(19, 99)
(53, 90)

.

.

.
(66, 6)
(46, 0)
(26, 0)
(0, 6)

1
0
7
6
5
4
0
7
6
5
4
3

{{{down, 7}, {down, 5}}}

Figure 2. Steps taken to extract the structure

we will not explain here details of the algorithms used to
tackle these problems. The details can be found in [4].

4. Elastic structural matching

After extracting the structure of a character, we can then
match it against a set of models. However, due to different
writing styles and habits, variations within the same charac-
ter class are not uncommon. In order to increase the recog-
nition rate, those characters that do not have an exact match
will be slightly varied in shape and direction in an attempt
to find approximate matches.

Most structural matching methods deal with graph rep-
resentations directly [9]. Our method, instead, works on
string representations. The following is our matching algo-
rithm:

Algorithm Elastic Structural Matching

1. Load the set of models in Z.

2. Extract the structure of the test character C.

3. Initialize the deformation level L to be 1.

4. Let the candidate set S � deform�L�C�.

5. Let the match set M � match�Z� S�.

6. If M is not empty, return M . Otherwise,
L � L� �.

7. IfL is less than or equal to the maximum de-
formation level, go to step (4). Otherwise,
exit and report failure of finding an exact
match.

Basically, there are four levels of structural deformation.
Here we have to emphasize again that the search will stop
once a match (or matches after deformation is performed)
has been found. As an example, a regularly written “T” is
likely to get correct classification during the first level of
matching. However, in order to illustrate the generality of
our scheme, we will use this simple character as an illustra-
tive example anyway in our following discussions:

1. No deformation:
The test pattern has to be exactly the same as one of
the models.

2. Primitive type deformations:
When there is no exact match, we will vary the primi-
tive type in an attempt to find an approximate match. In
so doing, line may become either one of its two neigh-
boring types, i.e., up and down (since line is midway
between up and down). However, up can only become
line, but not down (since line is the only neighbor of
up). Similar restrictions also apply to down. As a re-
sult, a “T” will have eight relaxed versions as shown in
Figure 3 (a).

(a) Applying type
deformation on “T”

(b) Applying directional
deformation on “T”

Figure 3. Examples of structural deforma-
tions

3. Directional deformations:
Similarly, we may also vary the direction. To do so, we
find a neighboring code of the current one. For exam-
ple, fline, 5g may become fline, 4g or fline, 6g. As
a result, a “T” will have eight relaxed versions, though
two of them are the same as shown in Figure 3 (b).

4. Simultaneous type and directional deformations:
When no exact pattern can be found during the previ-
ous relaxation steps, we may consider finding the near-
est match by deforming both the primitive type and di-
rection together. As a result, a much larger number of
patterns will be covered. For example, a “T” will have
80 possible deformed versions.

With elastic structural matching, some ambiguities may
occur. Here we have a choice either to have all the am-
biguous cases reported as answer, or to add some additional
post-processing steps to discriminate among those possibil-
ities and find the most probable one. For example, “D” and
“P” often come together as the best matches found. In order
to distinguish between them, we may consider the relative
position of the vertical bar and the curve. Another example
is the pair “n” and “r”. Exactly where the curve ends now
becomes crucial.

Note that many false-positive cases may be resulted if
too much flexibility is allowed. Hence, we may need
some additional steps to verify the answer if other domain-
specific information is available.

5. Experimental results

In our experiment, we used an on-line handwriting
data set collected by the MIT Spoken Language Systems
Group [7]. It is a subset of the full set for isolated alphanu-
meric characters only. There are 62 character classes (10
digits, 26 uppercase and 26 lowercase letters) in our set.
Each character class has 150 different entries written by 150
different people. Totally, there are 9300 characters. More
than half of them are regularly written. The remaining ones
are those either with noise in the data, poorly written, de-
liberately written in some strange and unusual way, or with
zig-zag line segments. Figure 4 shows some examples of
the characters in the data set.

(a) Regularly written characters

(b) Poorly written characters

(c) Characters which may be ambiguous or have noise in
the data

Figure 4. Some examples of the characters in
the data set

For all character classes, we have developed procedures
to resolve the ambiguities. As a result, there are three pos-
sible outcomes in the recognition: correct, incorrect, and
rejected. The following are the preliminary results:

Correct Incorrect Rejected

Digits
����

����
(98.60%)

�

����
(0.07%)

��

����
(1.33%)

Upper-
case

letters

����

����
(98.49%)

��

����
(0.46%)

��

����
(1.05%)

Lower-
case

letters

����

����
(97.44%)

�	

����
(1.43%)

��

����
(1.13%)

All
����

����
(97.40%)

���

����
(1.91%)

	�

����
(0.69%)

Incorrect recognition is sometimes due to the ambiguous
nature of the characters. Figure 5 shows some examples.
Rejection, on the other hand, is often the result of unusual
writing style, e.g., “4”, “8”, “A”, and “j” in Figure 4 (c).

