
Elastic Task Model For Adaptive Rate Control

Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni
Scuola Superiore S. Anna, Pisa, Italy

fgiorgio,liparig@sssup.it, luca@hartik.sssup.it

Abstract

An increasing number of real-time applications, related
to multimedia and adaptive control systems, require greater
flexibility than classical real-time theory usually permits.
In this paper we present a novel periodic task model, in
which tasks’ periods are treated as springs, with given elas-
tic coefficients. Under this framework, periodic tasks can
intentionally change their execution rate to provide differ-
ent quality of service, and the other tasks can automatically
adapt their periods to keep the system underloaded. The
proposed model can also be used to handle overload con-
ditions in a more flexible way, and provide a simple and
efficient mechanism for controlling the quality of service of
the system as a function of the current load.

1. Introduction

Periodic activities represent the major computational de-
mand in many real-time applications, since they provide a
simple way to enforce timing constraints through rate con-
trol. For instance, in digital control systems, periodic tasks
are associated with sensory data acquisition, low-level ser-
voing, control loops, action planning, and system monitor-
ing. In such applications, a necessary condition for guar-
anteeing the stability of the controlled system is that each
periodic task is executed at a constant rate, whose value is
computed at the design stage based on the characteristics of
the environment and on the required performance. For criti-
cal control applications (i.e., those whose failure may cause
catastrophic consequences), the feasibility of the schedule
has to be guaranteed a priori and no task can change its
period while the system is running.

Such a rigid framework in which periodic tasks operate is
also determined by the schedulability analysis that must be
performed on the task set to guarantee its feasibility under
the imposed constraints. To simplify the analysis, in fact,
some feasibility tests for periodic tasks are based on quite
rigid assumptions. For example, in the original Liu and
Layland’s paper [7] on the Rate Monotonic (RM) and the

Earliest Deadline First (EDF) algorithms, a periodic task �i
is modeled as a cyclical processor activity characterized by
two parameters, the computation time Ci and the period Ti,
which are considered to be constant for all task instances.
This is a reasonable assumption for most real-time control
systems, but it can be too restrictive for other applications.

For example, in multimedia systems timing constraints
can be more flexible and dynamic than control theory usually
permits. Activities such as voice sampling, image acquisi-
tion, sound generation, data compression, and video play-
ing, are performed periodically, but their execution rates are
not as rigid as in control applications. Missing a deadline
while displaying an MPEG video may decrease the quality
of service (QoS), but does not cause critical system faults.
Depending on the requested QoS, tasks may increase or de-
crease their execution rate to accommodate the requirements
of other concurrent activities.

If a multimedia task manages compressed frames, the
time for coding/decoding each frame can vary significantly,
hence the worst-case execution time (WCET) of the task can
be much bigger than its mean execution time. Since hard
real-time tasks are guaranteed based on their WCET (and
not based on mean execution times), multimedia activities
can cause a waste of the CPU resource, if treated as “rigid”
hard real-time tasks.

In order to provide theoretical support for such appli-
cations, some work has been done to deal with tasks with
variable computation times. In [18] a probabilistic guarantee
is performed on tasks whose execution times have known
distribution. In [17], the authors provide an upper bound
of completion times of jobs chains with variable execution
times and arbitrary release times. In [9], a guarantee is
computed for tasks whose jobs are characterized by variable
computation times and interarrival times, occurring with a
cyclical pattern. In [8], a capacity reservation technique
is used to handle tasks with variable computation time and
bound their computational demand.

Even in some control application, there are situations in
which periodic tasks could be executed at different rates in
different operating conditions. For example, in a flight con-
trol system, the sampling rate of the altimeters is a function

0-8186-9212-X/98 $10.00 (c) 1998 IEEE

of the current altitude of the aircraft: the lower the altitude,
the higher the sampling frequency. A similar need arises
in robotic applications in which robots have to work in un-
known environments where trajectories are planned based
on the current sensory information. If a robot is equipped
with proximity sensors, in order to maintain a desired per-
formance, the acquisition rate of the sensors must increase
whenever the robot is approaching an obstacle.

