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Abstract: This paper investigates the influence of magnetic field for a two dimensional deformations 

on a two temperature problem at the free surface of a semi-infinite semiconducting medium under 

the effect of mechanical force during a photothermal theory and the effect of hydrostatic initial stress 

on the medium. The Harmonic Wave Method (Normal Mode Analysis) has been used to obtain the 

equations of elastic waves, heat conduction equation, quasi-static electric field, carrier density, two 

temperature coefficient, ratios, and constitutive relationships for the thermo-magnetic-electric 

medium. The effects of several parameters as thermoelastic and thermoelectric coupling parameters 

and two temperature parameter of this force on the displacement component, force stress, carrier 

density and temperature distribution has been depicted graphically. 

Keywords: photothermal theory; carrier density; magnetic field; the harmonic wave; two 

temperature 

 

1   Introduction 

Recently, more attentions has been made for the theory of thermoelasticity because of its 

utilitarian aspects in diverse fields, especially, Engineering, Structures, Geology, Biology, 

Geophysics, Acoustics, Physics, Plasma, etc. The development of initial stress in the medium is due 

to many reasons such as the process of quenching, resulting from difference of temperatures, slow 

process of creep, differential external forces, and gravity variations. The earth is supposed to be under 

high initial stress. The researchers have shown much interest to study the effect of these stresses on 

the propagation of waves. Initial stress in solids has the significant influence on the mechanical 

response of the material from an initially stressed configuration and has applications in geophysics, 

engineering structures, and in the behavior of soft biological tissues. Initial stress arises from 

processes, such as manufacturing or growth and is present in the absence of applied loads. The 

classical uncoupled and coupled theory of thermoelasticity predicts two phenomena not compatible 

with physical experiments. The theory of coupled thermoelasticity introduced by Boit [1], to 

overcome the first shortcoming. The conventional dynamic theory of thermoelasticity (CD theory) is 

based on the classical Fourier heat conduction law. This theory assumes that a thermal signal 

propagates at infinite speeds since the resulting governing equation is parabolic in nature. Among 

generalized models, the Lord and Șhulman (LS) model [2], with one relaxation time, and the Green 
and Lindsay (GL) model [3], with two relaxation times, are familiar to many researchers and many 

works have been done under these theories [4–6]. 

Gordon et al. [7] introduced the first photothermal theory, when they found an intracavity 

sample where a laser-based apparatus gave rise to photothermal blooming, the photothermal lens. 

Kreuzer showed that photoacoustic spectroscopy could be used for sensitive analysis when laser light 
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sources were utilized [8]. After that photothermal methods have been used to measure temperature, 

thermal diffusivities, sound velocity, bulk flow velocities, surface thickness, and specific heats [9–11]. 

The photothermal generation during a photothermal process was studied by many authors. For 

semiconductor materials, the mechanism of this process includes two parts: the propagation of a 

thermal wave causes elastic vibrations in the medium; this is the thermoelastic (TE) mechanism of 

photothermal generation.  

The problem of interaction between electromagnetic field, temperature, stresses and strains in a 

thermoelastic solid is relevant for a number of applications such as geophysics for understanding the 

effect of the Earth's magnetic field on seismic waves, damping of acoustic waves in a magnetic field, 

emissions of electromagnetic radiations from nuclear devices, development of a highly sensitive 

super conducting magnetometer, electrical power engineering, optics etc. The magneto-thermoelastic 

disturbances generated by a thermal shock in an elastic half-space having a finite conductivity have 

been investigated by Puri [12]. Among the authors who considered the generalized magneto-

thermoelastic equations are Nayfeh and Nemat-Nasser [13] who studied the propagation of plane 

waves in a solid under the influence of an electromagnetic field. They obtained the governing 

equations in the general case and the solutions for some particular cases. 
The theory of heat conduction in a deformable body, formulated by Chen et al. [14]-[16] depends 

on two different temperatures the conductive temperature and the thermo dynamical temperature. 

