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Abstract: Thermoelastic modeling at nanoscale is becoming more important as devices shrink and
heat sources are more widely used in modern industries, such as nanoelectromechanical systems.
However, the conventional thermoelastic theories are no longer applicable in high-temperature
settings. This study provides an insight into the thermomechanical features of a nonlocal viscous
half-space exposed to a cyclic heat source. Using a novel concept of fractional derivatives, introduced
by Atangana and Baleanu, it is assumed that the viscoelastic properties follow the fractional Kelvin–
Voigt model. The nonlocal differential form of Eringen’s nonlocal theory is employed to consider the
impact of small-scale behavior. It is also proposed that the rule of dual-phase thermal conductivity
can be generalized to thermoelastic materials to include the higher-order time derivatives. The
numerical results for the examined physical variables are presented using the Laplace transform
technique. Furthermore, several numerical analyses are performed in-depth, focusing on the effects of
nonlocality, structural viscoelastic indicator, fractional order, higher-order and phase-lag parameters
on the behavior of the nanoscale half-space. According to the presented findings, it appears that the
higher-order terms have a major impact on reactions and may work to mitigate the impact of thermal
diffusion. Furthermore, these terms provide a novel approach to categorize the materials based on
their thermal conductivities.

Keywords: nonlocal thermoelasticity; higher-order time-derivatives; viscoelasticity; half-space
medium; Atangana and Baleanu

1. Introduction

Micro and nanoelectromechanical systems (M/NEMS) have great potential and are
used in modern and highly sensitive microdevices across various industries. Due to their
small size and different properties, these systems are used for mass detection, frequency
synthesis, bioenergy, and light detection. Such mechanical systems are very sensitive, fre-
quently consume low energy, and occupy a very tiny space [1]. By combining electrical and
mechanical components, microelectromechanical systems (MEMS) have a typical length
greater than one micrometer [2]. Their characteristic lengths govern the size-dependent me-
chanical behavior of nanomaterials and should be taken into account in structural designs.
Micro-and nanomaterials with small dimensions often have different mechanical, electrical
and thermal properties compared to macro-scale structures. Therefore, nano-scale devices
such as nanowires, nanoplates and nanobeams are important candidates for studying
the effects of size-dependency on the thermomechanical properties of such materials at
sub-micron scales and their peculiar responses, quality factors, nonlinear damping and
changes in Young’s modulus may appear due to these superior characteristics [3–5].
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The conventional elastic models studying the structural systems assume, as a basic
principle, that the stress at any point can be entirely determined by considering the strain
at that particular point and does not depend on the other components of strain tensor.
According to recent experimental results on miniaturized structures, the traditional view of
elastic behavior of materials, in which Young’s modulus is constant regardless of their size
and shape (according to Hooke’s Law), has been challenged. Therefore, some modified
models and hypotheses have been proposed to consider the observed phenomena in
experiments by considering additional size-dependent and small-scale factors [6]. Small-
scale effects in governing equations are usually ignored and less concerned in the classical
continuum mechanics. To this end, several concepts and models, such as nonlocal elasticity,
stress gradient theory, nonlocal stress gradient models, modified coupled stress theory,
and stress-driven elasticity have been widely used to explain the small-scale effects [7–11].
Atomic lattice theory is related to the gradient concept in which the nonlocal elasticity
and the small polar theory are combined to form the small-scale properties. Nonlocal
elasticity explain the subtle structural properties of materials using a probabilistic mean of
the attenuation function [12]. In recent years, the theory of nonlocal elasticity of all kinds
has become a hot topic for scientists. The basic principle of nonlocal models is that the
range of effects due to interactions between different material points is much wider than
those of macro-scale materials.

In some particular situations, such as when the typical dimension of the structure is
close to the internal characteristic length, the generalized thermoelasticity may be called into
question. The mechanical and thermal characteristics of nanomaterials can be accurately
predicted with the help of the molecular dynamic approach, but only for nanosystems with
a finite number of molecules and atoms and of course with a lot of computational work. In
contrast to the local models, nonlocal theories consider the fundamental equilibrium laws
at the system’s level [13]. Eringen [14–17] developed a nonlocal elastic model to address
the local structural issues. He showed that the stress at any point in the medium may be
regarded a function of the entire strain tensor everywhere in the body. This is because of
the way that the nonlocal interactions work. The nonlocal theory contains the long-range
interactions between points in a continuum material, which has significant ramifications
for practical application. In a solid medium, charged atoms or molecules interact with
one another over vast distances. The most popular theories that take into account the size-
dependent behavior of structures are: strain gradient theory [18], nonlocal strain gradient
elasticity [19], modified couple stress theory [20] and Silling’s peridynamic model [21]. In
recent years, new size-dependent models are developed with the help of fractional calculus
theories. To address the difficulty of solving fractional partial differential equations (PDEs)
and for time-dependent PDEs, Nawaz et al. [22,23] suggested a third-order explicit-implicit
fractional system.

Numerous contributions have been made in recent years to investigate the response
of micro- and nano-sized structure such as bars, wires, plates and beams in therapeutic
applications based on the nonlocal concepts. There are also outstanding works applied on
the problems of such systems to understand the behavior of cotemporary small devices such
as energy harvesters, the mechanism of cancer spread in medicine, blood parasite detectors,
resonators and accelerometers. To detect their sophisticated characteristics, numerical
and experimental simulations were conducted on static, dynamic, and stability behavior
of micro-/nanostructures, demonstrating the necessity of studying different models and
methods applied to structural systems with small-scale dimensions [24–34].

Despite the fact that Duhamel and Neumann created the groundwork for the theory of
thermoelasticity in the first half of the nineteenth century, widespread interests in this topic
did not emerge until the years after the World War II. The reasons for this rapid and ongoing
resurgence of interest are sound. When it comes to aeronautics, it has been discovered
that the high speeds at which contemporary aircraft travels, causes the aerodynamic
heating, which in turn causes the significant thermal stresses and, by reducing the elastic
limit, diminishes the strength of the aircraft structure. In addition, the extremely high
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temperatures as well as temperature changes in nuclear reactors affect their design and
operation processes in the nuclear fields. Similarly, from engineering point of view, in the
contemporary propulsion mechanisms such as rocket engines and jets, high temperatures
in the combustion systems can produce undesired thermal strains. Spacecraft and missile
technology, the physics of massive steam turbines, and even shipbuilding all experience
similar phenomena where micro-cracks commonly being blamed on very mild thermal
stresses. Countless theoretical and experimental studies detailing various elements of
thermal stresses in engineering structures have resulted from dealing with the mentioned
issues. Moreover, recently, linear viscoelasticity has become a mature science to explore
the thermomechanical behavior of polymers, composites, solid propellants and materials
that work well at high temperatures. Extreme temperature changes may cause physical
failure in many parts of machines, especially those responsible for thermal protection in
the aviation industry and other sectors where temperatures are usually high. In order to
ensure the longevity, safety, and reliability of these parts, evaluations of the heat transfer
and internal heat stress distributions are necessary. Microcracks can also form inside
these machines, particularly during the production process when subjected to thermal
or mechanical loading, which leads to a localized concentration of thermal stresses and
temperature gradients.

