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monitoring of ailing infrastructure. Longitudinal stress-corrosion cracks are detected
M. Ehsani more eﬁiciently by .inducing circumfergntie}l waves; henpe, the §tudy of elastic wave
propagation in the circumferential direction in a pipe wall is essential. The current state
of knowledge lacks a complete solution of this problem. Only when the pipe material is
isotropic a solution of the wave propagation problem in the circumferential direction
exists. Ultrasonic inspections of reinforced concrete pipes and pipes retrofitted by fiber
composites necessitate the development of a new theoretical solution for elastic wave
propagation in anisotropic curved plates in the circumferential direction. Mathematical
modeling of the problem to obtain dispersion curves for curved anisotropic plates leads to
coupled differential equations. Unlike isotropic materials for which the Stokes-Helmholtz
decomposition technique simplifies the problem, in anisotropic case no such general de-
composition technique works. These coupled differential equations are solved in this
paper. Dispersion curves for anisotropic curved plates of different curvatures have been
computed and presented. Some numerical results computed by the new technique have
been compared with those available in the literatu®Ol: 10.1115/1.146487]2
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Introduction no such general decomposition technique works. The differential
equations remain coupled and require a more general solution

Mathematical modeling of wave propagation in the axial d're(%'%chnique.

tion of a cylinder has been studied extensively. However, for wav The new technique, presented in this paper, solves coupled set

propagation in the circumferential direction, which is essential f%rf differential equations without attempting to decounle the equa-
nondestructive testingNDT) of large diameter pipes, literature q pung P d

shows fewer investigations. Viktorov's workl]) establishes the tions. Hence it removes the obstacle arising from not being able to

fundamental mathematical modeling of the problem for isotrop%e.co.ulOIe the gquatlons. Consgqugntly it provides a ;ystematlc and
épfylng solution method, which is capable of solving a set of

material properties. He has introduced the angular wave numl(S:' led differential equations, and can be utilized to solve a va-

concept and has derived, decomposed and solved the governlﬂ P p qt i)l

differential equations. He has considered only one curved surfa{:'g; of wave propagation problems.

in other words, he has found the solution for convex and concave

cylindrical surfaces. In order to obtain the results for curved plates

Qu et al.[2] have added the boundary conditions for the second

surface and solved the problem of guided wave propagation in

isotropic curved plates. Different aspects of the circumferentiflundamental Equations

direction wave propagation along one or multiple curved syrfaces—rhe formulation presented here is for the wave propagation in a

have been analyzed by Grace and Goodi&in Brekhovskikh  cyjingrical curved plate in the direction of the curvature as shown

(4], Cerv[5], Liu and Qu[6,7] and Valle, Qu, and Jaco8]. I iy Fig. 1. We will interchangeably call the wave carrier a “curved

all these works the material has been modeled as isotropic e|aﬁt|l§te’n “cylinder,” “pipe segment,” or simply “pipe” all meaning

material. , ) ) the same thing. What we are interested in is analyzing the disper-
Many investigators have solved elastic wave propagation prolyye waves in the curved plate for waves propagating from section

lem in homogeneous and multilayered anisotropic solids. HOW- (4 R (see Fig. 1 This analysis does not include the reflected

ever, all those works have been limited to the flat-plate ¢¢2e guided waves from the plate boundary. The problem geometry can

or for waves propagating in the axial direction of a cylind@0]).  pe 5 segment of a cylinder or a complete cylinder.

Wa\{e propagation in the circumferential dlrectllon of an aniso- e propagation in circumferential direction in pipes with iso-

tropic curved plate has not been analyzed earlier, and solved faf,c ' material properties is usually modeled as a plane strain

the first time in this paper. L : S
> . - . problem; i.e., the displacement component along the longitudinal
Unlike isotropic materials for which the Stokes-Helmholtz deéxis of the pipe is set equal to zero. For a few other types of

composition technique simplifies the problem, for anisotropic Caﬁ?\isotropy this situation remains valid. However, for general an-
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Fig. 1 Waves propagating from section
plate. Wave speed is proportional to radius of curvature.
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Equations of motion for three components of displacement in cy-
lindrical coordinates are as follows:
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Stress components in the above equations can be substituted in
terms of displacement components. Since displacement compo-
nents are functions of wave forms, time dependency of waves

must be established.