Chen et al. [16] discussed the difference between these two temperatures is proportional to heat 

supply. The existence, structural stability, convergence and spatial behavior of two temperature 

thermoelasticity have been provided by Quintanilla and Tien [17]. Youssef [18] has developed a new 

model of generalized thermoelasticity that depends on two temperatures T  and  , where the 

difference between the two temperatures is proportional to heat supply 
ii, with a non-negative 

constant a (length
2

). 

Othman and Lotfy [19] studied the plane waves in generalized thermo-microstretch elastic half-

space by using a general model of the equations of generalized thermomicrostretch for a 

homogeneous isotropic elastic half space. Othman et al. [20] studied the generalized 

thermomicrostretch elastic medium with gravitational effect and initial stress for different theories. 

Lotfy [21] studied Two temperature generalized magneto-thermoelastic interactions in an elastic  

medium under three theories. Lotfy and Hassan [22] studied Normal Mode Method for Two-

Temperature     Generalized Thermoelasticity under Thermal Shock Problem. Abo-Dahab et al. [23] 

studied generalized magneto-thermoelasticity with fractional derivative heat transfer for a rotation 

of a fibre-reinforced thermoelastic.  

The plane waves propagation is investigated under the influence of magnetic field to solve the 

two temperature problem in a two dimensional deformation at the free surface of a semi-infinite 

semiconducting medium during a photothermal process under the effect of mechanical force as 

hydrostatic initial stress on the medium. The harmonic wave method was used to obtain the two 

temperature parameter with stress under the initial stress in the medium, exact expression of Normal 

displacement, Normal force stress, carrier density and temperature distribution.  

 

2  Basic Equations 

We consider the problem of a thermoelastic half space( 0x ) A magnetic field with constant 

intensity )0,,0( 0HH 


,  h  is the induced magnetic field  acting parallel to the boundary plane 

(taken as the direction of the y-axis). The surface of the half-space is subjected to a thermal shock 

which is a function of z and t. Thus, all quantities considered will be functions of time variable t, and 

co-ordinates x and z. We begin our consideration with linearized of electro-dynamics slowly moving 

medium, the variation of magnetic field and electric field are given by Maxwell.s equations: 

,0EhcurlJ



                                                                (1) 
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,0HEcurl




                                                                  (2) 

),(0 HuE





                                                                   (3) 

,0Hdiv


                                                                        (4) 

Where 0 is the magnetic permeability, 0 is electric permeability and u

  is the particle velocity of 

the medium, and the small effect of temperature gradient on J


 is also ignored. The above equations 

a dot denotes differentiation with respect to time. Expressing the components of the vector

),,( 321 JJJJ 


 (The current density vector J


 be parallel to E


, thus) in terms of displacement, 

where 

)( 000

..

x wεHμ
z

h
J 




 , 
..

z uεHμ
x

h
J 000




 ,  and 0yJ  , by eliminating the quantities 

h


 and E  from equation (1).   

The components of the magnetic intensity vector in the medium are 

0xH     , 0zH  ,  zyxhHH y ,,0                   (5) 

The electric intensity vector is normal to both the magnetic intensity and the displacement 

vectors. Thus, it has the components 
.

00 wHEx      , 
.

00 uHEz  , 00 E                                    (6) 

It is assumed that the theoretical analyses of the transport process in a semiconductor contain in 

the consideration of coupled plasma waves, thermal waves and elastic waves simultaneously. The 

carrier density N( r


, t), temperature distribution T( r


, t), and elastic displacement u( r


, t) are the 

main variable quantities. For a medium with two temperatures of a linear, homogeneous and 

isotropic properties of the medium whose state can be expressed in terms of the space variables x, z (

r


 is the position vector) and the time variable t. The coupled plasma, thermal and elastic transport 

equations can be given below (with new model under two temperature) as a vector form as [5, 18, 24, 

25] as,  

),(
),(

),(
),( 2

trT
trN

trND
t

trN
E










 .                              (7) 

Body couples, the carrier density and heat sources can be written by following the equations  

t

tru
TtrN

E
trk

t

tr
C

g

e 





 ),(
.),(),(

),(T
0

2







   .                        (8) 

The equations of motion and constitutive relations for a magnetic field in the absence of body 

forces can be written as: 











 