There is no longer need to rely on the seemingly contradictory assumption made by classical
thermoelasticity, which states that heat waves may travel through materials with unlimited rates;
instead, this assumption has been broadened and refined. Tzou [35–37] substituted two distinct
translations of the heat flux and the temperature gradient vectors for the basic Fourier’s law. He
presented the dual-phase-lag model to explain the temperature lag caused by phonon-electron
interactions at the microscopic level and looked at how the solid body behaves in this situation.
Abouelregal [38] used the fractional calculus and Taylor series expansion of time-fractional order
to create a modified model of generalized thermoelasticity with multiple relaxation durations.
In addition, he proposed a new thermoelastic heat conduction theory that takes into account two
phase delays, together with the higher-order derivatives. In another work [39], he presented a
refined model of heat conduction that incorporated a higher degree of a time derivative, thereby
expanding Green and Naghdi’s idea of heat conduction without energy loss.

In viscoelastic materials, the material response is determined by all previous stress
states in addition to the current stress level. Fractional calculus, a field of mathematics,
has recently been acknowledged as a useful tool to modify the viscoelastic theories. In the
current work, by combining the fractional derivative of the Kelvin–Voigt viscoelastic model
with the nonlocal theory, a new mathematical framework is proposed to investigate the
thermoelastic behavior of a half-space medium. Furthermore, a modified type of heat equa-
tion is presented that incorporates the higher-order time derivatives and two-phase delays
to describe the nonlocal thermoelasticity theory. In order to take into consideration the
impact of fractional orders, the concept of Caputo and Fabrizio’s fractional derivatives [40],
which includes non-singular kernels, is applied. The nonlocal elasticity theory is then used
to conduct a transient study of nanoscale half-spaces by considering the small-size effects.
Although, the thermal wave model provides a macroscopic explanation for many crystals,
the proposed thermoelastic model considers the most significant microstructural impacts
which needs finite time to attain the local thermodynamic balance.

Numerous production processes involving metal cutting, spot welding, laser cut-
ting/surface treatment, in addition to tribological purposes, such as ball bearing and
gear designs, operate in the presence of stationary and variable heat sources. The met-
allurgical structural properties, thermal shrinkage, thermal cracking, hardness variation,
residual stresses, and heat-impacted zones can all be altered by high-level temperature
variations and rate of cooling close to the surface. In tribological applications, where the
friction generates heat, understanding the temperature distribution is crucial for prevent-
ing thermal-related issues such as lubricant breakdown. Many electronic devices and
systems rely heavily on the design consideration of thermal diffusion caused by variable
heat sources and magnetic fields. These systems are often used in modern applications,
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including, but not limited to, electronics, aircraft structural joints, surface thermocouples,
boundary lubrication, nuclear reactors, biomedical devices, and ultra-hot liquid storage.

The introduced model will shed light on how the thermal waves propagate in a semi-
infinite material when the features of size-dependent models are also considered. The
medium is heated by an external source that varies in intensity over time and is immersed
in a magnetic field. The Laplace transform method is used to obtain the numerical results
for the physical variables. In-depth theoretical studies are also conducted to determine
how the nonlocality of the stress field, viscoelastic factors, fractional order, higher-order
constants, and phase lags affect the thermomechanical behaviour of a nanoscale half-space.

2. Nonlocal Fractional Thermoviscoelastic Model

In 1822, Fourier developed an empirical-based law describing the relationship between
the heat flow and the magnitude of internal temperature gradient. Fourier’s law may apply
on the conventional Spatio–temporal problems, as follows [41]:

qi(
→
P , τ) = −KΘ,i(

→
P , τ) (1)

In Equation (1), the components of heat flow are denoted by qi, the thermal conductiv-
ity is represented by symbol K, and the thermodynamic temperature is Θ = T− T0, where

T0 is the base temperature of the environment. Moreover, τ stands for the time and
→
P is the

position vector.
In the presence of an internal heat source, the principle of local energy conservation is

represented as [42]:
∂

∂τ
[ρCEΘ + γmT0Ui,i] = −qi,i + S. (2)

where the density of medium is symbolized by ρ, the elements of displacement vector are
denoted by Ui, CE is the heat capacity and S is the power of heat source.

It is assumed throughout this work that the parameters ρ, γm, CE µ0 and λ0 are
positive constants. From a purely mechanical and thermal perspectives, these are the most
reasonable assumptions in this theory.

Tzou [35–37] presented a novel model representing delays in heat transfer, which
incorporates two-phase-lags (tq and tθ) where tq is heat flux and tθ stands for the gradient
of temperature. The following formulation of Fourier’s law will then be applied in the two
phase-lag model [35]:

qi(
→
P , τ + tq) = −KΘ,i(

→
P , τ + tθ), tq > 0, tθ > 0. (3)

The parameter tq emphasizes the rapid transient nature of thermal effects, while
parameter tθ confirms the subtle structural processes that occur during the process. With
appropriate initial and boundary conditions, it has been demonstrated by Quintanilla and
Racke [43] that the system is exponentially stable when 0 < tq < 2tθ , and shows unstable
behavior when 0 < 2tθ < tq.

By utilizing Taylor’s series expansions for tq and tθ , and retaining the specific terms
that depend on the nature and characteristics of material, the following equation can be
obtained [39,40]: (

1 +
m

∑
k=1

tk
q

k!
∂k

∂τk

)
qi = −K

(
1 +

n

∑
k=1

tk
θ

k!
∂k

∂τk

)
Θ,i. (4)

The temperature change and heat flow have been truncated to orders n and m, respectively.
Some restrictions on using the higher-orders of m and n are demonstrated by

Chiriţă et al. [44–46]. For example, by considering m, n > 5, an unstable behavior is
produced that is unable to present a genuine physical feature. In contrast, the Second
Law of Thermodynamics must be addressed when the approximation orders are fewer
than four.
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By incorporating Equations (2) and (4) in the following way, one can derive the refined
heat transfer equation that includes the higher-order time derivatives [39,40]:(

1 +
m
∑

k=1

tk
q

k!

(
∂k

∂τk

))[
ρCE

∂Θ
∂t + γmT0

∂Ui,i
∂t − S

]
= K

(
1 + 1

n
∑

k=1

tk
θ

k!

