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Elastic Wave Propagation in
Circumferential Direction in
Anisotropic Cylindrical Curved
Plates
Ultrasonic nondestructive inspection of large-diameter pipes is important for he
monitoring of ailing infrastructure. Longitudinal stress-corrosion cracks are detec
more efficiently by inducing circumferential waves; hence, the study of elastic w
propagation in the circumferential direction in a pipe wall is essential. The current s
of knowledge lacks a complete solution of this problem. Only when the pipe mater
isotropic a solution of the wave propagation problem in the circumferential direc
exists. Ultrasonic inspections of reinforced concrete pipes and pipes retrofitted by
composites necessitate the development of a new theoretical solution for elastic
propagation in anisotropic curved plates in the circumferential direction. Mathemat
modeling of the problem to obtain dispersion curves for curved anisotropic plates lea
coupled differential equations. Unlike isotropic materials for which the Stokes-Helmh
decomposition technique simplifies the problem, in anisotropic case no such gener
composition technique works. These coupled differential equations are solved in
paper. Dispersion curves for anisotropic curved plates of different curvatures have
computed and presented. Some numerical results computed by the new techniqu
been compared with those available in the literature.@DOI: 10.1115/1.1464872#
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Introduction
Mathematical modeling of wave propagation in the axial dire

tion of a cylinder has been studied extensively. However, for w
propagation in the circumferential direction, which is essential
nondestructive testing~NDT! of large diameter pipes, literatur
shows fewer investigations. Viktorov’s work~@1#! establishes the
fundamental mathematical modeling of the problem for isotro
material properties. He has introduced the angular wave num
concept and has derived, decomposed and solved the gove
differential equations. He has considered only one curved surf
in other words, he has found the solution for convex and conc
cylindrical surfaces. In order to obtain the results for curved pla
Qu et al.@2# have added the boundary conditions for the seco
surface and solved the problem of guided wave propagatio
isotropic curved plates. Different aspects of the circumferen
direction wave propagation along one or multiple curved surfa
have been analyzed by Grace and Goodman@3#, Brekhovskikh
@4#, Cerv @5#, Liu and Qu@6,7# and Valle, Qu, and Jacobs@8#. In
all these works the material has been modeled as isotropic el
material.

Many investigators have solved elastic wave propagation p
lem in homogeneous and multilayered anisotropic solids. Ho
ever, all those works have been limited to the flat-plate case~@9#!
or for waves propagating in the axial direction of a cylinder~@10#!.
Wave propagation in the circumferential direction of an ani
tropic curved plate has not been analyzed earlier, and solved
the first time in this paper.

Unlike isotropic materials for which the Stokes-Helmholtz d
composition technique simplifies the problem, for anisotropic c
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no such general decomposition technique works. The differen
equations remain coupled and require a more general solu
technique.

The new technique, presented in this paper, solves coupled
of differential equations without attempting to decouple the eq
tions. Hence it removes the obstacle arising from not being abl
decouple the equations. Consequently it provides a systematic
unifying solution method, which is capable of solving a set
coupled differential equations, and can be utilized to solve a
riety of wave propagation problems.

Fundamental Equations
The formulation presented here is for the wave propagation

cylindrical curved plate in the direction of the curvature as sho
in Fig. 1. We will interchangeably call the wave carrier a ‘‘curve
plate,’’ ‘‘cylinder,’’ ‘‘pipe segment,’’ or simply ‘‘pipe’’ all meaning
the same thing. What we are interested in is analyzing the dis
sive waves in the curved plate for waves propagating from sec
T to R ~see Fig. 1!. This analysis does not include the reflect
guided waves from the plate boundary. The problem geometry
be a segment of a cylinder or a complete cylinder.