),(T)1()),(.(
2

),()
2

(
),( 2

2

2

tr
t

tru
p

tru
p

t

tru 


)(),( 0 HJtrNn

                                                               (9) 

where,


 T

T

N




 0 , 0N  is equillibrium carrier concentration at temperature .T  Vasil’ev and 

Sandomirskii first stated that, in the case of harmonic modulation laser, the thermal activation 

coupling parameter   [26] is negligible in the case of relatively low temperature and 0N  satisfies 
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the Sablicov’s, Vasil’ev, and Sandomirskii inequality. Using theoretical analytical as well as 
experimental measurements, Christofides et al. [27] gave a precise map concerning the violation of 

the inequality under various conditions including modulation frequency and doping concentration. 

In this article, the general case, that is, the non-zero thermal activation coupling parameter was 

studied. 
ED  is the carrier diffusion coefficient,  is the photogenerated carrier lifetime, 

gE  is the 

energy gap of the semiconductor.  and   are the Lamé elastic constants,   is the density,  P 

is the initial stress, k is the thermal conductivity of the sample, 0T  is the absolute temperature. 

T )23(   is the volume thermal expansion where T  is the co-efficient of linear thermal 

expansion and eC is specific heat at constant strain of the solid plate, n  is the difference of 

deformation potential of conduction and valence band. In equation (8), the second term on the right 

side characterizes the effect of heat generation by the carrier volume and surface de-excitations in the 

sample and third term describes the heat generated by stress waves respectively. In the elastic 

equation (9), the third and fourth terms describes source term and influence of the thermal wave, 

plasma wave on the elastic wave, respectively [28]. We restrict our analysis parallel to xz -plane, so 

the displacement is defined by ),,(),,,(),,0,( tzxwtzxuwuu 


, also we define the strain as 

zx wue    . 

The relation between the heat conduction and the dynamical heat takes the form 

Error! Objects cannot be created from editing field codes.
,                  

(10) 

where a  > 0 two-temperature parameter, Youssef  [18]. 

 The constitutive equation takes the form                         

PNdT
z

w

x

u
nT 








 ))(23()(2σxx  ,                          (11) 

PNdT
x

u

z

w
nT 








 ))(23()(2σzz  ,                      (12) 

x

w
s

z

u
s








 21xzσ .                                                               (13) 

Where 2
1

p
s     and 2

2

p
s    .     

3  Formulation of the Problem  

Use the vector analysis, from (1)-(4) we note that the field equations and constitutive relations 

in generalized linear thermoelasticity with the effect of magnetic field and without body forces and 

heat sources are  

























2

22

2

2

2

2

)
2

()
2

()
2

(2
z

up

zx

wp

x

up

t

u    

2

2
2

0

2

0000
t

u
H

x

h
H

x

N

x

T
n 













                                            (14) 

























2

22

2

2

2

2

)
2

(2)
2

()
2

(
z

wp

zx

up

x

wp

t

w   
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2

2
2

0

2

0000
t

w
H

z

h
H

z

N

z

T
n 













                    (15) 

For simplicity, we will use the following non-dimensional variables  

*

),,,(
),,,(

tC

wuzx
wuzx

T


,    *

t

t
t  ,        





2

),(
),(

T
T , 





2

N
N n

 

  


 ij

ij   ,  ,  2* )(

),(
),(

tCT

 
  , 

TC

h
h


  .                                  (16) 

 000 ,e,Hh .                                        (17) 

Where e  is the dilatation.  

Assuming the scalar potential functions 
),,( tzx

and 
),,( tzx

 defined by the relations in 

the non-dimensional form: 

zx
u











,                    
x










z
w .                                      

Hence, using a scalar function and equation (16) in equations (7)-(8) and (14)-(15), we have 

(dropping the dashed for convenience). 