In other situations, the possibility of varying tasks’ rates
increases the flexibility of the system in handling over-
load conditions, providing a more general admission control
mechanism. For example, whenever a new task cannot be
guaranteed by the system, instead of rejecting the task, the
system can try to reduce the utilizations of the other tasks (by
increasing their periods in a controlled fashion) to decrease
the total load and accommodate the new request. Unfortu-
nately, there is no uniform approach for dealing with these
situations. For example, Kuo and Mok [4] propose a load
scaling technique to gracefully degrade the workload of a
system by adjusting the periods of processes. In this work,
tasks are assumed to be equally important and the objective
is to minimize the number of fundamental frequencies to
improve schedulability under static priority assignments. In
[12], Nakajima and Tezuka show how a real-time system
can be used to support an adaptive application: whenever
a deadline miss is detected, the period of the failed task is
increased. In [13], Seto et al. change tasks’ periods within
a specified range to minimize a performance index defined
over the task set. This approach is effective at a design
stage to optimize the performance of a discrete control sys-
tem, but cannot be used for on-line load adjustment. In [6],
Lee, Rajkumar and Mercer propose a number of policies to
dynamically adjust the tasks’ rates in overload conditions.
In [1], Abdelzaher, Atkins, and Shin present a model for QoS
negotiation to meet both predictability and graceful degra-
dation requirements in cases of overload. In this model, the
QoS is specified as a set of negotiation options, in terms
of rewards and rejection penalties. In [10, 11], Nakajima
shows how a multimedia activity can adapt its requirements
during transient overloads by scaling down its rate or its
computational demand. However, it is not clear how the the
QoS can be increased when the system is underloaded.

Although these approaches may lead to interesting re-
sults in specific applications, we believe that a more general
framework can be used to avoid a proliferation of policies
and treat different applications in a uniform fashion.

In this paper we present a novel framework, the elastic
model, which has the following advantages:

� it allows tasks to intentionally change their execution
rate to provide different quality of service;

� it can handle overload situations in a more flexible
way;

� it provides a simple and efficient method for control-
ling the quality of service of the system as a function
of the current load.

The rest of the paper is organized as follows. Section
2 presents the elastic task model. Section 3 illustrates the
equivalence of the model with a mechanical system of linear
springs. Section 4 describes the guarantee algorithm for a set
of elastic tasks. Section 5 presents some theoretical results
which validate the proposed model. Section 6 illustrates
some experimental results achieved on the HARTIK kernel.
Finally, Section 7 contains our conclusions and future work.

2. The elastic model

The basic idea behind the elastic model proposed in this
paper is to consider each task as flexible as a spring with a
given rigidity coefficient and length constraints. In particu-
lar, the utilization of a task is treated as an elastic parameter,
whose value can be modified by changing the period or
the computation time. To simplify the presentation of the
model, in this paper we assume that the computation is fixed,
while the period can be varied within a specified range.

Each task is characterized by five parameters: a com-
putation time Ci, a nominal period Ti0 , a minimum period
Timin

, a maximum period Timax
, and an elastic coefficient

ei � 0, which specifies the flexibility of the task to vary its
utilization for adapting the system to a new feasible rate con-
figuration. The greater ei, the more elastic the task. Thus,
an elastic task is denoted as:

�i(Ci; Ti0 ; Timin
; Timax

; ei):

In the following, Ti will denote the actual period of task
�i, which is constrained to be in the range [Timin

; Timax
].

Any task can vary its period according to its needs within
the specified range. Any variation, however, is subject to
an elastic guarantee and is accepted only if there exists a
feasible schedule in which all the other periods are within
their range. Consider, for example, a set of three tasks,
whose parameters are shown in Table 1. With the nominal
periods, the task set is schedulable by EDF since

Up =
10
20

+
10
40

+
15
70

= 0:964 < 1:

If task �3 reduces its period to 50, no feasible schedule
exists, since the utilization would be greater than 1:

Up =
10
20

+
10
40

+
15
50

= 1:05 > 1:

However, notice that a feasible schedule exists (Up = 0:977)
for T1 = 22, T2 = 45, and T3 = 50, hence the system can
accept the higher request rate of �3 by slightly decreasing

Task Ci Ti0 Timin
Timax

ei

�1 10 20 20 25 1
�2 10 40 40 50 1
�3 15 70 35 80 1

Table 1. Task set parameters used for the ex-
ample.

the rates of �1 and �2. Task �3 can even run with a period
T3 = 40, since a feasible schedule exists with periods T1

and T2 within their range. In fact, when T1 = 24, T2 = 50,
and T3 = 40, Up = 0:992. Finally, notice that if �3 requires
to run with a period T3 = 35, there is no feasible schedule
with periods T1 and T2 within their range, hence the request
of �3 to execute with a period T3 = 35 must be rejected.