(
∂k

∂τk

))
Θ,ii (5)

On the other hand, the stress tensor σij, strain tensor eij and equation of motion are
described as follows [39,40]

σij = µm
(
Uj,i + Ui,j

)
+ λmekkδij − γmΘδij, (6)

2eij = Uj,i + Ui,j, (7)

µmUi,jj + (λm + µm)Uj,ij + Ri = ρ
∂2

∂τ2 (Ui) + γmΘ,i. (8)

In Equations (6)–(8), the elements of the local stress tensor are denoted by σij, the
strain tensor is defined by eij, the components of body forces are represented by Ri, and
i, j, k take the magnitudes of 1, 2, 3. By modifying the viscoelastic Kelvin–Voigt model, it
is possible to produce a viscoelastic fractional order model and extend the thermoelastic
theories. First-order time derivatives are replaced by fractional derivatives in the modified
Kelvin–Voigt model. Given the new scenario, one has [47,48]

µm = µ0 + µ0µα
1 Dα

τ , λm = λ0 + λ0λα
1 Dα

τ , γm = γ0 + γ0γα
1 Dα

τ , (9)

where µ0, λ0 are elastic constants, µ1, λ1 and γ1 are viscoelastic coefficients as follows:

γ0 = (3λ0 + 2µ0)αt, γv =
(3λ0λα

1+2µ0µα
1)αt

γ0
. (10)

In the preceding relations, the concept of the Riemann–Liouville operator of order α is
assumed, which can be written as follows [49–51]:

Dα
τ f (τ) =

1
Γ(1− α)

d
dt

τ∫
0

(τ −v)−α f (v)dv, α ∈ (0, 1]. (11)

The above definition can be considered as a singular kernel. The solution of such
singular kernel is always challenging and in the case of fractional order has been solved
by Caputo and Fabrizio [35,40,52] by introducing a new idea of the fractional derivative,
which is described by the following formula:

CFDα
τ f (τ) =

1
1− α

τ∫
0

exp
[
− α

1− α
(τ −v)

]
∂

∂v
[ f (v)]dv, α ∈ (0, 1]. (12)

In the same direction, and to deal with the non-singularity and nonlocal kernels,
Atangana and Baleanu [53,54] provided a new form of fractional derivatives on the basis of
Mittag–Leffler operator Eα(−tα).

The following formula defines the fractional operator proposed by Atangana and
Baleanu [53–56]:

ABDα
τ f (τ) =

1
1− α

τ∫
0

Eα

[
−α(τ −v)α

1− α

]
∂

∂v
[ f (v)]dv, α ∈ (0, 1]. (13)
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For s > 0, the above differential operator can be transferred into Laplace domain
as [53,54]:

=[AABDα
τ f (τ)] =

1
sα(1− α) + α

[
sα=[ f (τ)]− sα−1 f (0)

]
. (14)

According to Eringen and Edelen [16,49], the stress tensor Tij at each point
→
P of a body

can be written as:

Tij(
→
P) =

∫
V

k(|
→
P −

→
P ′|, χ)σij(

→
P ′)dV(

→
P ′), (15)

where σij(
→
P ′) represents the local stress tensor described by

σij(
→
P ′) = 2µeij(

→
P ′) + λδijekk(

→
P ′)− γδijΘ(

→
P ′). (16)

According to Equation (15), the nonlocal stress Tij at a given location (
→
P) is equal to a

weighted average of classical local stresses of all locations near
→
P , where the weights are

proportional to the size of nonlocal kernel k(|
→
P −

→
P ′|, χ) where |

→
P −

→
P ′| is the Euclidean

distance. Utilizing a calibrating constant e0 that varies with the type of material, χ = e0a/l
represents the proportion between the internal characteristic length a and the external
characteristic length l. For instance, the following kernel can be selected [54]:

k(|
→
P −

→
P ′|, χ) =

1
2πχ2l2 K0(

1
ξl
|
→
P −

→
P ′|), (17)

in which function K0 denotes zero-order modified Bessel functions of the second kind.

For a given class of physically permissible kernel k(|
→
P −

→
P ′|, χ), the integral constitutive

equation given by (15) can be expressed in an alternative differential form as [16]:

Tij(
→
P)− χ2∇2Tij(

→
P) = σij(

→
P ′). (18)

Introducing Equation (18) into Equations (6) and (8), then one has

Tij − χ2∇2Tij = 2µmeij + λmδijekk − γmδijΘ , (19)

µmUi,jj + (λm + µm)Uj,ij + Ri = γmΘ,i + ρ

(
∂2Ui
∂τ2 − χ2∇2 ∂2Ui

∂τ2

)
. (20)

The concept of inertia, defined as the tendency of a body to preserve its prior state,
is not limited to mechanics; the heat capacity of bodies also delays the rate at which their
thermal states change. As a result of this phenomenon, synaptic diffusion has important
physical implications: it conveys the fact that if time moves faster in any sector of space,
diffusion will also move faster in these places. This is where the concept of “thermal inertia”
was first developed. Similar to thermal conductivity, inertia can be thought as a measure of
“thermal mass” and the rate at which heat waves travel through a material. Therefore, the
term of thermal mass is interchangeably used with inertia.

3. Statement of the Problem

As shown in Figure 1, in this section, the examination of viscoelastic media that is
homogeneous, isotropic, and assumed as a semi-infinite body, is considered. The half-
space occupies the region X ≥ 0, where its initial temperature is equal to T0. It is also
assumed that the half-space is subjected to a periodic heat source which spreads over the
boundary X = 0. For this probe, Cartesian coordinates (X, Y, Z) are used in which X axis is
perpendicular to the free surface of the half-space. It is also supposed that the temperature
as well as heat waves change in X direction.
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The considered problem is simplified to a 1D problem where the only non-vanishing
component of displacement vector is UX = U(X, τ). As a consequence, the nonlocal stress
TXX , defined by Equation (19), may be expressed as:

TXX − χ2 ∂2TXX

∂X2 = (λ0 + 2µ0 + (λ0λα
1 + 2µ0µα

1)Dα
τ)

∂U
∂X
− γ0(1 + γα

1 Dα
τ)Θ (21)

A unidirectional magnetic field
→
H = (0, HX , 0) is applied throughout the material.

Maxwell’s equations are used to analyze the influence of magnetic environment on the
thermally conductive solid. These equations can be written in the following forms

→
J = σe

→E + µ0

∂
→
U

∂t
×
→
B

,
→
h = ∇× (

→
U ×

→
H),

→
B = µ0

→
H, ∇·

→
B = 0 (22)

where the induced magnetic field is characterized by the
→
h , the electric field is indicated by

→
E , the current density is

→
J , and the initial magnetic field is represented by

→
H. Moreover, the

electrical conductivity and magnetic permeability are denoted by µe and σe, respectively.
Assuming that the effects of electric field are negligible and then by considering the

Ohm’s Law, one has [57–61]:

→
F = −

(
σeµ2

e H2
X

∂U
∂τ

, 0, 0
)

. (23)

Thereby, the equation of motion can be expressed as follows:(
λ0+2µ0

ρ +
(λ0λα

1+2µ0µα
1)

ρ Dα
τ

)
∂2U
∂X2 −

σeµ2
e H2

X
ρ

(
∂U
∂τ − χ2 ∂3U

∂τ∂X2

)
=

γ0(1+γα
1 Dα

τ)
ρ

∂Θ
∂X +

(
∂2U
∂τ2 − χ2 ∂2

∂X2

(
∂2U
∂τ2

))
.