Wave Form

In cylindrical geometry the generation of surface waves in the
circumferential direction with a plane wave front requires the cir-
cumferential wave speed to be a function of the radial distance.
Viktorov [1] has introduced this concept and called it the angular
wave number. Similar formulation has been adapted here:

The stress and displacement components are shown in Fig. 2. And

constitutive matrix for general anisotropy contains 21 independent

elastic constants:

X dr

Fig. 2 Stress and displacement components in cylindrical co-

ordinate system
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u,(r,6,t)=U,(r)e'Pi=v
Ug(r,0,t)=U,(r)e Pi=ed
Uz(r,e,t)zuz(r)ei(PG*wt) (4)

whereU,(r), U,(r), andU,(r) represent the amplitude of vibra-
tion in the radial, tangential, and axial directions, respectivaly. “

is the imaginary number/=1. It should be noted here that the
phase velocity is not a constant and changes with radius. As
shown in Fig. 1 the phase velocity has to be proportional to the
radius to have a plane wave front. Hencegjfis assumed to be
the phase velocity at the outer surface with radiidor other
points having a radius the phase velocity would be

Vpn(r)=Cpr/b. (4a)

For the flat-plate case wave numlies defined aso/v,, because
curvature does not change. However, for a curved plate the same
definition would be dependent. Thus the angular wave nunper
which is independent af is defined as

p=w/(vpn(r)/r)=wblcy. (4b)
Governing Differential Equations

Subsequent substitution of Eqgl), (1), and (2) into Eqg. (3)
yields the following governing differential equations:
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*2C5,5Ur(r)p2*2C1,5Ut(f)|02*204,5Uz(r)p2*2iC1,1Ux(f)p also noted that),(r), U(r), andU,(r) are functions of the ra-
dius only and they appear in all equations. Therefore, there are

—2iCsaU(r)p—2iCy U (r)p+4irCszgU/(r)p three coupled differential equations and six boundary conditions
that must be satisfied simultaneously.

+2irC 1 3U{(r)p+2irCs U (r)p+2irCz4U,(r)p To solve the equations, the unknown functions are expanded in
Fourier seriegFS). Substitution of FS expansions into the differ-

+2irC5'6U£(r)p+2r2pw2U,(r)—2C1,1Ur(r) ential equations provides three algebraic equations that must be

satisfied for the entire problem domain. To satisfy the equations
+2C; dU(r)+2rCa U (r)—2rCysU(r)—2rCy gU,(r) for a given number of FS terms weighted residuals integration

with a linear weight function has been utilized:
+2rCaUs(r)+2r2C5 U} (r)2r’Cy 57 (r)

+2r2C5U%(r)=0 °
3,83(r) fwf(r,xi)dl’=0. (1)

R=
- 2C1,5Ur(r)p2_201,1U1(r)p2_ 2C1'4Uz(r)p2+2iC1,1Ur(r)p

a

+2iCs U, (r)p+2iC,U,(r)p+2irC,3U/(r)
ssr(N)P 40P 18 (1)P The radius corresponding to the peak value of the linear weight

+2irCg U/ (r)p+4irC U/ (r)p+2irC,gu.(r)p fqnction can takg any va_Iue between the inner and the outer ra-
’ ' ' dius, each resulting one independent equation. Hence from every
+2irc4’sué(r)p+zcl’sur(r)ju2r2pw2ut(r) differential equation any number of equations can be obtained.