Clearly, for a given value of T3, there can be many differ-
ent period configurations which lead to a feasible schedule,
hence one of the possible feasible configurations must be
selected. The great advantage of using an elastic model is
that the policy for selecting a solution is implicitly encoded
in the elastic coefficients provided by the user. Thus, each
task is varied based on its current elastic status and a feasible
configuration is found, if there exists one.

As another example, consider the same set of three tasks
with their nominal periods, but suppose that a new periodic
task �4(5; 30; 30; 30; 0) enters the system at time t. In a
rigid scheduling framework, �4 (or some other task selected
by a more sophisticated rejection policy) must be rejected,
because the new task set is not schedulable, being

Up =

4X
i=1

Ci
Ti0

= 1:131 > 1:

Using an elastic model, however, �4 can be accepted if
the periods of the other tasks can be increased in such a
way that the total utilization is less than one and all the
periods are within their range. In our specific example, the
period configuration given by T1 = 23, T2 = 50, T3 = 80,
T4 = 30, creates a total utilization Up = 0:989, hence �4

can be accepted.
The elastic model also works in the other direction.

Whenever a periodic task terminates or decreases its rate,
all the tasks that have been previously “compressed” can
increase their utilization or even return to their nominal pe-
riods, depending on the amount of released bandwidth.

It is worth to observe that the elastic model is more gen-
eral than the classic Liu and Layland’s task model, so it
does not prevent a user from defining hard real-time tasks.
In fact, a task having Timin

= Timax
= Ti0 is equivalent to

a hard real-time task with fixed period, independently of its

elastic coefficient. A task with ei = 0 can arbitrarily vary
its period within its specified range, but it cannot be varied
by the system during load reconfiguration.

3. Equivalence with a spring system

To understand how an elastic guarantee is performed in
this model, it is convenient to compare an elastic task �i
with a linear spring Si characterized by a rigidity coefficient
ki, a nominal length xi0 , a minimum length ximin

and a
maximum length ximax

. In the following, xi will denote the
actual length of spring Si, which is constrained to be in the
range [ximin

; ximax
].

In this comparison, the length xi of the spring is equiv-
alent to the task’s utilization factor Ui = Ci=Ti, and the
rigidity coefficient ki is equivalent to the inverse of task’s
elasticity (ki = 1=ei). Hence, a set of n tasks with total uti-
lization factor Up =

Pn
i=1 Ui can be viewed as a sequence

of n springs with total length L =
Pn

i=1 xi.
Using the same notation introduced by Liu and Layland

[7], let UA
lub be the least upper bound of the total utilization

factor for a given scheduling algorithmA (we recall that for
n tasks URM

lub = n(21=n � 1) and UEDF
lub = 1). Hence,

a task set can be schedulable by A if Up � UA
lub. Under

EDF, such a schedulability condition becomes necessary and
sufficient.

Under the elastic model, given a scheduling algorithmA
and a set of n tasks with Up > UA

lub, the objective of the
guarantee is to compress tasks’ utilization factors in order to
achieve a new utilizationU 0

p � UA
lub such that all the periods

are within their ranges. In the linear spring system, this is
equivalent of compressing the springs so that the new total
length L0 is less than or equal to a given maximum length
Lmax. More formally, in the spring system the problem can
be stated as follows.

Given a set of n springs with known rigidity
and length constraints, if L > Lmax, find a set
of new lengths x0i such that x0i 2 [ximin

; ximax
]

and L0 = Ld, whereLd is any arbitrary desired
length such that Ld < Lmax.

For the sake of clarity, we first solve the problem for a spring
system without length constraints, then we show how the
solution can be modified by introducing length constraints,
and finally we show how the solution can be adapted to the
case of a task set.