“1”, “S”, “U”, “j”, “n”,
recognized recognized recognized recognized recognized

as “2” as “J” as “V” as “i” as “m”

Figure 5. Examples of some incorrectly rec-
ognized characters

If we do not include the rejected cases, the result is as
follows:

Reliability rate 1

Digits
����

����
(99.93%)

Uppercase letters
����

����
(99.53%)

Lowercase letters
����

���	
(98.55%)

All
����

���	
(98.07%)

Note that rejection can be avoided by adding that exam-
ple as a new model of its class. Caution should be taken
though, as the number of models will increase and some
models may be so specific that they are only responsible for
very few (mostly just one) examples. Here, we also show
the numbers of models used in the different character sets.

Number of character models
Minimum Maximum Average

Digits 2 10 5.40
Uppercase letters 1 14 4.96
Lowercase letters 1 10 4.27

All 1 14 3.90

6. Conclusion

Nowadays, relatively few researchers use the structural
approach for character recognition. Our experiment shows
that by making use of structural information contained in a
character together with a simple, flexible matching mecha-
nism and some additional procedures for fine-grain classi-
fication, we can indeed achieve fairly good recognition re-
sults. On the average, the speed of recognition is about 7.5
characters per second running in Prolog on a Sun SPARC
10 Unix workstation and the memory requirement is rea-
sonably low.

There are some more advantages with our approach:

1. Since our approach is a model-based one, all the pat-
terns have semantically clear representations that can
be used for subsequent manual verification.

1The reliability rate refers to the percentage of correct classification
when rejected cases are excluded in the calculation.

2. New models may be added any time, though some ef-
fort has to be put on resolving conflicts between the
new models and some existing ones.

However, at this stage, model creation is not automatic
yet. In other words, we still have to manually design the set
of models in advance. Fortunately, automatic extraction of
models from the data is feasible in our scheme and will be
one of our future directions to pursue.

In summary, with this simple and robust structural ap-
proach, we already have an effective and efficient on-line
character recognition module. Such module can be used as
part of a larger system, such as a pen-based mathematical
equation editor which is one project currently being inves-
tigated by the authors.

References

[1] M. Berthod and J. P. Maroy. Learning in syntactic recogni-
tion of symbols drawn on a graphic tablet. Computer Graph-
ics and Image Processing, 9:166–182, 1979.

[2] H. Bunke. Hybrid pattern recognition methods. In Bunke
and Sanfeliu [3], chapter 11, pages 307–347.

[3] H. Bunke and A. Sanfeliu, editors. Syntactic and Structural
Pattern Recognition - Theory and Applications. World Sci-
entific, Singapore, 1990.

[4] K. F. Chan and D. Y. Yeung. Elastic structural matching
for recognizing on-line handwritten alphanumeric charac-
ters. Technical Report CS98-07, Dept. of Computer Science,
Hong Kong Univ. of Science and Technology, Mar. 1998.

[5] J. Feder. Plex languages. Info. Sciences, 3:225–241, 1971.
[6] H. Freeman. Computer processing of line drawing images.

ACM Computing Surveys, 6(1):57–98, 1974.
[7] R. Kassel. A Comparison of Approaches to On-line Hand-

written Character Recognition. PhD thesis, MIT Dept. of
Electrical Engineering and Computer Science, June 1995.

[8] S. Lucas, et al. A comparison of syntactic and statisti-
cal techniques for off-line OCR. In R. C. Carrasco and
J. Oncina, editors, Grammatical Inference and Applications
(ICGI-94), pages 168–179. Springer-Verlag, Sept. 1994.

[9] T. Pavlidis. Structural descriptions and graph grammars. In
Pictorial Information Systems. Springer-Verlag, 1980.

[10] A. Rosenfeld. Array, tree and graph grammars. In Bunke
and Sanfeliu [3], chapter 4, pages 85–115.

[11] A. C. Shaw. A formal picture description scheme as a basis
for picture processing systems. Information and Control,
14:9–52, 1969.

[12] C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of the
art in on-line handwriting recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(8):787–
808, 1990.

[13] P. S. P. Wang and A. Gupta. An improved structural ap-
proach for automated recognition of handprinted charac-
ters. In P. S. P. Wang, editor, Character and Handwriting
Recognition: Expanding Frontiers, pages 97–121, Singa-
pore, 1991. World Scientific.