0)( 321

2 



 TN
t

qq   ,                                            (18) 

02

12

2 








t

N
t

T   ,                                         (19) 

0)(
2

2
2 




 NT
t

RH ,                                                     (20)  

0)(
2

2
22 



 
t

RH  ,                                                  (21) 

 2 aT ,                                                                   (22)  

We can obtain from Eqs. (8) and a scalar potential functions 

                                           2
h                               (23) 

where,  

 
eE CD

kt
q



*

1    ,  
eE CD

k
q


2 ,    




k

tT
*

0

2

1  , 
en

gT

Cd

tE





*

2  , 
EeT

n

DC

tkd





*

3  ,  




2

2
2

p

CT


 , 


22

p

CL


    ,  2

2
2

L

T

C

C
 ,    nn d)32(  

,     2

*

TeCC

k
t


 , 

 2

0

2

001 HRH  , 
2

001 H 
. 
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Here, 1  and 3 represents the thermoelastic coupling parameter and the thermoelectric 

coupling parameter. 

Stress components in non-dimensional form becomes  

PNT
zxzx

















 )(
)(2

2
)(2σ

2

2

2

2

2

xx 








,                   (24) 

PNT
zxxz

















 )(
)(2

2
)(2σ

2

2

2

2

2

zz 








,                      (25) 

  
2

2

2

2

2

2

1
xz 2σ

x

s

zxz

s



















.                                                 (26) 

4  Solution of the problem 

For a harmonic wave propagated in the direction, where the wave normal lies in the xz-plane, 

to solve the equations (9)-(13) for the physical variable, we assume the following 

)exp()](),(),(),(),(),([),,](,,,,,[ ******
ibztxNxxxxxtzxNT ijij   ,  (27)    

where   is the (complex circular frequency) time constant, i  is the imaginary, b   be a wave 

number in the z -direction  and ,, **  )(),(),( ***
xxxN  and )(*

xij are the amplitude of the 

field functions. By using the normal mode defined in the Eq. (27), Eqs. (18)-(22) , we arrive at a system 

of five homogeneous equations:
 

0)( *

3

*

1

2   ND  ,                                                      (28) 

0)()( *22

2

*

2

**22  bDNbD   ,                                 (29) 

0)( ***

3

2  ND  ,                                             (30)  

0)( *2

4

2  D  ,                                                              (31) 

0)( ***

1

2  AD ,                                                        (32)  

Stress components equations (24)-(26) will take the following forms: 

 

***

5

**2

6

*2

5

* )(2 PNibDbDσ xx   ,                       (33) 

***

5

**2

6

*2

5

* )(2 PNibDDbσ zz    ,                    (34) 

*2

8

2

7

** )(2  bDibDσ xz  .                                         (35) 

where 

dx

d
D  ,      21

2

1 qqb   ,       12  ,  
22

3  HRb  ,   
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HRb
2222

4   , 
*2

1  bA ,
a

1*  ,

 )(2

5


 ,  


 6 , ,1

7 


s


,2
8 


s

  

The system of  Eqs. (28), (29), (30) and (32) has non-trivial solutions if and only if the determination 

of the factor matrix vanishes. So 

(36).0

0)(0

110)(

)()(

00

*2

3

2

2

2222

2

31

2
















AD

D

bDbD

D

                  

We get a sixth order equation by eliminating )(),( **
xx  , )(*

xN  and )(*
x between Eqs. 

(28)-(30) and (32), we obtain the partial differential equation satisfied by )(*
x  

,0)(][ *246  xGFDEDD                                          (37)                  

where        

            

H

HH

RAAAA

RAR








),(,

),(,/,

1

*

14133

**

11

*

23

*

331

*

1

 

 
,/)]())(())([( 2

2

13

*

132311

*2

13 AbAAbE  
  

(38) 

  ,/)]()())([( 24

2

1

*

113321331

*2

3131 AAbAAAAbF  
 
(39)   

 ,/][ 2

2

1

*

111332131

*

1

2

31 AbAARAbG H                           (40)                       

The above equation can be factorized  

       0)(*2

3

22

2

22

1

2  xkDkDkD     ,                                   (41) 

where, )3,2,1(2 nkn   are the roots of the following characteristic equation 

  0246  GFkEkk .                                                 (42) 

Equation (31) together with the characteristic equation of (37) can be written as, 

     02

4

22

3

22

2

22

1

2  kDkDkDkD ,                             (43) 

where 
2

4k  are the roots of equation (31). 