3.1 Springs with no length constraints

Consider a set Γ of n springs with nominal length xi0

and rigidity coefficient ki positioned one after the other, as
depicted in Figure 1. Let L0 be the total length of the array,
that is the sum of the nominal lengths: L0 =

Pn
i=1 xi0 . If

x 40x 20x 10

L0

k 4k 3k 2k 1

Lmax

x 1 x 2 x 3 x 4

x 30

Lmax

k 1 k 2 k 3 k 4

L0

F

L’
L

L

Figure 1. A linear spring system: the total length is L0 when springs are uncompressed (a); and
L < L0 when springs are compressed (b).

the array is compressed so that its total length is equal to a
desired lengthLd (0 < Ld < L0), the first problem we want
to solve is to find the new length xi of each spring, assuming
that for all i, 0 < xi < xi0 . Being Ld the total length of the
compressed array of springs, we have:

Ld =

nX
i=1

xi: (1)

If F is the force that keeps a spring in its compressed state,
then, for the equilibrium of the system, it must be:

8i F = ki(xi0 � xi): (2)

Solving the equations (1) and (2) for the unknown x1, x2,
: : :, xn, we have:

8i xi = xi0 � (L0 � Ld)
K==

ki
(3)

where

K== =
1Pn
i=1

1
ki

: (4)

3.2 Introducing length constraints

If each spring has a length constraint, in the sense that its
length cannot be less than a minimum value ximin

, then the
problem of finding the values xi requires an iterative solu-
tion. In fact, if during compression one or more springs
reach their minimum length, the additional compression
force will only deform the remaining springs. Thus, at
each instant, the set Γ can be divided into two subsets: a set
Γf of fixed springs having minimum length, and a set Γv
of variable springs that can still be compressed. Applying

equations (3) and (4) to the set Γv of variable springs, we
have

8Si 2 Γv xi = xi0 � (L0 � Ld + Lf)
Kv

ki
(5)

where
Lf =

X
Si2Γf

ximin
(6)

Kv =
1P

Si2Γv
1
ki

: (7)

Whenever there exists some spring for which equation (5)
gives xi < ximin

, the length of that spring has to be fixed
at its minimum value, sets Γf and Γv must be updated, and
equations (5), (6) and (7) recomputed for the new set Γv . If
there exists a feasible solution, that is, if the desired final
length Ld is greater than or equal to the minimum possi-
ble length of the array Lmin =

Pn
i=1 ximin

, the iterative
process ends when each value computed by equations (5) is
greater than or equal to its corresponding minimum ximin

.
The complete algorithm for compressing a set Γ of n springs
with length constraints up to a desired length Ld is shown
in Figure 2.

4. Compressing tasks’ utilizations

When dealing with a set of elastic tasks, equations (5),
(6) and (7) can be rewritten by substituting all length pa-
rameters with the corresponding utilization factors, and the
rigidity coefficients ki and Kv with the corresponding elas-
tic coefficients ei and Ev . Similarly, at each instant, the set
Γ of periodic tasks can be divided into two subsets: a set Γf
of fixed tasks having minimum utilization, and a set Γv of
variable tasks that can still be compressed. If Ui0 = Ci=Ti0

Algorithm Spring compress(Γ, Ld) f

L0 =
Pn

i=1 xi0 ;
Lmin =

Pn
i=1 ximin

;
if (Ld < Lmin) return INFEASIBLE;

do f

Γf = fSijxi = ximin
g;

Γv = Γ � Γf ;

Lf =
P

Si2Γf ximin
;

Kv = 1P
Si2Γv

1=ki
;

ok = 1;
for (each Si 2 Γv) f

xi = xi0 � (L0 � Ld + Lf)Kv=ki;
if (xi < ximin

) f
xi = ximin

;
ok = 0;

g
g

g while (ok == 0);
return FEASIBLE;

g

Figure 2. Algorithm for compressing a set of
springs with length constraints.

is the nominal utilization of task �i, U0 is the sum of all the
nominal utilizations, and Uf is the total utilization factor of
tasks in Γf , then to achieve a desired utilization Ud < U0

each task has to be compressed up to the following utiliza-
tion:

8�i 2 Γv Ui = Ui0 � (U0 � Ud + Uf)
ei
Ev

(8)

where
Uf =

X
�i2Γf

Uimin
(9)

Ev =
X
�i2Γv

ei: (10)