Wave propagation in circumferential direction in pipes with is
tropic material properties is usually modeled as a plane st
problem; i.e., the displacement component along the longitud
axis of the pipe is set equal to zero. For a few other types
anisotropy this situation remains valid. However, for general
isotropy the longitudinal component of displacement must be c
sidered in the mathematical modeling. The symmetry of both
ometry and material properties is required for plane-str
idealization. In absence of such symmetry a three-dimensio
mathematical modeling is necessary.

In cylindrical coordinates, strain components in terms of d
placements can be written as
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The stress and displacement components are shown in Fig. 2.
constitutive matrix for general anisotropy contains 21 independ
elastic constants:

Fig. 1 Waves propagating from section T to R in a curved
plate. Wave speed is proportional to radius of curvature.

Fig. 2 Stress and displacement components in cylindrical co-
ordinate system
284 Õ Vol. 69, MAY 2002
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Equations of motion for three components of displacement in
lindrical coordinates are as follows:
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Stress components in the above equations can be substitut
terms of displacement components. Since displacement com
nents are functions of wave forms, time dependency of wa
must be established.

Wave Form
In cylindrical geometry the generation of surface waves in

circumferential direction with a plane wave front requires the c
cumferential wave speed to be a function of the radial distan
Viktorov @1# has introduced this concept and called it the angu
wave number. Similar formulation has been adapted here:

ur~r ,u,t !5Ur~r !ei ~pu2vt !

uu~r ,u,t !5Ut~r !ei ~pu2vt !

uz~r ,u,t !5Uz~r !ei ~pu2vt ! (4)

whereUr(r ), Ut(r ), andUz(r ) represent the amplitude of vibra
tion in the radial, tangential, and axial directions, respectively.i’’
is the imaginary numberA21. It should be noted here that th
phase velocity is not a constant and changes with radius.
shown in Fig. 1 the phase velocity has to be proportional to
radius to have a plane wave front. Hence, ifcb is assumed to be
the phase velocity at the outer surface with radiusb; for other
points having a radiusr the phase velocity would be

vph~r !5cbr /b. (4a)

For the flat-plate case wave numberk is defined asv/vph because
curvature does not change. However, for a curved plate the s
definition would ber dependent. Thus the angular wave numberp,
which is independent ofr is defined as

p5v/~vph~r !/r !5vb/cb . (4b)

Governing Differential Equations
Subsequent substitution of Eqs.~4!, ~1!, and ~2! into Eq. ~3!

yields the following governing differential equations:
Transactions of the ASME
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22C5,5Ur~r !p222C1,5Ut~r !p222C4,5Uz~r !p222iC1,1Ut~r !p

22iC5,5Ut~r !p22iC1,4Uz~r !p14irC 3,5Ur8~r !p

12irC 1,3Ut8~r !p12irC 5,5Ut8~r !p12irC 3,4Uz8~r !p

12irC 5,6Uz8~r !p12r 2rv2Ur~r !22C1,1Ur~r !

12C1,5Ut~r !12rC3,3Ur8~r !22rC1,5Ut8~r !22rC1,6Uz8~r !

12rC3,6Uz8~r !12r 2C3,3Ur9~r !2r 2C3,5Ut9~r !

12r 2C3,6Uz9~r !50

22C1,5Ur~r !p222C1,1Ut~r !p222C1,4Uz~r !p212iC1,1Ur~r !p

12iC5,5Ur~r !p12iC4,5Uz~r !p12irC 1,3Ur8~r !p

12irC 5,5Ur8~r !p14irC 1,5Ut8~r !p12irC 1,6Uz8~r !p

12irC 4,5Uz8~r !p12C1,5Ur~r !12r 2rv2Ut~r !

22C5,5Ut~r !12rC1,5Ur8~r !14rC3,5Ur8~r !12rC5,5Ut8

14rC5,6Uz8~r !12r 2C3,5Ur9~r !12r 2C5,5Ut9~r !