The solution of Eq. (43) which is bounded as x , is given by 

       )exp(),()(
3

1

*
xkbMx n

n

n 


                                       (44) 

Similarly 

.
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        )exp(),()(
3

1

*
xkbMx n

n

n  


                                     (45) 

         )exp(),()(
3

1

*
xkbMxN n

n

n 


                               (46) 

        

)exp(),()(
3

1

*
xkbMx n

n

n 



                                           (47) 

)exp(),()( 44

*
xkbMx                                                (48) 

 

since,   

*** ψbiDΠ(x)u  ,                                                     (49) 

*** ψDΠbi(x)w  ,                                                   (50) 

Using Eqs. (49) and (50), in order to obtain the amplitude of the displacement components u and  w, 

which are bounded as x , then Eqs. (49) and (50) become 

)exp(),(),( 44

3

1

xkbibMekbM(x)u
xk

n

n

n

* n  


  ,                     (51) 

)exp(),(),( 444

3

1

xkkbMebMib(x)w
xk

n

n

* n  


  .                      (52) 

Where 4M nn MM , , nM   and nM   are some parameters depending on b and .  

Substituting from Eqs. (44)-(47) into Eqs. (28)-(30) and (32) , we obtain 

 
.3,2,1),,(),( 1  nbMHbM nnn 
                                   (53) 

 
,3,2,1),,(),( 2  nbMHbM nnn 

                                  (54) 

.3,2,1),,(),( 3  nbMHbM nnn 
                                      (55) 

where 

.3,2,1,
))((

)(

3

2

1

2

*

1

2

1 



 n

kk

k
H

nn

n

n 


                                  (56) 

.3,2,1,
)( 1

2

3

2 


 n
k

H
n

n 


                                 (57) 

 .3,2,1,
1

2

*

3 


 n
Ak

H
n

n


                                      (58) 

Thus, we have 
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)exp(),()(
3

1

1

*
xkbMHx n

n

nn  


                                            (59) 

)exp(),()(
3

1

2

*
xkbMHxN n

n

nn 


                                      (60) 

   )exp(),()(
3

1

3

*
xkbMHx n

n

nn 


                                   (61) 

Substitution from Eqs. (44), (48) and (49)- (51) into Eqs. (33)- (35), we get 

    
*

444

3

1

* )exp(2)exp(),( PxkMibkxkbMh n

n

nnxx 


 ,                   (62)           

  
*

444

3

1

* )exp (2)exp (),( PxkMib kxkbMh n

n

nnzz 


                    (63) 

    )exp()()exp(),( 44

2

8

2

47

3

1

*
xkMbkxkbMh n

n

nnxz 


            (64) 

          
xkxk

n

nnn

*
eib MebMHk( x )u n 4

4

3

1

1 ),(




                     (65) 

            
xkxk

n

nn

*
eMkebMibH(x)w n 4

44

3

1

1 ),(




            (66) 

where 

        )1()( 25

2

6

2

51 nnnn HbkHh                                        (67) 

       )1()( 25

2

6

2

51 nnnn HkbHh                              (68) 

       nn ibkh 2                                                               (69) 

5   Applications 

In this section, we determine the parameters )4,3,2,1( nM n . In the physical problem, we should 

suppress the positive exponentials that are unbounded at infinity. The constants 4321 ,,, MMMM  

have to chosen such that the boundary conditions on the surface at 0x (suppose the boundary 

0x is adjacent to vacuum) take the form:  

i)  Mechanical boundary condition that surface of the half-space is traction load 

)exp(),,0( 1 ibztptzxx                                (70) 

ii)  Mechanical boundary condition that surface of the half-space is traction free 

                        .0),,0( tzxz                                        (71) 

iii) Assuming that the boundary 0x is thermally insulated, we have 
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.0
),,0(





x

tzT                                                                         (72) 

vi)  During the diffusion process, the carriers can reach the sample surface, with a finite probability of 

recombination. So the boundary condition for the carrier density can be given below: 

.
),,0(

N
D

s

x

tzN

e




                                                             (73) 

Substituting the expressions of the variables considered into the above boundary conditions, we can obtain 

the following equations satisfied by the parameters 

                         144

3

1

2),( pPMibkbMh
n

nn 


             (74)             

0)(),( 4

2

8

2

47

3

1




MbkbMh
n

nn                                       (75) 

0),(
3

1




bMk
n

nn
                                                            (76) 

N
D

s
bMHk

en

nnn 


),(
3

1

2                                                             (77)    

Invoking the boundary conditions (63)-(65) at the surface x 0  of the plate, we obtain a system 

of four equations. After applying the inverse of matrix method (or Cramer’s rule), we have the values 

of the four constants 4321 ,,,, jM j  . Hence, we obtain the expressions of displacements, 

temperature distribution, Carrier density and another physical quantity of the plate. 