If there exist tasks for which Ui < Uimin
, then the period

of those tasks has to be fixed at its maximum value Timax

(so that Ui = Uimin
), sets Γf and Γv must be updated

(hence, Uf and Ev recomputed), and equation (8) applied

Algorithm Task compress(Γ, Ud) f

U0 =
Pn

i=1 Ci=Ti0 ;
Umin =

Pn
i=1 Ci=Timax

;
if (Ud < Umin) return INFEASIBLE;

do f

Uf = Ev = 0;
for (each �i) f

if ((ei == 0) or (Ti == Timax
))

Uf = Uf + Ui;
else Ev = Ev + ei;

g

ok = 1;
for (each �i 2 Γv) f

if ((ei > 0) and (Ti < Timax
)) f

Ui = Ui0 � (U0 � Ud + Uf)ei=Ev ;
Ti = Ci=Ui;
if (Ti > Timax

) f
Ti = Timax

;
ok = 0;

g
g

g

g while (ok == 0);
return FEASIBLE;

g

Figure 3. Algorithm for compressing a set of
elastic tasks.

again to the tasks in Γv. If there exists a feasible solution,
that is, if the desired utilization Ud is greater than or equal
to the minimum possible utilization Umin =

Pn
i=1

Ci
Timax

,
the iterative process ends when each value computed by
equation (8) is greater than or equal to its corresponding
minimum Uimin

. The algorithm1 for compressing a set Γ
of n elastic tasks up to a desired utilization Ud is shown in
Figure 3.

4.1 Decompression

All tasks’ utilizations that have been compressed to cope
with an overload situation can return toward their nominal

1The actual implementation of the algorithm contains more checks on
tasks’ variables, which are not shown here to simplify its description.

values when the overload is over. Let Γc be the subset of
compressed tasks (that is, the set of tasks with Ti > Ti0),
let Γa be the set of remaining tasks in Γ (that is, the set of
tasks with Ti � Ti0), and let Ud be the current processor
utilization of Γ. Whenever a task in Γa decreases its rate or
returns to its nominal period, all tasks in Γc can expand their
utilizations according to their elastic coefficients, so that the
processor utilization is kept at the value of Ud.

Now, let Uc be the total utilization of Γc, let Ua be the
total utilization of Γa, and let Uc0 be the total utilization of
tasks in Γc at their nominal periods. It can easily be seen
that if Uc0 + Ua � Ulub all tasks in Γc can return to their
nominal periods. On the other hand, if Uc0 + Ua > Ulub,
then the release operation of the tasks in Γc can be viewed
as a compression, where Γf = Γa and Γv = Γc. Hence, it
can still be performed by using equations (8), (9) and (10)
and the algorithm presented in Figure 3.

5. Theoretical validation of the model

In this section we derive some theoretical results which
validate the elastic guarantee algorithm that can be per-
formed with this method. In particular, we show that if
tasks’ periods are changed at opportune instants the task set
remains schedulable and no deadline is missed. The follow-
ing lemmas state two properties of the EDF algorithm that
are useful for proving the main theorem.

Lemma 1 In any feasible EDF schedule �, the following
condition holds:

8t > 0
nX
i=1

i(t)

t
� Up

where Up =
Pn

i=1 Ci=Ti and i(t) is the cumulative time
executed by all the instances of task �i up to t.

Proof.
If �(t) = IDLE, we have that

f(t) =

Pn
i=1 i(t)

t
=

Pn
i=1

l
t
Ti

m
Ci

t
�

t
Pn

i=1
Ci
Ti

t
= Up:

If �(t) 6= IDLE:

f(t+ 1) =

Pn
i=1 i(t+ 1)
t+ 1

=

Pn
i=1 i(t) + 1
t+ 1

=

=
f(t)t+ 1
t+ 1

= f(t) +
1 � f(t)

t+ 1
� f(t):

Moreover, being �(0) 6= IDLE and f(1) = 1 � Up (be-
cause the system is feasible), we have that, for all t > 0,
f(t) � Up. 2

Lemma 2 In any feasible EDF schedule �, the following
condition holds:

8t > 0
nX
i=1

ci(t) �
nX
i=1

[�i(t)� t]Ui:

where Ui = Ci=Ti, ci(t) is the remaining execution time of
the current instance of task �i at time t, and �i(t) is the next
release time of �i greater than or equal to t.

