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Abstract.

T'his is an analysis of the dispersive properties of transversely isotropic media. This

kind of anisotropy is exhibited by hexagonal crystals, sediments, planar igneous bodies, ice sheets,
and rolled metal sheets where the unique axis is perpendicular to the direction of surface wave
propagation and the other axes are distributed randomly in the plane of the layers. Period equat-
ions are derived for waves of Rayleigh, Stoneley, and Love types, and comparisons are made, in
certain cases, with ray theoretical and plane stress solutions. Anisotropy can have a pronounced
effect on both the range of existence and the shape of the dispersion curves and can lead to an
apparent discrepancy between Love and Rayleigh wave data. Attention is focused in this initial
paper on a single solid layer #n vacuo (i.e. a free plate) and a solid layer in contact with a fluid
halfspace. The single layer solutions are gencralized to n-layer media by the use of Haskell matrices.

1. Imtroduction. FElastic wave problems are
usually formulated for convenicnce under the
restrictive assumptions of homogencity, pcrfect
elasticity, plane parallel boundaries, and isotropy.
Although these assumptions are often approxi-
mately satisfied in practice, certain ambiguities
exist between theory and observation that
indicate the need for reformulating some of these
problems under less restrictive and possibly more
realistic assumptions. Herein we drop the
assumption of isotropy.

Anisotropy is exhibited in its purest form in
single crystals but also occurs in collections of
crystals or minerals which have erystallized or
have been deposited with a preferred orientation,
or have bcen subjected to nonuniform forces
after formation. A layered medium by its very
nature is anisotropic in the large, but the individ-
ual layers may also be anisotropic in a manner
which cannot be handled by a further subdivision
into finer layers. Heterogeneous media with
random grain orientation tend to be isotropic.

We shall consider materials that possess an
axis of symmetry in the sense that all rays at
right angles to this axis are equivalent. Such
media are called ‘transversely isotropic,’ and
wave propagation in an infinite or semi-infinite
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medium with this symmetry has been discussed
by Love [1944], Saté [1950]), Musgrave [1959],
and Stoneley [1949]. A convenient summary is
given by Mason [1958] and Ewing, Jardetzky,
and Press [1957]. Transverse isotropy results in
the same set of elastic constants as that for
hexagonal symmetry and hence is exhibited in
all metals or minerals crystallizing in the hexag-
onal system. This symmetry is also expected to
be displayed by sediments, planar igneous
bodies, floating ice sheets, and rolled or extruded
metal and plastic sheets. This latter material is
often used in two-dimensional model experiments.

An isotropic solid is governed by two elastic
constants and the characteristic equation has
three roots, one corresponding to a compressional
wave and a double root corresponding to a
distortional wave. These velocities are inde-
pendent of direction. A transversely isotropic
solid is governed by five elastic constants, and
the separation into two waves, one for which
the curl of the displacement vanishes and one
for which the divergence of the displacement
vanishes, does not in general occur. Correspond-
ing to any assigned wave normal there are three
velocities of elastic wave propagation, and only
in special cases do these degenerate to purely
shear and purely compressional motion.

2. Generalized Hooke’s law and the equations
of motion. The matrix of the elastic constants
for a medium with hexagonal or transverse
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isotropic symmetry is [Love, 1914]

C1q Ci2 €13 0 0 0
c: cn €13 0 0 0
€y Cra Ca3 0 0 0
0 0 0 €t 0 0
0 0 0 0 Cas 0
[ —_
0 0 0 0 0 LZ——'—“

FFor an isotropic body,
en = ¢ = N+ 2p;
(ery — €12)/2 = ¢ = 1

If we ignore body forces, the equations of
small motion arc three of the form,

0%u apn 9p. 617,,
P 6(,2 = + == 3y + === (I)

€z = \;

The stresses p,; arc derived from the strain
cnergy function W by

) W
Prr = 96 P 7 Ge,,’

where [Love, 1944]
2W = cule’.. + €°,.) + cue’..
+ 2ci5(e.. + en)e.. + 2000,
+ cusle’s: + %) + Few — ey, (3)

The stresscs are, accordingly,

ete. )

I 1(’” +"1r>

= 7?'1(01:;"—'_ 044)