(24)

In addition, the extended DPL heat transfer equation, which is described by Equation
(5) and includes higher-order temporal derivatives, may be written as:
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(
1 +

m

∑
k=1

tk
q

k!
∂k

∂τk

)[
ρCE

K
∂Θ
∂τ

+
γ0T0(1 + γα

v Dα
t )

K
∂

∂τ

(
∂U
∂X

)
− S

K

]
=

∂2Θ
∂X2 +

n

∑
k=1

tk
θ

k!
∂k

∂τk

(
∂2Θ
∂X2

)
. (25)

In our analysis, the following nondimensional quantities will be considered:

{x, u} = c0η0{X, U},
{

t, τq, τθ , λv, µv, γv
}
= c2

0η0
{

τ, tq, tθ , λ1, µ1, γ1
}

,
ξ = c2

0η2
0χ, θ = Θ

T0
, τxx = TXX

µ0
, Q = S

KT0c2
0η2

0
, c0 = (λ0+2µ0)

ρ , η0 = ρCE
K . (26)

By substituting the above quantities into Equations (21), (24), and (25), the nondimen-
sional forms of governing equations can be simplified as:

τxx − ξ2 ∂2τxx

∂x2 = (β1 + β2Dα
t )

∂u
∂x
− b(1 + γα

v Dα
t )θ, (27)

∂2u
∂t2 − ξ2 ∂2

∂x2

(
∂2u
∂t2

)
+ ε

(
∂u
∂t
− ξ2 ∂2

∂x2

(
∂u
∂t

))
= (β1 + β2Dα

t )
∂2u
∂x2 − b(1 + γα

v Dα
t )

∂θ

∂x
, (28)

∂2θ
∂x2 +

n
∑

k=1

τk
θ

k!
∂k

∂tk

(
∂2θ
∂x2

)
=

(
1 +

m
∑

k=1

τk
q

k!
∂k

∂tk

)[
∂θ
∂t + g(1 + γα

v Dα
t )

∂2u
∂t∂x

]
−
(

1 +
m
∑

k=1

τk
q

k!
∂kQ
∂tk

)
,

(29)

where

{β1, β2, b} = 1
µ0
{λ0 + 2µ0, λ0λα

v + 2µ0µα
v , γ0T0}, ε =

σeµe

c2
0η0

(
µeH2

x
ρ

)
, g = γ0/ ρCE. (30)

For this problem, at t = 0, the following initial requirements are imposed:

θ = 0 =
∂k−1θ

∂tp−1 , u = 0 =
∂k−1u
∂tp−1 , k, p = 2, 3, . . . .m or n. (31)

It is considered that the free edge, i.e., x = 0, is subjected to a time-varying heat supply
of periodic pattern and constant strength Q0. Consequently, the following shape for the
nondimensional heat source can be postulated:

Q =

{
Q0δ(x) sin(πt/t0), t ∈ [0, t0]

0, t > t0
, (32)

where the parameter t0 is fixed, and the function δ(x) represents the well-known Dirac
delta operator.

The Analytical Solution in the Laplace’s Domain

The Laplace transform is an effective method for dealing with differential equations
systems in engineering, physics, and other scientific disciplines. However, using the
Laplace transform may result in the kind of solutions in the Laplace domain that are
difficult to reverse to the time domain using the usual analytical methods. Therefore, we
resort to approximate numerical solutions by using well-known algorithms in this context.
The following formula characterizes the Laplace transform:

H(x, t) =
∫ ∞

0
H(x, t) exp[−st]dt (33)

The result of applying the Laplace transform specified in equation (33) on Equations
(27)–(29) is as follows:

τxx = ξ2 d2τxx

dx2 + Ω1
du
dx
−Ω2θ, (34)
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d2u
dx2 = Ω8u + Ω9

dθ

dx
, (35)

d2θ

dx2 = sΩ4θ + Ω4Ω3
du
dx
−Ω4Ω5δ(x), (36)

where

f (s) = sα/(sα(1− α) + α), Ω1 = β1 + β2 f (s), Ω2 = b(1 + γα
v f (s)), Ω5 = πt0Q0

π2+s2t2
0

Lq = 1 +
m
∑

k=1

skτk
q

k! , Lθ = 1 +
n
∑

k=1

skτk
θ

k! , Ω3 = sg(1 + γα
v f (s))

Ω4 =
Lq
Lθ

, Ω6 = Ω1 + s2ξ2 + εsξ2, Ω7 = s2 + εs, {Ω8, Ω9} = 1
Ω6
{Ω7, Ω2}

(37)

Equations (35) and (36), when represented in the vector–matrix differential form, may
be expressed as [62,63]:

dY(x, s)
dx

= φ(s)Y(x, s)−ψ(x, s), (38)

where

Y(x, s) =
(

θ, u, dθ
dx , du

dx

)Tr
,φ(s) =


0 0 1 0
0 0 0 1

sΩ4 0 0 Ω4Ω3
0 Ω8 Ω9 0

,

ψ(x, s) = Ω4Ω5(0, 0, δ(x), 0)Tr .

(39)

Solutions can be set in the field of Laplace transform using the eigenvalue procedure,
which is discussed in detail in references [62–64]. Based on this method, the solutions of
functions u(x) and θ(x) take the following forms

u(x) =
Ω9e−k2x

2
(
k2

1 − k2
2
) − Ω9e−k1x

2
(
k2

1 − k2
2
) , (40)

θ(x) =
Ω4Ω5k1

(
Ω8 − k2

2
)

2k1k2
(
k2

1 − k2
2
) e−k2x −

Ω4Ω5k2
(
Ω8 − k2

1
)

2k1k2
(
k2

1 − k2
2
) e−k1x, (41)

The parameters k1 and k2 satisfy the following characteristic equation of matrix Ψ(s)

k4 − (sΩ4 + Ω8 + Ω9Ω4Ω3)k2 + sΩ4Ω8 = 0, (42)

By making the appropriate substitutions in Equation (34) using Equations (40) and
(41), one can get the nonlocal stress component τxx as follows

τxx(x) = Ω1Ω9
2(k2

1−k2
2)(1−ξ2k2

2)
e−k2x − Ω1Ω9

2(k2
1−k2

2)(1−ξ2k2
1)

e−k1x+

k1Ω2Ω4Ω5(Ω8−k2
2)

2k1k2(k2
1−k2

2)(1−ξ2k2
2)

e−k2x − k2Ω2Ω4Ω5(Ω8−k2
1)

2k1k2(k2
1−k2

2)(1−ξ2k2
1)

e−k1x
(43)

4. Inversion Technique

It is sometimes difficult to obtain the analytical inversion of the obtained solutions
within the Laplace transform, and therefore one has to use the numerical inversion algo-
rithms. The Laplace inversion can be set numerically utilizing a variety of approximation
algorithms available in the literature. Each method has its benefits and may be suited for a
particular situation. A well-known strategy in thermoelasticity is the Zakian approximation
technique which estimates the physical fields in the real-time domain [65–67]. Any function
H(x, t) can be approximated by Zakian method using the following relationship:

H(x, t) = L−1[H(x, s)] =
2
t

N

∑
i=1

Re
{

Yi H
(

x,
αi
t

)}
. (44)
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From Equation (44), we may deduce that this strategy is simple and straightforward to
apply. The factors Yi and αi are fixed that may be either real numbers or complex conjugate
pairs. It is possible to optimize and choose appropriate N, the number of statements to be
considered under the model. The values of Yi and αi for N = 5 are presented in Table 1.