Proof.
By definition of ci(t), we have

ci(t) =

�
t

Ti

�
Ci � i(t)

�i(t) =

�
t

Ti

�
Ti

and, by Lemma 1,

nX
i=1

ci(t) =

nX
i=1

��
t

Ti

�
Ci � i(t)

�
�

�

nX
i=1

��
t

Ti

�
Ci � tUi

�
=

=
nX
i=1

�
Ti

�
t

Ti

�
� t

�
Ui =

=

nX
i=1

(�i(t)� t)Ui:

2

The following theorem states a property of decompres-
sion: if at time t all the periods are increased from Ti to
T 0

i , then the total utilization factor is decreased from Up to
U 0

p =
Pn

i=1
Ci
T 0

i

.

Theorem 1 Given a feasible task set Γ, with total utilization
factor Up =

Pn
i=1

Ci
Ti

� 1, if at time t all the periods are
increased from Ti to T 0

i � Ti, then for all L > 0,

D(t; t+ L) � LU 0

p

whereD(t1; t2) is the total processor demand of Γ in [t1; t2],
and U 0

p =
Pn

i=1
Ci
T 0

i

.

Proof.
As task periods are increased at time t, the new release time
of task �i is:

�0i(t) = �i(t)� Ti + T 0

i :

τ3

τ1

τ2

2ν

3ν

2ν ’

3ν ’

ν 1 ν 1
’

t

Figure 4. Example of n tasks that simultaneously increase their periods at time t.

The total demand in [t; t+L] is given by the total execution
time of the instances released after or at twith deadlines less
than or equal to t + L, plus the remaining execution times
of the current active instances. The situation considered in
the proof is illustrated in Figure 4.

Using the result of Lemma 2 we can write:

D(t; t+ L) =

nX
i=1

�
t+ L� �0i(t)

T 0

i

�
Ci +

nX
i=1

ci(t) �

�

nX
i=1

�
t+ L� �0i(t)

T 0

i

�
Ci +

nX
i=1

[�i(t)� t]Ui �

�

nX
i=1

[t+ L� �0i(t)]U
0

i +

nX
i=1

[�i(t)� t]Ui =

=
X
i=1

LU 0

i +

nX
i=1

[�i(t)Ui � �0i(t)U
0

i � tUi + tU 0

i] =

= LU 0

p +A:

Now, we show that A � 0.

A =
nX
i=1

�
�i(t)Ui � �0i(t)

Ti
T 0

i

Ui � tUi + tUi
Ti
T 0

i

�
=

=

nX
i=1

Ui

�
�0i(t)� T 0

i + Ti � �0i(t)
Ti
T 0

i

� t

�
1 �

Ti
T 0

i

��

=

nX
i=1

Ui[�
0

i(t)� t� T 0

i]

�
1 �

Ti
T 0

i

�
� 0:

Hence,
D(t; t+ L) � LU 0

p:

2

Notice that the property stated by Theorem 1 does not
hold in case of compression. This can be seen in the example

illustrated in Figure 5, where two tasks, �1 and �2, with
computation times 3 and 2, and periods 10 and 3, start at
time 0. The processor utilization is Up = 29

30 , thus the task
set is schedulable by EDF. At time t = 14, �1 changes its
period from T1 = 10 to T 0

1 = 5. As a consequence, to keep
the system schedulable, the period of �2 is increased from
T2 = 3 toT 0

2 = 6. The new processor utilization isU 0

p = 28
30 ,

so the task set is still feasible; but, if we change the periods
immediately, task �1 misses its deadline at time t = 15.

In other words, the period of a compressed task can be
decreased only at its next release time. Thus, when the QoS
manager receives a request of period variation, it calculates
the new periods according to the elastic model: if the new
configuration is found to be feasible (i.e., U 0

p < 1), then
it increases the periods of the decompressed tasks imme-
diately, but decreases the periods of the compressed tasks
only at their next release time. Theorem 1 ensures that the
total processor demand in any interval [t; t + L] will never
exceed LUp and no deadline will be missed.

6. Experimental results

The elastic task model has been implemented on top of
the HARTIK kernel [2, 5], to perform some experiments
on multimedia applications and verify the results predicted
by the theory. In particular, the elastic guarantee mecha-
nism has been implemented as a high priority task, the QoS
manager, activated by the other tasks when they are cre-
ated or when they want to change their period. Whenever
activated, the QoS manager calculates the new periods and
changes them atomically. According to the result of Theo-
rem 1, periods are changed at the next release time of the
task whose period is decreased. If more tasks ask to de-
crease their period, the QoS manager will change them, if
possible, at their next release time.