6   Numerical results and discussions 

In order to analyze the above problem numerically, we now consider a numerical example for which 

computational results are given. The silicon (Si) is chosen as the material for numerical simulation. The 

numerical constants (parameters in SI unit) of the problem are taken as:  

210 /10x64.3 mN  
210 /1046.5 mN  

3/2330 mkg  s
510x5   

K8000 T  33110x9 mdn

  smDE /105.2 23  eVEg 11.1  

)/(695 KkgJCe   1610x14.4  Kt  sms /2  8.0t  

3.00   10P  1.0  1z  

1b  21 p  mH /104 7

0

   mF /1085.8 12

0

  

 Since we have  i 0  where the imaginary unit is i , )sin(cos0 titee
tt    

and for small value of time, we can take 0  (real).  The computations were carried out for a 

value of time 7.0t . The numerical technique, outlined above, was used for the distribution of the 

real part of the thermal temperature , the displacement components u , Carrier density N and the 

stress ( xzxx  , ) distribution for the problem. Here all the variables are taken in non dimensional 

forms and displayed graphically as 2D and 3D form in Figs. 1-6. 

6.1.   Effect of magnetic field  
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Figure 1  shows  the positive influence of magnetic field 0H  on  non-dimensional 

temperature distribution, displacement distribution, normal force distribution, force stress 

distribution  and carrier density, respectively with respect to axis x. the different values of magnetic 

field are shown by solid ( 0.00 H ), dashed ( 100 H ) and dash-dot ( 200 H )lines respectively 

when 8.13   and hydrostatic initial stress  10P .The values of temperature for a non-magnetic 

thermoelastic medium under the influence of initial stress  decrease sharply in the beginning  and 

smooth increases to arrive the maximum value  and then oscillate uniformly. The variations of 

temperature are similar in nature for both differences in magnitude of magnetic field. The heat 

conduction and the dynamical heat take the same behavior. Under the influence of magnetic field, 

the values of normal force stress first increases in the first range and then oscillate uniformly. Also 

the values of shear force stress for a thermoelastic medium without magnetic field lie in a very short 

range and have a very similar to the variation of normal force stress with difference in different values 

of magnetic field. The Carrier density start from its minimum value, increase with an increasing of x 

tend to zero as x tends to infinity but u  starts from maximum, decreases with an increasing of axis 

x tends to zero as x tends to infinity, this indicate to the vanishing of all components for the large 

values of x.  

We obtain from this figure, that the effect of magnetic field caused rearranged the atoms in the 

medium and compact the curves when x increases. 

6.2. Effect of thermoelectric coupling parameter 

    Figure 2 plots the positive influence of thermoelectric coupling parameter 3  on the 

temperature distribution, displacement distribution, normal force distribution, force stress 

distribution, Carrier density N and the heat conduction  , respectively with respect to axis x.  It is 

obvious that T,
 
  and N start from its minimum value, increase with an increasing of x tend to zero 

as x tends to infinity but xz and xx  start from its primary values, decreases with an increasing of 

axis x tends to zero as x tends to infinity, this indicate to the vanishing of all components for the large 

values of x, also, it is obvious that xx and
 xz start from zero at x=0 this indicate that there is no 

stresses in the origin value of x. From this figure, we can obtain significant effect of thermoelectric 

coupling parameter in the range. 