Table 1. The values of Yi and αi in Zakian’s algorithm [67].

j αi Yi

1 12.83767675 + i666063445 −36902.08210 + i196990.4257
2 2 12.22613209 + i5.012718792 61277.02524− i95408.62551
3 3 10.93430308 + i8.409673116 −28916.56288 + i18169.18531
4 4 8.776434715 + i11.92185389 4655.361138− i1.901528642
5 5 5.225453361 + i15.72952905 −118.7414011− i141.3036911

5. Special Cases

The governing equation derived in this study can be converted to previous thermoe-
lastic models that can be summarized by the following special cases:

5.1. Thermoelastic Models

When the small-scale and viscoelastic effects are ignored (ξ = 0 and µv = λv = 0) one
can obtain: the conventional thermoelasticity (CTE) when τq = τθ = 0; the generalized
thermoelastic theory with single phase delay (LS) if τq > 0, τθ = 0 and m = 1; the
thermoelastic dual-phase-lag system (DPL) by setting m = n = 1 and τq, τθ > 0; the
higher-order thermoelastic models including one phase delay (HLS) when τθ = 0, τq > 0
and m ≥ 1; and the higher-order thermoelastic model with two-phase-lags (HDPL) if
τq, τθ > 0, m, n ≥ 1;

5.2. Thermoviscoelastic Models

When the classical Kelvin–Voigt viscoelastic model is applied (µv, λv > 0 and α = 1)
and small-scale effects are ignored (ξ = 0), one gets: the conventional thermoviscoelastic
(VCTE) model when τq = τθ = 0; the generalized thermoviscoelastic theory with single
phase delay (VLS) if τq > 0, τθ = 0 and m = 1; the thermoviscoelastic dual-phase-lag theory
(VDPL) by setting m = n = 1 and τq, τθ > 0; the higher-order thermoviscoelastic framework
with a single-phase-lag (HVLS) when τθ = 0, τq > 0 and m ≥ 1; and the higher-order
thermoviscoelastic model with two-phase delays (HVDPL) if τq, τθ > 0, m, n ≥ 1.

5.3. Fractional Thermoviscoelastic Models

In the case of the fractional Kelvin–Voigt viscoelastic type (i.e., µv, λv > 0 and
α ∈ (0, 1]) and by ignoring the small-scale effects (ξ = 0), one gets: the fractional conven-
tional thermoviscoelastic theory (FVCTE) when τq = τθ = 0; the generalized fractional
thermoviscoelastic theory with single-phase-lag (FVLS) if τq > 0, τθ = 0 and m = 1; the
fractional thermoviscoelastic dual-phase-lag model (FVDPL) by setting m = n = 1 and
τq, τθ > 0; the fractional higher-order thermoviscoelastic model with single phase delay
(FHVLS) when τθ = 0, τq > 0 and m ≥ 1; and the fractional higher-order thermoviscoelastic
model with two-phase delays (FHVDPL) if τq, τθ > 0, m, n ≥ 1.

5.4. Nonlocal Fractional Thermoviscoelastic Models:

Finally, when the impacts of the size-dependent parameter (the nonlocal parameter)
and the fractional operator are taken into account (ξ > 0 and α ∈ (0, 1]), one can conclude:
the nonlocal fractional conventional thermoviscoelastic theory (NFVCTE) when τq = τθ =
0; the generalized nonlocal fractional thermoviscoelastic theory with single-phase-lag
(NFVLS) if τq > 0, τθ = 0 and m = 1; the nonlocal fractional thermoviscoelastic dual-
phase-lag model (NFVDPL) by setting m = n = 1 and τq, τθ > 0; the nonlocal fractional
higher-order thermoviscoelastic framework with one-phase-lag (NFHVLS) when τθ = 0,
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τq > 0 and m ≥ 1; and the nonlocal fractional higher-order thermoviscoelastic model with
two-phase-lags (NFHVDPL) if τq, τθ > 0, m, n ≥ 1.

6. Results and Discussion

To examine the integrity of the proposed model in this research, some discussions on
the numerical results of the studied field variables are presented. Moreover, to perform the
numerical computations, the following physical values for copper material are introduced:

E = 128(GPa), ρ = 8954
(
Kg/m3), ν = 0.36, T0 = 293K

αt = 1.78× 10−5
(

1
K

)
, K = 386

(
W

mK

)
, σ0 = 10−9/36π (F/m),

Hx = 10−7

4π

(
A
m

)
, µ0 = 4π × 10−7

(
H
m

)
, CE = 384.56 (J/kgK)

Although the nonlocal theorem is frequently used in many nanoscale applications,
the method for calibrating the nonlocal scale parameter remains challenging; nevertheless,
some predictions were already presented in the literature [68]. Using the dimensionless
form of governing equation, the nonlocal parameter is estimated as, 0.1, 0.11, 0.12, and 0.13,
considering that all of them are smaller than 2.0 nm in their dimensional form.

To deal with the problem, the following cases are taken into consideration:

• Comparing the thermoelastic properties of a material by considering the impact of
higher-order parameters m and n.

• Comparing different thermoviscoelastic models including the fractional order derivatives.
• Comparing the classical and nonlocal thermoviscoelastic models.

6.1. Verification of the Results

The formulations proposed in this study are validated against the reported results by
investigating the thermoelastic interactions in an infinite medium based on thermoelastic
theory [68–70]. The differences between the numerical results reported in [25] and the present
results are due to the presence of a viscoelastic model as well as the higher-order time derivatives.
After comparing our findings with those presented in the literature [68–70], it is concluded
that the behavior of thermomechanical waves are in good agreement with previous findings.
The existence of viscoelastic coefficients, together with the higher-order derivatives, slows the
internal propagation of heat waves, which is one of the main discrepancies between the results.

6.2. The Influence of Time Derivatives of Higher-orders

In the first scenario, the influence of partial derivatives of higher-orders on the interac-
tions of different domains within the medium is analyzed. Tables 2–4 show the numerical
values of domain variables versus distance x for different values of the higher-order terms
m and n. For this purpose, the fractional viscoelastic Kelvin–Voigt type is used to evaluate
various nonlocal thermoelastic theories. These models include the nonlocal fractional
conventional thermoviscoelastic theory (NFCVTE), the fractional nonlocal thermoviscoelas-
tic framework with single-phase-lag (NFVLS), the fractional nonlocal thermoviscoelastic
system with two-phase delays (NFVDPL), and the nonlocal fractional thermoviscoelastic
hypothesis with phase delays and time derivatives of higher-orders (NHFVDPL). In the
numerical calculations, it is assumed that τq = 0.05, τθ = 0.03, ξ = 0.1, µv = 0.06, λv = 0.09
and α = 0.8.

Table 2 presents the variation of temperature θ for different thermoelastic frameworks
(NFCVTE, NFVLS, NFVDPL, and NHFVDPL) versus distance x. Table 2 reveals that
non-zero temperatures are only found in a small area close to the surface. This is due to
the fact that the heat flow is slow near the boundaries of the medium. It has also been
observed that the temperature change decreases when time moves forward. The surface of
the heat source has the highest temperature of the body. The temperature of the medium
decays as we move away from the half-space boundaries. In addition, the higher values
of temperature distribution θ can be obtained using NFCVTE theory. Higher-order terms
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m and n have a prominent role in predicting the nondimensional temperature changes θ,
especially for those points sufficiently close to the surface of the medium that are directly
influenced by the applied heat source. Table 2 also displays that as the orders m and n
increase, the temperature change decays.