τ2

τ1

t
0 2 4 6 8 10 12 14 16 18 20

T = 10 -> 5

T = 3 -> 6

1

2

Figure 5. A task can miss its deadline if a period is decreased at arbitrary time.

Task Ci Ti0 Timin
Timax

ei

�1 24 100 30 500 1
�2 24 100 30 500 1
�3 24 100 30 500 1.5
�4 24 100 30 500 2

Table 2. Task set parameters used for the first
experiment. Periods and computation times
are expressed in milliseconds.

In the first experiment, four periodic tasks are created at
time t = 0. Tasks’ parameters are shown in Table 2, while
the actual number of instances executed by each task as a
function of time is shown in Figure 6. All the tasks start
executing at their nominal period and, at time t1 = 10sec,
�1 decreases its period to T 0

1 = 33msec. We recall that a
task cannot decrease its period by itself, but must perform
a request to the QoS manager, that checks the feasibility of
the request and calculates the new periods for all the tasks in
the system. So, at time t1, since the schedule is found to be
feasible, the period of �1 is decreased and the periods of �2,
�3 and �4 are increased according to their elastic coefficients.
The values of all the periods are indicated in the graph.

At time t2 = 20sec, �1 returns to its nominal period, so
the QoS manager can change the periods of the other tasks
to their initial values, as shown in the graph. In this manner,
the QoS manager ensures that when a task requires to change
its period, the task set remains schedulable and the variation
of each task period can be controlled by the elastic factor.

In the second experiment, we tested the elastic model
as an admission control policy. Three tasks start executing
at time t = 0 at their nominal period, while a fourth task
starts at time t1 = 10sec. Tasks’ parameters are shown in
Table 3. When �4 is started, the task set is not schedulable

Task Ci Ti0 Timin
Timax

ei

�1 30 100 30 500 1
�2 60 200 30 500 1
�3 90 300 30 500 1
�4 24 50 30 500 1

Table 3. Task set parameters used for the sec-
ond experiment. Periods and computation
times are expressed in milliseconds.

with the current periods, thus the QoS manager, in order
to accommodate the request of �4, increases the periods of
the other tasks according to the elastic model. The actual
execution rates of the tasks are shown in Figure 7. Notice
that, although the first three tasks have the same elastic
coefficients, their periods are changed by a different amount,
because tasks have different utilization factors.

7. Conclusions

In this paper we presented a flexible scheduling theory, in
which periodic tasks are treated as springs, with given elas-
tic coefficients. Under this framework, periodic tasks can
intentionally change their execution rate to provide differ-
ent quality of service, and the other tasks can automatically
adapt their periods to keep the system underloaded. The
proposed model can also be used to handle overload situa-
tions in a more flexible way. In fact, whenever a new task
cannot be guaranteed by the system, instead of rejecting the
task, the system can try to reduce the utilizations of the other
tasks (by increasing their periods in a controlled fashion) to
decrease the total load and accommodate the new request.
As soon as a transient overload condition is over (because

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000 30000 35000

nu
m

be
r

of
 e

xe
cu

te
d

in
st

an
ce

s

t (ms)

First experiment

T1=T2=T3=T4=100 ms

T1=33 ms

T1=100 ms

T2=175 ms
T3=277 ms
T4=500 ms

T3=100 ms
T4=100 ms

T2=100 ms

Task 1
Task 2
Task 3
Task 4

Figure 6. Dynamic period change.

0

50

100

150

200

0 5000 10000 15000 20000

nu
m

be
r

of
 e

xe
cu

te
d

in
st

an
ce

s

t (ms)

Second experiment

T1=100 ms

T2=200 ms

T3=300 ms

T1=177 ms

T2=353 ms

T3=500 ms

T4=50 ms

Task 1
Task 2
Task 3
Task 4

Figure 7. Dynamic task activation.

a task terminates or voluntarily increases its period) all the
compressed tasks may expand up to their original utilization,
eventually recovering their nominal periods.

The major advantage of the proposed method is that the
policy for selecting a solution is implicitly encoded in the
elastic coefficients provided by the user. Each task is varied
based on its current elastic status and a feasible configuration
is found, if there exists one.