12r 2C5,6Uz9~r !50

22C4,5Ur~r !p222C1,4Ut~r !p222C4,4Uz~r !p212iC1,4Ur~r !p

22iC4,5Ut~r !p12irC 3,4Ur8~r !p12irC 5,6Ur8~r !p

12irC 1,6Ut8~r !p12irC 4,5Ut8~r !p14irC 4,6Uz8~r !p

12r 2rv2Uz~r !12rC1,6Ur8~r !12rC3,6Ur8~r !

12rC6,6Uz8~r !12r 2C3,6Ur9~r !12r 2C5,6Ut9~r !

12r 2C6,6Uz9~r !50. (5)

Boundary Conditions
In order to obtain the dispersion curves, the traction-free bou

ary conditions~zero stress values on the inner and outer surfa
of the pipe! must be satisfied. Hence, atr 5a and r 5b:

C1,3Ur~r !1 ipC3,5Ur~r !1 ipC1,3Ut~r !2C3,5Ut~r !1 ipC3,4Uz~r !

1rC3,3Ur8~r !1rC3,5Ut8~r !1rC3,6Uz8~r !50

C1,5Ur~r !1 ipC5,5Ur~r !1 ipC1,5Ut~r !2C5,5Ut~r !2 ipC4,5Uz~r !

1rC3,5Ur8~r !1rC5,5Ut8~r !1rC5,6Uz8~r !50

C1,6Ur~r !1 ipC5,6Ur~r !1 ipC1,6Ut~r !2C5,6Ut~r !1 ipC4,6Uz~r !

1rC3,6Ur8~r !1rC5,6Ut8~r !1rC6,6Uz8~r !50. (6)

Solution
It can be seen that all differential equations are functions

three displacement components and their derivatives. It shoul
Journal of Applied Mechanics
nd-
ces

of
be

also noted thatUr(r ), Ut(r ), andUz(r ) are functions of the ra-
dius only and they appear in all equations. Therefore, there
three coupled differential equations and six boundary conditi
that must be satisfied simultaneously.

To solve the equations, the unknown functions are expande
Fourier series~FS!. Substitution of FS expansions into the diffe
ential equations provides three algebraic equations that mus
satisfied for the entire problem domain. To satisfy the equati
for a given number of FS terms weighted residuals integrat
with a linear weight function has been utilized:

R5E
a

b

w f~r ,xi !dr50. (7)

The radius corresponding to the peak value of the linear we
function can take any value between the inner and the outer
dius, each resulting one independent equation. Hence from e
differential equation any number of equations can be obtained

On the other hand, it is known that the general solution i
linear combination of all solution functions that can be obtain
Therefore, the general solution should contain combinatorial
rameters. The number of combinatorial parameters is the sam
the number of individual solutions. These combinatorial para
eters are necessary to satisfy the boundary conditions. Satisfa
of six boundary conditions requires six parameters and six eq
tions. Therefore the necessary and sufficient number of comb
torial parameters is six and it indicates the existence of six in
pendent solutions.

Substitution of solution functions into the differential equatio
leads to three equations, each containing all of the FS parame
In other words, all FS parameters for the three amplitude fu
tions appear in every equation. Because of this coupling, the
ues of parameters obtained for FS expansion ofUr(r ), Ut(r ), and
Uz(r ) are not independent and a solution must yield all para
eters as one set of results. Since the equations are linear an
results must be combined using combinatorial parameters
their relative values must be found. Therefore one of the FS
rameters can be assumed equal to one. Then the relative value
other FS parameters can be calculated in terms of this unit va
Each set of the parameter values defines a set of dependent s
for the above amplitude functions; these are called basic sha
Since the number of equations must be equal to the numbe
unknowns a specific number of weight functions are required