Table 2. The effect of the higher-orders m and n on the variation of temperature θ.

x NFCVTE NFVLS NFVDPL
NHFVDPL

m = 2, n = 1 m = 3, n = 2 m = 4, n = 3 m = 5, n = 2

0.0 0.0844468 0.0784302 0.0740956 0.0779163 0.0778836 0.0778821 0.077882
0.2 0.0198698 0.0204628 0.0208263 0.020509 0.0205119 0.020512 0.020512
0.4 0.00479804 0.00545069 0.00595733 0.00550921 0.00551295 0.00551313 0.00551313
0.6 0.00124161 0.00152758 0.00177424 0.00155494 0.0015567 0.00155678 0.00155678
0.8 0.000375976 0.000478265 0.000575092 0.000488623 0.000489292 0.000489323 0.000489325
1.0 0.000147462 0.000181334 0.000216234 0.000184943 0.000185178 0.000185189 0.000185189
1.2 7.54928 × 10−5 8.65688 × 10−5 9.88161 × 10−5 8.77989 × 10−5 0.000087879 8.78828 × 10−5 8.78829 × 10−5

1.4 0.000045809 4.96237 × 10−5 5.40217 × 10−5 5.00569 × 10−5 5.00852 × 10−5 5.00865 × 10−5 5.00866 × 10−5

1.6 3.00219 × 10−5 3.15135 × 10−5 3.32245 × 10−5 3.16817 × 10−5 3.16927 × 10−5 3.16932 × 10−5 3.16932 × 10−5

1.8 2.02587 × 10−5 2.09575 × 10−5 2.17188 × 10−5 2.10336 × 10−5 2.10386 × 10−5 2.10388 × 10−5 2.10388 × 10−5

2.0 1.38121 × 10−5 1.42001 × 10−5 1.45952 × 10−5 1.42407 × 10−5 1.42433 × 10−5 1.42434 × 10−5 1.42434 × 10−5

Table 3. The influence of orders m and n on the variation of displacement u.

x NFCVTE NFVLS NFVDPL
NHFVDPL

m =2, n = 1 m = 3, n = 2 m = 4, n = 3 m = 5, n = 2

0.0 0 0 0 0 0 0 0
0.2 −0.0295324 −0.0329637 −0.035788 −0.033282 −0.0333024 −0.0333034 −0.0333034
0.4 −0.0231758 −0.0266085 −0.0295354 −0.0269338 −0.0269547 −0.0269557 −0.0269558
0.6 −0.0152206 −0.0177062 −0.0198766 −0.0179452 −0.0179606 −0.0179613 −0.0179613
0.8 −0.00961635 −0.0112476 −0.0126914 −0.0114056 −0.0114158 −0.0114163 −0.0114163
1.0 −0.00601749 −0.00705283 −0.00797554 −0.00715354 −0.00716003 −0.00716033 −0.00716034
1.2 −0.00375625 −0.00440594 −0.00498682 −0.00446925 −0.00447333 −0.00447352 −0.00447352
1.4 −0.00234325 −0.00274939 −0.00311304 −0.002789 −0.00279155 −0.00279167 −0.00279167
1.6 −0.00146154 −0.00171512 −0.00194231 −0.00173985 −0.00174145 −0.00174152 −0.00174152
1.8 −0.000911561 −0.00106982 −0.00121166 −0.00108526 −0.00108625 −0.0010863 −0.0010863
2.0 −0.000568533 −0.000667289 −0.00075582 −0.00067693 −0.000677546 −0.000677576 −0.000677577

Table 4. The influence of higher-order terms m and n on the variation of nonlocal stress τxx.

x NFCVTE NFVLS NFVDPL
NHFVDPL

m = 2, n = 1 m = 3, n = 2 m = 4, n = 3 m = 5, n = 2

0.0 0.0887013 0.0941639 0.0985205 0.0946607 0.0946925 0.094694 0.0946941
0.2 −0.000735809 0.000590091 0.0017973 0.000721137 0.000729581 0.000729978 0.000729992
0.4 −0.00948806 −0.0102996 −0.0109006 −0.0103704 −0.0103749 −0.0103751 −0.0103751
0.6 −0.00737191 −0.0083814 −0.00922206 −0.0084758 −0.00848186 −0.00848214 −0.00848215
0.8 −0.00483203 −0.00558685 −0.00624065 −0.0056591 −0.00566374 −0.00566396 −0.00566397
1.0 −0.00305141 −0.00355059 −0.00399112 −0.00359889 −0.00360199 −0.00360214 −0.00360215
1.2 −0.00190921 −0.00222671 −0.00250938 −0.00225758 −0.00225957 −0.00225966 −0.00225966
1.4 −0.00119173 −0.00139109 −0.00156928 −0.00141052 −0.00141177 −0.00141183 −0.00141183
1.6 −0.000743429 −0.000868077 −0.000979677 −0.00088023 −0.000881016 −0.000881053 −0.000881054
1.8 −0.000463694 −0.000541523 −0.000611258 −0.00054912 −0.000549605 −0.000549628 −0.000549629
2.0 −0.000289205 −0.00033778 −0.000381319 −0.00034252 −0.000342825 −0.000342839 −0.00034284

The induced surface of half-space has a higher temperature gradient compared to the
inner points of material and therefore the highest temperatures can be found around the
heat source. While the maximum temperature tends toward its steady state value very
quickly, the temperature distribution needs more time to stabilize. This is due to the fact
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that, while the location of peak temperature travels with the heat source, the points along
its path are still cooling down.

Table 3 presents the impact of higher-orders m and n on the variation of elastic defor-
mation u. The absolute values of deflection u are shown in Table 3, where the NHVDPL
model has the smallest and the NFCVTE theory has the biggest values. In addition, it
is shown that the curve representing the NFHVDPL model is less steep than that of the
NFVLS theory, which is itself less steep compared to the results of NFCVTE model, and so
on. The NFVLS hypothesis has a single relaxation time (τq), whereas the NFVDPL theory
has two-phase delays (τq and τθ). Therefore, the variation of displacement pattern u is
significantly influenced by relaxation and phase-delay terms τq and τθ in the presence of
higher-order derivatives m and n. The values of nondimensional displacements are also
seen to be initially negative, followed by a quick reduction to their peak values and a slow
decay to zero. It is also evident that the values of displacement u tends to quickly decrease
when n = 4 rather than n < 4.

Table 4 displays the variation of nonlocal thermal stress τxx in terms of higher-order
derivatives (m and n) as well as the influence of phase lags τq and τθ . It is inferred that the
amounts of thermal stress τxx seems to be sensitive to the sequence of the derivatives. To a
certain extent, the magnitude of thermal stress increases with higher-order values m and
n. This table also reveals that the peak amplitudes of the nonlocal stress are significantly
affected by phase-delay parameters τq and τθ , which indicates the phase lag periods. The
nonlocal stress provided by NHFVDPL model gets the highest values, and those generated
by NFCVTE theory are the smallest values. Changes emerge to be considerable, and the
stress is in compressive form in the transition zone close to the surface of the viscoelastic
medium where the impact of heat source is meaningful, but the variations diminish and
eventually disappear with time and distance.