The elastic model is extremely useful for supporting both
multimedia systems and control applications, in which the
execution rates of some computational activities have to
be dynamically tuned as a function of the current system
state. Furthermore, the elastic mechanism can easily be
implemented on top of classical real-time kernels,and can be
used under fixed or dynamic priority scheduling algorithms.
The experimental results shown in this paper have been
conducted by implementing the elastic mechanism on the
HARTIK kernel [2, 5].

As a future work, we are investigating the possibility of
extending this method for dealing with tasks having dead-
lines less than periods, variable execution time, and subject
to resource constraints.

References

[1] T.F. Abdelzaher, E.M. Atkins, and K.G. Shin, “QoS
Negotiation in Real-Time Systems and Its Applica-
tions to Automated Flight Control,” Proceedings of the
IEEE Real-Time Technology and Applications Sympo-
sium, Montreal, Canada, June 1997.

[2] G. Buttazzo, “HARTIK: A Real-Time Kernel for
Robotics Applications”, Proceedings of the 14th IEEE
Real-Time Systems Symposium, Raleigh-Durham, pp.
201–205, December 1993.

[3] M.L. Dertouzos, “Control Robotics: the Procedural
Control of Physical Processes,” Information Process-
ing, 74, North-Holland, Publishing Company, 1974.

[4] T.-W. Kuo and A. K, Mok, “Load Adjustment in Adap-
tive Real-Time Systems,” Proceedings of the 12th
IEEE Real-Time Systems Symposium, December 1991.

[5] G. Lamastra, G. Lipari, G. Buttazzo, A. Casile, and F.
Conticelli, “HARTIK 3.0: A Portable System for De-
veloping Real-Time Applications,” Proceedings of the
IEEE Real-Time Computing Systems and Applications,
Taipei, Taiwan, October 1997.

[6] C. Lee, R. Rajkumar, and C. Mercer, “Experiences
with Processor Reservation and Dynamic QOS in Real-
Time Mach,” Proceedings of Multimedia Japan 96,
April 1996.

[7] C.L. Liu and J.W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard real-Time Environ-
ment,” Journal of the ACM 20(1), 1973, pp. 40–61.

[8] C. W. Mercer, S. Savage, and H. Tokuda, “Processor
Capacity Reserves for Multimedia Operating Systems”
Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, May 1994.

[9] A. K. Mok and D. Chen, “A multiframe model for real-
time tasks,” Proceedings of IEEE Real-Time System
Symposium, Washington, December 1996.

[10] T. Nakajima, “Dynamic QOS Control and Resource
Reservation,” IEICE, RTP’98, 1998.

[11] T. Nakajima, “Resource Reservation for Adaptive
QOS Mapping in Real-Time Mach,” Sixth Interna-
tional Workshop on Parallel and Distributed Real-
Time Systems, April 1998.

[12] T. Nakajima and H. Tezuka, “A Continuous Media Ap-
plication supporting Dynamic QOS Control on Real-
Time Mach,” Proceedings of the ACM Multimedia ’94,
1994.

[13] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin, “On
Task Schedulability in Real-Time Control Systems,”
Proceedings of the IEEE Real-Time Systems Sympo-
sium, December 1997.

[14] M. Spuri, and G.C. Buttazzo, “Efficient Aperiodic Ser-
vice under Earliest Deadline Scheduling”,Proceedings
of IEEE Real-Time System Symposium, San Juan, Por-
torico, December 1994.

[15] M. Spuri, G.C. Buttazzo, and F. Sensini, “Robust Ape-
riodic Scheduling under Dynamic Priority Systems”,
Proceedings of the IEEE Real-Time Systems Sympo-
sium, Pisa, Italy, December 1995.

[16] M. Spuri and G.C. Buttazzo, “Scheduling Aperiodic
Tasks in Dynamic Priority Systems,” Real-Time Sys-
tems, 10(2), 1996.

[17] J. Sun and J.W.S. Liu, “Bounding Completion Times of
Jobs with Arbitrary Release Times and Variable Exe-
cution Times”, Proceedings of IEEE Real-Time System
Symposium, December 1996.

[18] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, and J.W.-S. Liu, “Probabilistic Performance Guar-
antee for Real-Time Tasks with Varying Computation
Times,” Proceedings of IEEE Real-Time Technology
and Applications Symposium, Chicago, Illinois, Jan-
uary 1995.