The FS expansion forUr(r ) can be written as

Ur~r !5x01(
n51

m S cosS npr

L D xn1sinS npr

L D ynD (8)

which contains 2m11 parameters or coefficients,xn andyn .
With two other expressions forUt(r ) andUz(r ) the number of

unknowns increases to 6m13. Performing weighted residual
method, a set of linear equations results:
S a1,1x1 a1,2x2 ¯ a1,sxs a1,s11xs11 • a1,s16xs16

a2,1x1 a2,2x2 ¯ a2,sxs a2,s11xs11 • a2,s11xs16

• • ¯ • • • •

• • ¯ • • • •

• • ¯ • • • •

as,1x1 as,2x2 ¯ as,sxs as,s11xs11 • as,s16xs16

D 5S 0
0
•

•

•

0

D (9)
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where xs11 ,xs12 , . . . ,xs16 represent the last sine and cosi
terms of FS expansions. Assigning six independent unit vector
the last six parameters as shown in Eq.~10!,
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s14

x1
s15 x2
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D
5S 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

D (10)

yields six independent solutions. Therefore the number of eq
tions has to bes56m23. Consequently, the general solution c
be obtained as a linear combination of the above solutions:
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•

•
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•

•
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•
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•
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•
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D
1A6S x6
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x6
2

•

•

•

x6
s

D . (11)

The superscript for FS parameters shows the solution set num
Substitution of the obtained FS parameters into stress compon
on the inner and outer surfaces of the pipe leads to an eigenv
problem. The determinant of the coefficients ofAi should be zero
for any point located on the dispersion curves.

Numerical Results
Based on the proposed mathematical modeling a Mathema

program has been developed. To ensure the validity of the m
eling and the computer program, its results are compared with
available dispersion curves for anisotropic flat plates by us
small ratios of thickness to radius, when pipe geometry
proaches flat plate geometry. Additionally, the results are co
pared with the published results for isotropic pipes~@2#!. Since the
exact input values have not been reported by Qu et al.@2#, the
comparison is done only qualitatively. The dispersion curves
also given for anisotropic pipes.

A Comparison With Available Data for Isotropic Flat
Plate. Dispersion curves for a flat plate are given in Mal a
Singh @11#, see Fig. 3. Curves for the same plate thickness
material properties, but having an outer radius of 1 m, are ge
ated by the proposed method and shown in Fig. 4.

A comparison of Figs. 3 and 4 shows a very good match
tween the two when only 20 terms are used in the FS expans
286 Õ Vol. 69, MAY 2002
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B Comparison With Available Data for Anisotropic Flat
Plate. Dispersion curves for anisotropic flat plates are availa
in the literature~@12,13#!. In this section our results are compare
with those given in Rose@13#.

For the unidirectional composite plate or pipe with a zer
degree angle between the wave propagation direction and the
direction as shown in Fig. 5, the material and the geometric sy
metry conditions are maintained; hence, the plain-strain formu
tion remains valid. Consequently the constitutive matrix reduc
to the following form:

Fig. 3 Dispersion curves for isotropic flat plate „†11‡…. Plate
thickness Ä1 mm.

Fig. 4 Dispersion curves generated by the proposed method.
Plate thickness Ä1 mm. Pipe outside radius Ä1.0 m.

Fig. 5 Tangential direction of the fibers maintains the symme-
try. Coordinate systems for flat-plate and pipe analyses are
also shown.
Transactions of the ASME
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D 5S 128.2 6.9 6.9 0

6.9 14.95 7.33 0

6.9 7.33 14.95 0

0 0 0 6.73

D S euu

0
err

2eru

D . (12)

Fig. 6 Dispersion curves of a unidirectional composite plate
for waves propagating in fiber direction „x -axis direction, 0
deg …. Material properties are given in Eq. „12…, rÄ1580 kg Õm3

„†3‡….

Fig. 7 Dispersion curves for a large-diameter pipe made of an
anisotropic material. Material properties are given in Eq. „12….
Pipe wall thickness Ä1 mm. Pipe outer radius Ä1000 mm, m
Ä30.