On the other hand, it is known that the general solution is a
—2C55U(r)+2rCygU; (r)+4rCz U/ (r)+2rCssU, linear combination of all solution functions that can be obtained.
Therefore, the general solution should contain combinatorial pa-

+4rCsgUL(r)+2r2Cy U7 (r)+2r’Cs U7 (r) rameters. The number of combinatorial parameters is the same as
the number of individual solutions. These combinatorial param-

+ 2r205,6U’Z’(r) =0 eters are necessary to satisfy the boundary conditions. Satisfaction

) ) . of six boundary conditions requires six parameters and six equa-
—2C, U (r)p"—2C, U(r)p—=2C, U,(r)p°+2iC1 U ()P tions. Therefore the necessary and sufficient number of combina-

—2iCdUy(r)p+2irC4 Ul (r)p+2irCs U/ (r)p ':)oerllqegepna;rzsigrjttiirnssfs six and it indicates the existence of six inde
+2irC 1 dU{ (r)p+2irC,sU{(r)p+4irC,gU.(r)p Substitution of solution functions into the differential equations
leads to three equations, each containing all of the FS parameters.
+2r2pw?U,(r)+2rCygU/(r)+2rCs U/ (r) In other words, all FS parameters for the three amplitude func-
, 2 " 2 " tions appear in every equation. Because of this coupling, the val-
+2rCe U, (r)+2r°Cs U/ (r)+2r°Cs gUt(r) ues of parameters obtained for FS expansiod ¢f ), U.(r), and
+2r206,5U’Z'(r)=0 ) U,(r) are not independent and a solution must yield all param-

eters as one set of results. Since the equations are linear and the
i results must be combined using combinatorial parameters only
Boundary Cond.ltlons ) ) ) their relative values must be found. Therefore one of the FS pa-
In order to obtain the dispersion curves, the traction-free boungimeters can be assumed equal to one. Then the relative values for
ary conditions(zero stress values on the inner and outer surfacggher FS parameters can be calculated in terms of this unit value.
of the pipg must be satisfied. Hence, eta andr =b: Each set of the parameter values defines a set of dependent shapes
: : : for the above amplitude functions; these are called basic shapes.
+ + - + . : '
CLalr(NHIPCagUr(N) +HIPCLU(N = CadUl(NHIPCa VAN G cethe number of equations must be equal to the number of
+1C3U; (r)+rCasU{(r)+rCadUs(r)=0 unknowns a specific number of weight functions are required.
- o ’ _ The FS expansion fad,(r) can be written as
Ca18U(r) +ipCs U (1) +ipCagUi(r) = CssU(r) —ipCygU,(r)

+rCgaU/(r)+rCssU{(r)+rCseU,(r)=0 m nor ot
CoU, (1) +ipCs U, (1) +ipCyeUy(r) — CsUy(r) +ipCygls(r) Ur(”=xo+n21(COS(T)XH+S'”(T)VH) ®)
+I‘C3Y5U;(r)+I’C5Y6Ut'(r)+l’C6Y6U;(I’)=O. (6)

. which contains 2n+1 parameters or coefficients, andy,, .
Solution With two other expressions fad,(r) andU,(r) the number of

It can be seen that all differential equations are functions ahknowns increases tont+3. Performing weighted residuals
three displacement components and their derivatives. It shouldrethod, a set of linear equations results:

11Xy QX Ay Xs A1g+1Xs+1 0 A1s+6Xs+6 0
Ap1Xy ApXp tr ApeXs Apg+1Xs+1 0 A2s+1Xs+6 0
= 9)
0
Ag1X1  AgpXp 1 AgeXs Ass+1Xs+1 Ass+6Xs+6
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where Xg,1,Xs12, - - - Xs1g represent the last sine and cosine 10.0
terms of FS expansions. Assigning six independent unit vectors \
the last six parameters as shown in Et), 50
1 2 3 4 5 6 -
X7s+1 X's41 X'sy41 X'sp1 Xsp1 X'gia ]
1 2 3 4 5 6 E 504
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Fig. 3 Dispersion curves for isotropic flat plate ([11]). Plate
0O 0 001 O thickness =1 mm.
0 0 0 0 0 1 v km/sec
. .. . 10 % ‘ L . N .
yields six independent solutions. Therefore the number of eqt FUY ..
tions has to bes=6m—3. Consequently, the general solution cal s v v, DY -
be obtained as a linear combination of the above solutions: Y S R
NN, AR T e
4 X%, x3; x4 X%, 6 T e e Tt
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6
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+As| . : (11) Fig. 4 Dispersion curves generated by the proposed method.
Plate thickness =1 mm. Pipe outside radius =1.0 m.
6
X S

flat plate
The superscript for FS parameters shows the solution set number. coordinates €

Substitution of the obtained FS parameters into stress components
on the inner and outer surfaces of the pipe leads to an eigenvalue cylinderical e,
problem. The determinant of the coefficientsfofshould be zero /
(54
€

ey
for any point located on the dispersion curves. coordinates e
X

Numerical Results

Based on the proposed mathematical modeling a Mathematica
program has been developed. To ensure the validity of the mod-
eling and the computer program, its results are compared with the
available dispersion curves for anisotropic flat plates by usin’gg

small ratios of thickness to radius, when pipe geometry apld- 5 Tangential direction of the fibers maintains the symme-
y. Coordinate systems for flat-plate and pipe analyses are

proaches flat plate geometry. Additionally, the results are co o shown.

pared with the published results for isotropic pied). Since the
exact input values have not been reported by Qu €i2d).the

comparison is done only qualitatively. The dispersion curves are ) i ) ) )
also given for anisotropic pipes. B Comparison With Available Data for Anisotropic Flat

Plate. Dispersion curves for anisotropic flat plates are available
in the literature([12,13)). In this section our results are compared
A Comparison With Available Data for Isotropic Flat  with those given in RosgL3].
Plate. Dispersion curves for a flat plate are given in Mal and For the unidirectional composite plate or pipe with a zero-
Singh[11], see Fig. 3. Curves for the same plate thickness anégree angle between the wave propagation direction and the fiber
material properties, but having an outer radius of 1 m, are geneirection as shown in Fig. 5, the material and the geometric sym-
ated by the proposed method and shown in Fig. 4. metry conditions are maintained; hence, the plain-strain formula-
A comparison of Figs. 3 and 4 shows a very good match b#en remains valid. Consequently the constitutive matrix reduces
tween the two when only 20 terms are used in the FS expansiottsthe following form:
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Fig. 6 Dispersion curves of a unidirectional composite plate

for waves propagating in fiber direction (x-axis direction, 0
deg). Material properties are given in Eq.  (12), p=1580 kg/m3
(3D.
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Fig. 7 Dispersion curves for a large-diameter pipe made of an
anisotropic material. Material properties are given in Eq. (12).
Pipe wall thickness =1 mm. Pipe outer radius =1000 mm, m
=30.
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Fig. 8 Dispersion curves for the anisotropic pipe with m=20.
Pipe dimensions and material properties are same as in Fig. 7,
only m is different.
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Fig. 9 Dispersion curves of unidirectional composite plate for
waves propagating perpendicular to the fiber direction (x-axis
direction, 90 deg ). Material properties are given in Eq.  (13).
Plate thickness =1 mm, p=1580 kg/m? ([3]).

Stiffness values are given in GPa. Flat-plate results are shown in
Fig. 6. Results for the curved plate are shown in Figs. 7 and 8.

The result of Fig. 7 is obtained using 30 ternms={ 30) in the
Fourier series expansion. To show the effect of the number of
terms(m) on the computed results the same dispersion curves are
computed form=20 and shown in Fig. 8.