¢ g
F — pc2 l m(Ji.ié.iiE)
G — ac’

mn(cis + cas)

Pes = C11€zp T+ Cr28y, T Ciz€.,

Duy = Cio€r, + €116y T €136,

Pz = 013(6::: + euu) + C33€,, (20,)
Puz = Pzy = %(Cll - 012)82:11
Py = DPyz = Caaby:

Pzz = pzz = €446y

From the symmetry of the above equations it is

DON . ANDERSON

obvious that 2 has been taken as the unique axig,

The equations of motion become

an___Q_( i}y I (')11))
P9 = 9z x+C'2 T

ay 13 5’;
()i 2 i
- ay ( 2 ay T3 oy

&p (r.‘ — c,z) 9’ w. + A { au
Ty e T o e TG
Par 2 azay oy "o
a '.3
+Cll z +(13 w} +Cn_‘
9" w 9w %
P '(a_tz“ = C44 _E + Cas 527—(3;_—
i) % 6 w
+ = oz <013 P + Cm 2 + €33 - ) (1)

where u, v, w are the displacements in the z, ¥, 2
directions. There is no advantage in introducing
the standard potentials since the equations of
motion are still unseparable.

3. Plane waves tn an infinile medium. The
theory of plane wave propagation in the interior
of an infinite anisotropic body is well developed
(see, for instance, Love [1944] or Mason [1958]).
We begin with a brief review of this theory to
cstablish the setting for the following sections.

For plane waves propagated in a direction
specified by direction cosines (I, m, n) we take

(u, v, w) = (U, V, W)eivte—iktiatmy+nn
Substitution into the equations of motion gives
o -

nl(Cm + CM) u

—
f=—

mnlcs + can) || V (5)

e — p LW
where

§F = 12011 + m2<c_“_;‘21‘2‘> + n2044-
2{Ci1_T" Ci2 2 2

g = l(_-z"—")"l' mey + N ea. (6)

3¢ = (P + mYeus + n’ess.

By setting the determinant of the coefficients
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equal to zero, we obtain the velocity equation.
Two special cases may be dealt with immediately :

(a) For transmission along the unique axis,
n=1m=1=0,c = cu/p, and ¢ = cufp
are solutions. The first corresponds to a vertically
traveling purely compressional wave (PV) and
the second is a double root corresponding to a
vertically traveling shear wave with horizontal
particle motion. The degeneracy is caused by
the SV and SH waves becoming indistinguish-
able.

(b) For transmission along the z or y direction
or any other direction perpendicular to the
z axis, n = 0, the solutions are

2 (4%

¢ = — compressional, PlIf
p
¢

¢t =" shear, SV
chn — ¢

¢ = H—=% shear, SII

2p

Therefore, measurement along these two diree-
tions will determine four of the five elastic
constants. To determine the fifth we need a
measurement at some intermediate angle. In
particular we can set l = n = 1/4/2, m = 0,
and from the velocity equation obtain

Ci3 = {[21302 - %(Cn + ¢z + 2044)]2
- %(011 - 033)2]]/2 — Cyg4

giving c¢i, in terms of the velocity of the fastest
wave traveling at 45° to the z axis. Solving the
velocity equation for arbitrary !, m, n, we can
determine the directional dependence of the
wave velocities.

In the following we shall use the designations

PV); (P11
ca/p =B (SHy, SVy, SVw); (7
(e — c12)/20 = B, (SHy)
Tor an isotropic body
' =’ =0+ 20)/p

C:m/p == 0'22 CH/P = CY12

and
312 = ﬁzn = I»‘/P

4. Surface waves in an amisotropic layer. Con-
sider now a layer of thickness 2/ with the above
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symmetry overlying a fluid halfspace with
constants p., A.. Take z increasing downward
from the center of the layer. This configuration
will permit us to study the effect of anisotropy
in a relatively simple system for which the
isotropic theory is well developed and for which
experimental data are available. Also, with this
general case in hand we can easily study as
special cases the effect of anisotropy on Rayleigh
and Stoneley waves and on propagation in a
free plate. Later we shall discuss the general
n-layer anisotropic problem and point out how
anisotropy will introduce apparent discrepancics
between Love and Rayleigh wave data as well
as giving erroneous results for Love or Rayleigh
data used alone. Since we shall be interested in
applying the results of our present restricted
problem to a high-speed layer overlying a low-
speed fluid halfspace (the floating ice sheet
problem) we have the additional problem of
leakage for all modes with phase velocitics greater
than the fluid velocity, but this is resolved by
programming our resultant period equation in
complex algebra, thus permitting the location of
complex roots. This, however, introduces no
additional difficulties into our present analysis.