Fig. 8 Dispersion curves for the anisotropic pipe with mÄ20.
Pipe dimensions and material properties are same as in Fig. 7,
only m is different.
Journal of Applied Mechanics
Stiffness values are given in GPa. Flat-plate results are show
Fig. 6. Results for the curved plate are shown in Figs. 7 and 8

The result of Fig. 7 is obtained using 30 terms (m530) in the
Fourier series expansion. To show the effect of the number
terms~m! on the computed results the same dispersion curves
computed form520 and shown in Fig. 8.

It is interesting to note that smaller value ofm gives broken
lines. Therefore the user can easily realize the need for a gre
number of terms in the FS expansion when the lines in the d
persion curve plot are found broken. There are some missing p
of curves in Fig. 7 that can be obtained by increasingm. However,
for m530 we get enough information for comparison with th
results given by Rose@13#.

For the same material with fibers going in the longitudinal d
rection of the pipe, the constitutive matrix changes to Eq.~13!.

S suu

szz

s rr

s ru

D 5S 14.95 6.9 7.33 0

6.9 128.2 6.9 0

7.33 6.9 14.95 0

0 0 0 3.81

D S euu

0
err

2eru

D . (13)

Obtained results for this case also match with the correspond
dispersion curves presented by Rose@13#; see Figs. 9 and 10.

For the case where fibers are oriented at 45 deg relative to
pipe axis, plane-strain assumptions are no longer valid. The c
stitutive matrix for this case is obtained by transformation of t
coordinate system as shown in Eq.~14!. See Figs. 11~a!, 11~b! and
12 for comparison. This case also shows an excellent match
tween the available data and the obtained results.

Fig. 9 Dispersion curves of unidirectional composite plate for
waves propagating perpendicular to the fiber direction „x -axis
direction, 90 deg …. Material properties are given in Eq. „13….
Plate thickness Ä1 mm, rÄ1580 kg Õm3

„†3‡….

Fig. 10 Computed dispersion curves for an anisotropic large
diameter pipe, when fiber and wave propagation directions are
perpendicular to each other. Material properties are given in
Eq. „13…. Pipe wall thickness Ä1 mm. Pipe outer radius
Ä1000 mm.
MAY 2002, Vol. 69 Õ 287
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Since for the curved plate, the midplane is not the plane of s
metry, the dispersion curves cannot be grouped as symmetric
antisymmetric modes. That is why all modes are shown toge
in Fig. 12 for a large-diameter pipe.

C Comparison With Available Data for Isotropic Pipe
As mentioned earlier, Qu et al.@2# have derived dispersion curve
for aluminum pipes but the material properties have not been
ported in their work. Hence, the quantitative comparison was
possible. However, curves presented here, Fig. 13, qualitati
look similar to those of Qu et al.@2#, Fig. 14. Figures 13 and 14
show the obtained dispersion curves with non-dimensionalk̄ and
v̄ wherek̄5k(b2a) and

v̄5v~b2a!Ar

m
.

Fig. 11 „a… Dispersion curves for symmetric modes for a uni-
directional composite plate for waves propagating in 45 deg to
the fiber direction. Plate thickness Ä1 mm and rÄ1580 kg Õm3

„†3‡…. „b… Dispersion curves for antisymmetric modes for a uni-
directional composite plate for waves propagating in 45 deg to
the fiber direction. Plate thickness Ä1 mm and rÄ1580 kg Õm3

„†3‡….
288 Õ Vol. 69, MAY 2002
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D Anisotropic Pipe of Small Radius of Curvature. To
show the effect of the radius of curvature on the dispersion cur
the pipe radius is varied from 1000 mm to 2.5 mm keeping t
wall thickness and material properties same as those mentione
the figure captions for Figs. 7 and 9. Dispersion curves obtai
by the 30 terms FS expansion forr 51000, 10, 5, and 2.5 mm are
shown in Figs. 15 and 16. Figure 15 shows dispersion curves
fibers going in the circumferential direction and Fig. 16 is f
fibers going in the axial direction while the waves propagate in
circumferential directions in both cases.