It is interesting to note that smaller value wf gives broken
lines. Therefore the user can easily realize the need for a greater
number of terms in the FS expansion when the lines in the dis-
persion curve plot are found broken. There are some missing parts
of curves in Fig. 7 that can be obtained by increasmdlowever,
for m=30 we get enough information for comparison with the
results given by RosgL3].

For the same material with fibers going in the longitudinal di-
rection of the pipe, the constitutive matrix changes to @6).

1495 6.9 7.33 0

Tog €90
. 69 1282 69 0 0
= . (13)
Oyr 7.33 6.9 14.95 0 €
Tro 0 0 0o 381 20

Obtained results for this case also match with the corresponding
dispersion curves presented by R¢%8]; see Figs. 9 and 10.

For the case where fibers are oriented at 45 deg relative to the
pipe axis, plane-strain assumptions are no longer valid. The con-
stitutive matrix for this case is obtained by transformation of the
coordinate system as shown in Efj4). See Figs. 1(), 11(b) and
12 for comparison. This case also shows an excellent match be-
tween the available data and the obtained results.
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Fig. 10 Computed dispersion curves for an anisotropic large
diameter pipe, when fiber and wave propagation directions are
perpendicular to each other. Material properties are given in
Eq. (13). Pipe wall thickness =1 mm. Pipe outer radius
=1000 mm.
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Since for the curved plate, the midplane is not the plane of sym-D Anisotropic Pipe of Small Radius of Curvature. To
metry, the dispersion curves cannot be grouped as symmetric ahdw the effect of the radius of curvature on the dispersion curves
antisymmetric modes. That is why all modes are shown togethee pipe radius is varied from 1000 mm to 2.5 mm keeping the
in Fig. 12 for a large-diameter pipe. wall thickness and material properties same as those mentioned in
the figure captions for Figs. 7 and 9. Dispersion curves obtained
C Comparison With Available Data for Isotropic Pipe DY the 30 terms FS expansion fio=1000, 10, 5, and 2.5 mm are

As mentioned earlier, Qu et 42] have derived dispersion curvesShown in Figs. 15 and 16. Figure 15 shows dispersion curves for
for aluminum pipes but the material properties have not been f#2€rs going in the circumferential direction and Fig. 16 is for
ported in their work. Hence, the quantitative comparison was nbpers going in the axial direction while the waves propagate in the
possible. However, curves presented here, Fig. 13, qualitativéycumferential directions in both cases. _ ) _
look similar to those of Qu et a[2], Fig. 14. Figures 13 and 14 From Figure 15 one can see that for fibers oriented in the cir-

. . . . o, ; cumferential direction the dispersion curves do not change signifi-
Sah%V;;Pee?ib:?énfg)d:npdemOn curves with non-dimensiered cantly as the outer radius) is reduced from 1000 mm to 10 mm.

However, as is reduced further the deviation of the dispersion

p curves from the large radius case is no longer negligible. For
w=w(b—a)\/—.
M
vpn km/sec
14 H Y A P M
14 I i
1371 12 3 HEY
1t 10 : HERN FEAR .,
3 101 N T
E 74 ‘ 6 ~...' . kY -..-:" '-'..‘ . A}
g:: 2| el TR P . SO
21 £ (iz)
0 N + + - 4 1 2 3 4 5
0 1 2 3 4 5 6 Fig. 12 Dispersion curves for a large diameter pipe made of an
(a) ney (MHz anisotropic material. Material properties are given in Eq. (14).
Freque ¥ ( ) Pipe wall thickness =1 mm. Pipe outer radius =1000 mm, m
14 T T =25.
131 LY
12 -
Bl 1 o)
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o 9 e ) . e
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g 65 1 15 2 253 3 35 4 45 5 53 6 e,
(b) Frequency (MHz) 2 o
Fig. 11 (a) Dispersion curves for symmetric modes for a uni- boe & i
directional composite plate for waves propagating in 45 deg to 2 4 6 8
the fiber direction. Plate thickness =1 mm and p=1580 kg/m?
([3]). (b) Dispersion curves for antisymmetric modes for a uni- p=2700 kg /m® ¢1=6.42km [sec ¢y =3.02km /sec