Restricting ourselves to motion in two dimen-
sions (z, 2) we put d/dy = 0, ¢,, = 0, ¢,. = 0.

For surface waves we seek solutions of the type

(x, w) = [Ui(a), W@ (8)

Substitution into the cquations of motion
yields

—p’UR) = —cuk’U(2)

— tklcis + ca) W) + ¢ U (2) )
—pW(2) = e W' (2)

— k(e + c)U'(R) — KeuW(2)

where the primes denote 9/9z.
1 U(z) = Uerizand W(z) = iWe e, then

—p’U = —¢;, U+ bv,GW 4 c,° U
—p,sz = C33V.'2W - ICV{GU - kZC«“W

(10)

where G = €11 + ca.
The condition that nonzero rovots of equation
10 exist is

(C“V,rz - Cukz -+ 1’1602)(’53:(1’.‘2 - ’CzC“ + /)lwk)

4 G 0 (11)
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The explicit values of »2 are
where
M;> = M® — 4 Macyey,.
M, = ci3(pe” — cnnk’)

+ cu(pw’ — cisk’) + K6 .
M, = (p* — enk®)(pw® — c“kz).
For an isotropic body equation 12 becomes
v? = (K — o’/ad), v = (K — /8%,
o =N+ 20/, B =u/p

so that » reduces to the form associated with a
pure compressional wave and »: reduces to that
for a pure distortional wave.

For a given »; the displacement ratios in the
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in the solid, and

U* Uue—v z

Il

(148)
W* = —('/k)Uwe™""”
in the liquid, where »? = (k* — w¥/e*) and
(X*2 = )\Q/p;z.
The boundary conditions are
oW au
7);.=(7;;3’(,)‘;+Cl33;=0; Z=—]]
ow
pz.t = C44<9(;(z£ + ::;;) = 0; 2= _II
(15)

pzz=0; p:z=p*22; W= W*; z= I{

Substituting equations 14 into equations 15
gives

Ul[""‘)’ll’lf‘:m + ('lzxk]'\‘hlh” + Hz[’YnVJC:x:; - C::xk](»"w»” + U:;[_Vz’Yz(-‘:x:; + f‘l:zk]-\‘]“’::”

+ Ulvryscss — cisklehw, Il = 0

Ufv, + kyJehw JT + Uy[—v, — kyJstw, Il + Usvy + voklchvo Il + U,[—vy — yok]shw, H = 0
Ullywiesm — ¢ sk]shv i + L"'.'[C:sﬂ’x”l — cuklehw, H + Uslvacssy, — cisk]shw, I

+ L'4[033V2'Yz - C]_3k]ChV211 —+ l]0 % [kl _ V/2]e—v’11 = 0

(16)

Uilviklehw I + Uskyisho  H + Uskyochv, H + UskysshvoH + Uple”” " =0
Uilv, + kv el H + Uy, + ky shw Il + Uslvs + ky,Jehw. 1T + Uiy, + ky,]shwdI = 0

solid are

((/_) _ k.G
W/, (o — ek 4+ p,w"z)
_ (e — Keow + p0’) 1 (13)
kv, ( ¥ K
W, =~v.U.

For isotropic media v, = w/k, y» = k/v.. We
therefore take as our solutions

U= Ushz+ Uyxhv,z
+ Usshwsz + Uschw,z
W = iy, Uichviz + vy, Ussho,z

(14a)

+ v, Uschvz + &y, Ushvoz

The condition that the determinant of the
coefficients vanish is the period equation

H Qushw, (11, Tushwochy, — LT chv,shy))
+ Ay sl (T T shonehw,
— II,T.shvychy))
+ I, Qichw, (1L, Tochw,shy,
— ILTyshvychy,)
+ A ILchw, (LT shv.chy,

—~ I, Dushvichwy) = 0 (17)

where
r, = [—'YIVJCM + Clzk]; I, = [Vn + k’Y:] (]S)
Ty = [—vsyscss + ciuk]; 1y = [ + k.|
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Ay = v'Tushey + A7 (K — »,%)chy,
Az = v'Tychry + Ayi(K — v, )l
Q= v'Tushv, + Ayo(K* — 0" )cho,
Q = v'Tochvy, + Nvo(K — »/")shv,

For an isotropic layer this yields the period
equation given by Press and Fwing [1951].