The results show that the higher-order terms (m and n) of the nonlocal generalized
model of thermoelasticity (HNDPL) predict a limited velocity of heat waves, similar to
the other modified models, which causes the present modified model to be more suitable
for predicting the material’s physical characteristics [38,39]. Many researchers and scien-
tists in this subject have only considered the first and second derivatives and ignore the
higher-orders of temporal derivatives [39,71]. The proposed model and the other modified
theories produce comparable results, but important distinctions must always be made.
Each problem requires a different selection of higher-orders (m and n) which should be
verified by experimental findings. This is the main reason for presenting the numerical
results in tabular form to facilitate the comparative studies. The presented numerical
results confirm that choosing m = 4 and n = 3 may be suitable for the proposed HNDPL
hypothesis and produce pertinent, practical and reasonable outcomes.

The theoretical calculations and discussions lead us to conclude that considering
higher-order terms m and n has meaningful effects and results in distinguishing the nonlo-
cal thermoviscoelastic theory, including the higher-order derivatives and phase lags, from
earlier theories of thermoelasticity [40]. It follows that higher values for time derivatives
should be considered which cannot be always ignored. Furthermore, it has been shown [72]
that this effect is due to the intrinsic behavior of delayed response of heat waves in vis-
coelastic nanomaterials, especially when the amount of time passed during the transient
process is very short or the heat flow rate is very high.

6.3. The Effect of Nonlocal Parameter

In recent years, nanomaterials and nanostructures have received great attention due
to their multidisciplinary applications and their unique mechanical, thermal, and electrical
properties, which open up many possibilities and horizons in modern applications. In
this section, the effects of the nonlocal parameter ξ on the responses of viscoelastic solid
medium are investigated. In this case, the higher-orders terms m and n, the fractional
order α, the viscoelastic parameters λv and µv, and phase lags τq and τθ are supposed to
be constants.
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Figures 2–4 show the numerical results based on the NHFVDPL framework when
m = 3 and n = 2 are selected to analyze the effects of nonlocal parameter ξ on the
deformation, distribution of temperature as well as the nonlocal thermal stress. In the
numerical calculations, we take τq = 0.05, τθ = 0.03, µv = 0.06, λv = 0.09 and α =
0.8. In the foundational equations with ξ = 0, the results are for the classical models,
otherwise we consider different cases where ξ = 0.10, 0.11, and ξ = 0.13 are taken into
account. According to the illustrated results, it is found that the nonlocal parameter ξ
has a significant influence on the behavior of all field variables. It is also revealed that,
depending on the values of the nonlocal parameter ξ, the thermoelastic and mechanical
waves approach their steady state solution as the distance x increases. Figure 2 also
demonstrates that the non-local parameter has a minimal impact on the temperature
changes. As shown, the temperature values decrease by increasing the non-local parameter,
which agrees well with the results of Ref. [73]. In other words, the presence of size effects
in the governing equations leads to a decrease in the temperature of material. According to
Figures 3 and 4, it can be observed that by increasing the nonlocal parameter ξ, the change
of displacement increases significantly while the values of nonlocal thermal stress decrease.
These findings show that for a given value of the nonlocal parameter, the thermoelastic
nonlocal solutions do not inevitably converge to a stiffer material that has been observed
in statically indeterminate structures. In the absence of this parameter, the stiffness of the
solutions increases monotonically, just as it does in isothermal problems. Therefore, in
order to accurately simulate the behavior of thin structures, the nonlocality of material must
be taken into account. The nonlocal impact is a crucial aspect that cannot be disregarded
when calculating stress in abrupt nanoscale heating difficulties. On the other hand, the
dependence of the physical fields on the nonlocal parameter is clearly observed in the
components and the nature of materials [74].
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6.4. The Influence of Viscoelasticity and Various Fractional Orders

The characteristics of viscoelastic materials are frequently time-dependent. In the
models that study the behavior of viscoelastic materials, it is necessary to understand the
importance of two components that represent the time-dependent viscosity, λv and µv.
Other factors can be represented using these two parameters, as in described in Equations
(9) and (10). Several studies have confirmed that the simplified assumptions entered into
the expressions of traditional viscoelastic operators may lead to incorrect behavior of the
viscoelastic media and eventually lose their physical meaning. As a result, it is physically
possible to explain the transient characteristics of several elastic entities in a viscoelastic
medium using Kelvin–Voigt concept, including fractional derivatives.

This article presents two methods for dealing with the fractional order heat trans-
fer equations. The extended Mittag-Leffler function was introduced by Atangana and
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Baleanu [47,48] as a novel derivative because it is better suited for describing the natu-
ral phenomena compared to the power functions. Various numerical simulations of the
time-fractional heat conduction equation are generated by Atangana–Baleanu’s fractional
derivative operator [49,50] and the Laplace transform.

Due to the widespread application of fractional calculus in engineering and other
physical fields, this article presents a viscoelastic theory of Kelvin–Voigt type that incorpo-
rates the fractional derivatives in the context of mechanical relaxation durations λv and µv.
The influence of fractional orders and the viscoelastic parameters λv and µv are clarified by
considering the thermoelastic theory with phase delays and higher-order time derivatives
with various scenarios. The first scenario considers the nonlocal thermoelastic model with
higher-order terms and phase delay (NHDPL), where the influence of viscosity is negligible
(λv = µv = 0). In the second scenario, the conventional viscoelastic model of Kelvin–Voigt
type and the nonlocal thermoviscoelastic model (NHVDPL) are used (λv, µv > 0 and
α = 1). Finally, the last case is when the assumptions of nonlocal thermoviscoelasticity
(NHVDPL) are taken into consideration by employing the Kelvin–Voigt model of fractional
type (α = 0.8, 0.6).

The Atangana–Baleanu fractional differential operator is introduced in this study to
address the issues of nonsingular and nonlocal kernels that emerge in some traditional
models. It provides the basis for theoretical calculations in the case of fractional concepts
(α ∈ (0, 1]). In the numerical computations, we take into account the values τq = 0.05,
τθ = 0.03, µv = 0.06, λv = 0.09 and ξ = 0.1. The responses of physical fields alter as a
function of distance x in the presence and absence of fractional differentials as well as by
considering the impact of viscoelasticity. Various comparisons are presented in Tables 5–7.