6.3. Effect of two temperature parameter 

In Figure. 3 some comparisons have been shown to estimate the effect of two-temperature 

parameters a={0,5} on the temperature distribution, displacement distribution, normal force 

distribution, force stress distribution, Carrier density N, respectively, with respect to axis x, which 

agrees the initial boundary conditions. It is also observed from these figure that with the increase of 

dimensionless two-temperature parameter leads to an increase in its magnitude for all physical 

quantities. It is concluded that the temperature T and shear stress xz influences positively without 

two temperature parameters (i.e., T takes higher values if a=5 comparing with the corresponding 

value a=0) but vice versa concerns xx . Also, it is shown from the shape of the displacement u takes 

higher values without the two temperature parameters with the small values of x and takes inverse 

behavior with the large values of x comparing with the corresponding values of u if there is no two 

temperature parameter.  

6.4. Effect of hydrostatic initial stress  

Figure. 4 shows the comparison between  the temperature T,  , displacement components u, 

,  the force stresses components xx , xz  and the Carrier density N,   the case of different two  

values of hydrostatic initial stress, (namely P= 0.0  and P=100) with magnetic field. It is clear from 

the graph that most of the physical quantities have minimum value at the beginning at 0x , it 
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begins to fall just near the edge ( 0x ), where it experiences sharp increases (with minimum 

negative gradient). In addition, all lines begin to intersect when the horizontal distance x is large to 

reach the reference temperature of the solid. These results obey physical reality for the behaviour of 

silicon as a polycrystalline solid (state of particles equillibrium). In addition, all lines begin to coincide 

when the horizontal distance x tends to infinity and reach zero after their relaxations at infinity. 

6.5. Effect of all parameters in 3D  

Figures. 5 and 6 clears the 3D schematics concern the temperature distribution T,
 
 , 

displacement distribution u, w, stresses force distribution and Carrier density N with respect to x and 

z axes in the presentce of magnetic field and the hydrostatic initial stress with thermoelectric coupling 

parameter 3  and thermoelastice coupling parameter 1 . It is obvious that all values increase from 

its primary values at x=0 and decrease tends to zero as x tends to infinity. We obtain for all physical 

quantities, The Elastic Wave Motions in 3D overlapping and damping when x and z increases to 

reach the state of particles equillibrium. These figures are very important to study the dependence of 

these physical quantities on the vertical component of distance. The curves obtained are highly 

depending on the vertical distance from origin, all the physical quantities are moving in wave 

propagation. 

7   Conclusion 

Using the harmonic wave analysis method, we obtained an explicit, totally analytic, uniformly 

valid solution of the system of four fully coupled, highly linear similarity equations describing heat 

and mass transfer by mixed convection in homogeneous and isotropic properties of the medium with 

two temperatures. We can conclude that the magnetic field has a great effect on the temperature 

distribution, displacement components, normal force distribution and force stress distribution and 

this effect produces the same trend under the effect of photothermal theory. All functions tend to 

zero as x-axis tends to infinity, indicate to the vanishing of all components for the large values of x. 

The two temperature generalized theory of magneto-thermo-elasticity describes the behavior of the 

particles of an elastic body is more realistic than the one temperature theory of generalized magneto-

thermo-elasticity. Positive thermoelectric couple parameter, it  appears that the positive value has a 

good influence on all parameters. Finally, it is clear from the results obtained numerically and 

graphically, that photothermal has a good influence on the phenomena which has a lot of applications 

on diverse field as semiconducting and the reactions during a photothermal process and other fields 

in physical engineering also in physical chemistry and medical physics.  
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Figure 1   Variation of physical quantities at different values of magnetic field. 
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Figure 2   Variation of physical quantities at different values of positive thermoelectric coupling parameter 

with two temperature when 100 H . 
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Figure 3   Variation of physical quantities at different values of two temperature with thermoelectric coupling 

parameter at 100 H under the hydrostatic  initial stress 
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Figure 4   Variation of physical quantities at different values of the hydrostatic initial stress under two 

temperature effect with thermoelectric coupling parameter and 100 H . 
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Figure 5   some physical quantities in 3 D against x and z under the influence of the hydrostatic initial stress, 

two temperature parameter, thermoelectric coupling parameter and 100 H . 
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Figure 6   some physical quantities in 3 D against x and z under the influence of the hydrostatic initial stress, 

two temperature parameter, thermoelectric coupling parameter and 100 H . 
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