directional composite plate for waves propagating in 45 deg to
the fiber direction. Plate thickness =1 mm and p=1580kg/m® Fig. 13 Dispersion curves for aluminum pipe obtained by the
([3D. proposed method. % (ratio of inner to outer radius  )=0.1.
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Fig. 14 Dispersion curves for aluminum pipe obtained by Qu
et al. [2]. Material properties are not known.

Dispersion curves for the 5-mm outer radius pipe with fibers
oriented along the 45 deg direction are shown in Fig. 17. This
result is obtained for the material properties given in @4¢). In
the frequency range smaller than 1 MHz, some vertical lines ap-
peared due to the numerical errors when the nunfimrof FS
terms is 25. By increasing to 35 those lines disappeared. The
results form= 35 are shown on the left side of Fig. 17.

Conclusion

A solution technique based on the Fourier series expansion of
the unknown quantities has been introduced to solve the elastic
wave propagation problem in anisotropic cylindrical plates in the
circumferential direction. Accuracy of the technique has been
verified by comparing the computed results for isotropic pipes
with the published results. Since no published results are available
for wave propagation in the circumferential direction in aniso-
tropic cylindrical plates, the computed dispersion curves for an-

fibers oriented in the axial directiofFig. 16) the dispersion isotropic curved plates could not be compared with any results
curves remain almost unchanged for 1000 mm down to 2.5 available in the literature. However, the Lamb wave dispersion
mm. Forr=2.5mm the dispersion curves are obtained with curves for flat plates can be computed and those values are used to
=45 in FS expansion of amplitude functions. The computatiocheck the accuracy of the proposed technique. With the new tech-
with m=30 gave too many broken lines in the dispersion curveique, dispersion curves for cylindrical plates with large radius of

plot for r=2.5 mm.

curvature (outer radius of curvature to thickness ratio equal to

In summary, a comparison between Figs. 15 and 16 shows th@00 have been computed and compared with the flat-plate re-
the effect of curvature is stronger when the fibers are orientedlts for both isotropic and anisotropic materials. Computed re-
along the circumferential direction and hence when the fibers alsolts for such low curvature plates matched very well with the
have a curvature. When the fibers are oriented in the axial dirdtat-plate results. The effect on the dispersion curves as the curva-
tion and hence don’t have any curvature the flat-plate approxinare of the anisotropic plate increases has been also studied.

tion can be extended to pipes of much lower radius.

ven km/sec
14

2 3
12 .
H LI e, Sow, teelte
10 LTl —_—tes o

8

vph km/sec
14

12 . 1N,

10 MM T

N A O ®
T
J—

f (MHZ)

(b) Outer radius = 10 mm

£(MHZz)

The solution technique used for this specific wave propagation

£ (MHZ)

£ (MHZ)

(d) Outer radius =2.5 mm

Fig. 15 Dispersion curves for circumferential direction wave propagation in fiber-reinforced cylindrical composite plates
when fibers are oriented in the circumferential direction, outer radius of the pipe is (@) 1000 mm, (b) 10 mm, (c¢) 5 mm, and (d)
2.5 mm. Pipe wall thickness and material properties are same as those in Fig. 7.
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Fig. 16 Dispersion curves for circumferential direction wave propagation in fiber-reinforced composite cylindrical plates when

fibers are oriented in the axial direction, outer radius of the pipe is
thickness and material properties are same as those in Fig. 9.
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Fig. 17 Dispersion curves for the curved plate when the fibers are oriented in

the 45 deg direction. Material properties are given in Eq.
mm. Thickness =1 mm. Right figure is for

=35. Frequency range for the left figure is 0 to 1 MHz and for the right figure it

is 0 to 6 MHz.
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