Table 5. The distribution of temperature θ for different thermoviscoelastic models.

x
Thermoelasticity Thermo-

Viscoelasticity Fractional Thermoviscoelasticity

λv = 0 = µv
λv, µv > 0,

α = 1.0
λv, µv > 0,

α = 0.8
λv, µv > 0,

α = 0.6
λv, µv > 0,

α = 0.4

0.0 0.0781856 0.077936 0.0780195 0.0780846 0.0781426
0.2 0.0206431 0.0205212 0.0205463 0.0205781 0.0206058
0.4 0.0055038 0.00549451 0.00547669 0.00547944 0.00548102
0.6 0.00150279 0.00153666 0.00151044 0.00150223 0.00149423
0.8 0.000433526 0.00047608 0.000455001 0.000444614 0.000434965
1.0 0.000139912 0.000178855 0.000165263 0.000155729 0.000147098
1.2 5.41505 × 10−5 8.63547 × 10−5 7.89724 × 10−5 7.10159 × 10−5 6.39757 × 10−5

1.4 2.58301 × 10−5 5.13507 × 10−5 4.82947 × 10−5 4.18825 × 10−5 3.63333 × 10−5

1.6 1.45214 × 10−5 3.43223 × 10−5 3.40053 × 10−5 0.000028907 2.45912 × 10−5

1.8 8.97000 × 10−6 2.41463 × 10−5 2.54236 × 10−5 0.000021392 1.80528 × 10−5

2.0 5.79000 × 10−6 1.73287 × 10−5 1.94329 × 10−5 1.62522 × 10−5 1.36739 × 10−5

It is clear that the distributions of different field variables have similar trends with
different values and wave propagation speeds. According to the reported numerical
results, there are major discrepancies between the standard deviations of conventional
thermoviscoelastic theories and those of the modified thermoviscoelastic models with
fractional orders [47,48]. Unlike the traditional viscoelastic models, the fractional Atangana–
Baleanu model allows for greater flexibility as indicated in Tables 5–7, which depict the
physical interactions related to the transmission of thermo-mechanical vibrations [55].

As shown in Table 4, the influence of fractional derivatives on the distribution of
temperature field is minimal. Tables 5–7 reveal that the viscoelastic parameters λv and
µv of Kelvin–Voigt model significantly affects the variations of all physical fields under
investigation. Because of their visco-thermoelastic properties, thermoelastic materials have
a lower rate of heat and mechanical waves within the body. The fractional order values
allow to deal with the viscoelastic materials using Kelvin–Voigt type model. Since heat



Metals 2022, 12, 1927 17 of 21

transfer is directly related to how the viscoelastic material behaves, the fractional parameter
becomes even more important [50,51].

Table 6. The distribution of displacement u for different thermoviscoelastic models.

x
Thermoelasticity Thermo−

Viscoelasticity Fractional Thermoviscoelasticity

λv = 0 = µv
λv, µv > 0,

α = 1.0
λv, µv > 0,

α = 0.8
λv, µv > 0,

α = 0.6 α = 0.4

0.0 0 0 0 0 0
0.2 −0.0280434 −0.024395 −0.0214702 −0.0199903 −0.0183262
0.4 −0.024019 −0.0194781 −0.0195899 −0.0181806 −0.0166709
0.6 −0.0170699 −0.0127567 −0.0149597 −0.0138282 −0.0126798
0.8 −0.0116206 −0.00795342 −0.0109903 −0.0101148 −0.00927362
1.0 −0.00782119 −0.00488853 −0.00799708 −0.0073269 −0.0067164
1.2 −0.00524755 −0.00299181 −0.00580481 −0.00529412 −0.00485208
1.4 −0.00351774 −0.0018286 −0.00421086 −0.00382284 −0.00350296
1.6 −0.00235758 −0.00111719 −0.0030541 −0.00275997 −0.00252854
1.8 −0.00157993 −0.000682468 −0.00221502 −0.00199253 −0.00182509
2.0 −0.00105878 −0.00041689 −0.00160645 −0.00143847 −0.00131732

Table 7. The values of stress τxx for different thermoviscoelastic models.

x
Thermoelasticity Thermo−

Viscoelasticity Fractional Thermoviscoelasticity

λv = 0 = µv
λv, µv > 0,

α = 1.0
λv, µv > 0,

α = 0.8
λv, µv > 0,

α = 0.6 α = 0.4

0.0 0.0943924 0.0524847 0.0276607 0.0240686 0.0222463
0.2 0.000881063 −0.00108605 −0.0203086 −0.0180733 −0.0164797
0.4 −0.0110335 −0.00688164 −0.0222848 −0.0196959 −0.0180083
0.6 −0.00956015 −0.00537017 −0.0175763 −0.0154659 −0.0141468
0.8 −0.00681027 −0.00349919 −0.0130119 −0.0113991 −0.0104267
1.0 −0.00463903 −0.00217852 −0.00948645 −0.00827316 −0.0075664
1.2 −0.00312279 −0.00133844 −0.00688932 −0.00598084 −0.00546893
1.4 −0.0020953 −0.000819026 −0.00499821 −0.00431927 −0.00394882
1.6 −0.00140462 −0.00050057 −0.00362528 −0.00311849 −0.00285047
1.8 −0.000941376 −0.000305822 −0.00262929 −0.00225137 −0.00205747
2.0 −0.000630866 −0.00018682 −0.0019069 −0.00162534 −0.00148506

By comparing the results of displacement for the traditional viscoelastic model and
those from Kelvin–Voigt type with fractional derivatives (Table 6), it is clear that the latter
yields smaller values. Therefore, the fractal parameter mitigates the impact of medium
deformation and mechanical waves. When fractional derivatives describe the viscoelastic
behavior of materials rather than the integer derivatives, it is found that there is an ex-
cellent agreement between these findings and those of experimental observations [48,56].
Furthermore, an object’s history may influence its structural phenomena. Computational
results demonstrate that the fractional derivative concepts is applicable for modeling the
viscoelastic materials utilized in advanced machinery and tiny devices [54,55]. Near the
body’s surface, where the influence of the heat source is noticeable, the variation of thermal
stress τxx is more localized. When the viscoelastic factors are considered, the nonlocal
stress component naturally slows down as time moves forward. The results obtained in
this research can be used to design a variety of heat-exposed viscoelastic components that
are used to fabricate tiny structures and devices.
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7. Conclusions

Based on Eringen’s nonlocal elasticity theory and the recently released thermoelastic
concepts with dual-phase-lag, this investigation proposed a nonlocal thermoviscoelastic
framework with higher-order time derivatives. The Kelvin–Voigt viscoelastic type of
fractional order was also considered based on the Atangana and Baleanu’s fractional
operators. The developed model can be abstracted to the other classical and nonlocal
thermoviscoelastic theories. From the observed findings, the following conclusions can
be drawn:

• It is necessary to consider the effect of non-local parameters to estimate the thermome-
chanical behavior of nanosystems.

• The selection of higher-orders may vary from case to case and some experiments must
be conducted to determine the values of higher-orders terms.

• As the coefficients of higher-order derivatives increase, a specific reduction in temper-
ature can be seen.

• The propagation of heat waves and the variation of physical variables are profoundly
affected by thermoviscoelastic features of nanomaterials.

• The numerical results under the influence of models with fractional derivatives differ
from those in the case of those theories including integer derivatives.

• Numerical investigations showed that the fractional derivative models may be suit-
able for simulating the viscoelastic materials. These results represented a significant
departure from previous approaches and exhibited a transition to a new paradigm,
namely the theory of nonlocal thermoviscoelasticity based on the higher-order partial
differential equations.

• The nonlocal parameter may emerge as a significant criterion in categorizing particular
materials when the transmission of thermal energy is of concern in miniaturized
systems and devices.
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