From Figure 15 one can see that for fibers oriented in the
cumferential direction the dispersion curves do not change sign
cantly as the outer radius~r! is reduced from 1000 mm to 10 mm
However, asr is reduced further the deviation of the dispersio
curves from the large radius case is no longer negligible. F

Fig. 12 Dispersion curves for a large diameter pipe made of an
anisotropic material. Material properties are given in Eq. „14….
Pipe wall thickness Ä1 mm. Pipe outer radius Ä1000 mm, m
Ä25.

Fig. 13 Dispersion curves for aluminum pipe obtained by the
proposed method. h „ratio of inner to outer radius …Ä0.1.
Transactions of the ASME



i

r
m

rs
his

ap-

e

n of
stic

the
en
es

able
o-
an-
ults
ion
ed to
ech-
of
to
re-
re-
he
rva-

tion
fibers oriented in the axial direction~Fig. 16! the dispersion
curves remain almost unchanged forr 51000 mm down to 2.5
mm. For r 52.5 mm the dispersion curves are obtained withm
545 in FS expansion of amplitude functions. The computat
with m530 gave too many broken lines in the dispersion cur
plot for r 52.5 mm.

In summary, a comparison between Figs. 15 and 16 shows
the effect of curvature is stronger when the fibers are orien
along the circumferential direction and hence when the fibers a
have a curvature. When the fibers are oriented in the axial di
tion and hence don’t have any curvature the flat-plate approxi
tion can be extended to pipes of much lower radius.

Fig. 14 Dispersion curves for aluminum pipe obtained by Qu
et al. †2‡. Material properties are not known.
Journal of Applied Mechanics
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Dispersion curves for the 5-mm outer radius pipe with fibe
oriented along the 45 deg direction are shown in Fig. 17. T
result is obtained for the material properties given in Eq.~14!. In
the frequency range smaller than 1 MHz, some vertical lines
peared due to the numerical errors when the number~m! of FS
terms is 25. By increasingm to 35 those lines disappeared. Th
results form535 are shown on the left side of Fig. 17.

Conclusion
A solution technique based on the Fourier series expansio

the unknown quantities has been introduced to solve the ela
wave propagation problem in anisotropic cylindrical plates in
circumferential direction. Accuracy of the technique has be
verified by comparing the computed results for isotropic pip
with the published results. Since no published results are avail
for wave propagation in the circumferential direction in anis
tropic cylindrical plates, the computed dispersion curves for
isotropic curved plates could not be compared with any res
available in the literature. However, the Lamb wave dispers
curves for flat plates can be computed and those values are us
check the accuracy of the proposed technique. With the new t
nique, dispersion curves for cylindrical plates with large radius
curvature~outer radius of curvature to thickness ratio equal
1000! have been computed and compared with the flat-plate
sults for both isotropic and anisotropic materials. Computed
sults for such low curvature plates matched very well with t
flat-plate results. The effect on the dispersion curves as the cu
ture of the anisotropic plate increases has been also studied.

The solution technique used for this specific wave propaga
Fig. 15 Dispersion curves for circumferential direction wave propagation in fiber-reinforced cylindrical composite plates
when fibers are oriented in the circumferential direction, outer radius of the pipe is „a… 1000 mm, „b… 10 mm, „c… 5 mm, and „d…
2.5 mm. Pipe wall thickness and material properties are same as those in Fig. 7.
MAY 2002, Vol. 69 Õ 289



Fig. 16 Dispersion curves for circumferential direction wave propagation in fiber-reinforced composite cylindrical plates when
fibers are oriented in the axial direction, outer radius of the pipe is „a… 1000 mm, „b… 10 mm, „c… 5 mm, and „d… 2.5 mm. Pipe wall
thickness and material properties are same as those in Fig. 9.

Fig. 17 Dispersion curves for the curved plate when the fibers are oriented in
the 45 deg direction. Material properties are given in Eq. „14…. Outer radius is 5
mm. Thickness Ä1 mm. Right figure is for mÄ25, and the left figure is for m
Ä35. Frequency range for the left figure is 0 to 1 MHz and for the right figure it
is 0 to 6 MHz.
o

n
v.

ial
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w

olid

the
problem is a newly developed general solution technique for s
ing a coupled partial differential equation set~@14#!. Applicability
of this technique to other wave propagation problems is curre
under investigation.

Acknowledgment
This research was partially supported from the National Scie

Foundation grant CMS-9901221.
290 Õ Vol. 69, MAY 2002
lv-

tly

nce

References
@1# Viktorov, I. A., 1958, ‘‘Rayleigh-Type Waves on a Cylindrical Surface,’’ So

Phys. Acoust.,4, pp. 131–136.
@2# Qu. J., Berthelot, Y., and Li, Z., 1996, ‘‘Dispersion of Guided Circumferent

Waves in a Circular Annulus,’’Review of Progress in Quantitative Nondestru
tive Evaluation, D. O. Thompson and D. E. Chimenti, eds., Plenum, Ne
York, 15, pp. 169–176.

@3# Grace, O. D., and Goodman, R. R., 1966, ‘‘Circumferential Waves on S
Cyliners,’’ J. Acoust. Soc. Am.,39, pp. 173–174.

@4# Brekhovskikh, L. M., 1968, ‘‘Surface Waves Confined to the Curvature of
Boundary in Solid,’’ Sov. Phys. Acoust.,13, pp. 462–472.
Transactions of the ASME



in

m

s

t

s

y

in
Z.
@5# Cerv, J., 1988, ‘‘Dispersion of Elastic Waves and Rayleigh-Type Waves
Thin Disc,’’ Acta Tech. CSAV,89, pp. 89–99.

@6# Liu, G., and Qu, J., 1998, ‘‘Guided Circumferential Waves in a Circular A
nulus,’’ ASME J. Appl. Mech.,65, pp. 424–430.

@7# Liu, G., and Qu, J., 1998, ‘‘Transient Wave Propagation in a Circular Annu
Subjected to Impulse Excitation on Its Outer Surface,’’ J. Acoust. Soc. A
103, pp. 1210–1220.

@8# Valle, C., Qu, J., and Jacobs, L. J., 1999, ‘‘Guided Circumferential Wave
Layered Cylinders,’’ Int. J. Eng. Sci.,37, pp. 1369–1387.

@9# Nayfeh, A. H., 1995,Wave Propagation in Layered Anisotropic Media Wi
Application to Composites, Elsevier, Amsterdam.

@10# Armenakas, A. E., and Reitz, E. S., 1973, ‘‘Propagation of Harmonic Wave
Journal of Applied Mechanics
a

n-

lus
.,

in

h

in

Orthotropic, Circular Cylindrical Shell,’’ ASME J. Appl. Mech.,40, pp. 168–
174.

@11# Mal, A. K., and Singh, S. J., 1991,Deformation of Elastic Solids, Prentice-
Hall, Englewood Cliffs, NJ, p. 313.

@12# Karim, M. R., Mal, A. K., and Bar-Cohen, Y., 1990, ‘‘Inversion of Leak
Lamb Wave Data by Simplex Algorithm,’’ J. Acoust. Soc. Am.,88, pp. 482–
491.

@13# Rose, J. L., 1999,Ultrasonic Waves in Solid Media, Cambridge University
Press, Cambridge, U.K., pp. 264–271.

@14# Towfighi, S., 2001, ‘‘Elastic Wave Propagation in Circumferential Direction
Anisotropic Pipes,’’ Ph.D. dissertation, The University of Arizona, Tucson, A
MAY 2002, Vol. 69 Õ 291