The asymptotic form of equation 17 for short
wavelengths is

(lez - Hzrl)[V’(lez - Hzrl)

+ )‘2(k2 - V1,2>(H1'>’2 — Iy)] =0 (17a)

It will later be shown that the first factor is
the Rayleigh equation for anisotropic media and
the second factor is the Stoneley equation for
the interface between an anisotropic solid and a
fluid.

5. Free plate. I p, is set equal to zero, the
factors of the period equation are

(tanh v H)"1
tanh VzII

= [”1 + k'Yl][Vﬂ’zCss - Clsk] — IL1I,
['YleCss - Clsk]["z + 'sz] I, I,

the upper sign corresponding to antisymmetrical
waves and the lower sign corresponding to
symmetrical waves in a free plate.

In the long wavelength limit this becomes

(19)

(/]! = TL,IL,/T, 10, (20)
For symmetrical waves this gives
033(Pw2/k2) — (c11Cas — 0213) =0 (20a)

We can also derive the long wavelength limit
for symmetrical waves from plane stress theory.
Taking as before the zy plane parallel to the
surface of the plane and propagation in the
x direction, we have

9p,./0x = p 8°u/dt’ (21)

Eliminating dw/0dz from the first and third of
equations 3 yields

2
CiC33 — €13 Ou

= 22
Pes - 9 (22)
Therefore
82u C11C33 — 6213 aZu
Gu _fufs ZC130U 23
P 8!2 C33 62:“ ( )

2957
and the plate velocity c, is given by

(ﬁ\f’:m - ('213)//[)":;:( (24)
in agreement with (20a).

This derivation will serve as a check on the
low-frequency limit of our ensuing calculations.
Note that the plate velocity does not depend
only on the horizontal compressional and SV
velocities, as we may have suspected for the
long wave limit, but involves the constants in
the vertical and intermediate directions as well.
This can lead to plate velocities which are out-
side the range possible for an isotropic solid, a
fact which holds true also for the rest of the
dispersion curve. This is related to the fact that
directional Poisson’s ratios in an anisotropic
solid can exceed 0.5.

For waves short compared with the layer
thickness, the hyperbolic tangents can be
replaced by unity, giving

FzHl—P1H2=O (25)

for both symmetrical and antisymmetrical waves.

This is, again, the Rayleigh equation for
anisotropic media. A more detailed discussion of
the free anisotropic plate is in preparation
(I. Abubakar, personal communication).

6. Rayleigh and Stoneley waves. Consider an
anisotropic halfspace with the above properties.
Assume solutions that decrease exponentially
with depth (z is positive downward and the solid
lies in the top halfspace):

U= U™ -+ Uzge'™

W = iviUie”"" + 17, Use”™”

The »; and <, are the same as were derived
previously for the general case. Applying the
condition of a traction free surface we obtain
the period equation

R = _F1H2+F2H1=O (27)

This is the ~Rayleigh equation for transversely
isotropic media first derived by Stoneley [1949].
It reduces in the case of isotropy to

R=[w"4+ k) — dvpmk’ =0 (28)

For Stoneley waves we assume motion dying
off into both the fluid and the solid. Assume
equation 26 for motion in the solid, and, for
the fluid.

2
¢, =

(26)

Ue™"'*
— (' /k)Ue™""

U* =
W =

(29)
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Applying the conditions of a stress free inter-
face and continuity of vertical displacement, we
obtain the Stoneley period equation,

(B — %) LT, — ILIY
= 30
v Y. Il — .11, ( )
T'or isotropy this goes into
R+6=0 (31)
where
*
=L - 1) (32
Pl Y

This is the form of the Stoneley equation given
by Press and Ewing [1951]. When p. = 0, we
obtain the Rayleigh equation. Thus, as we indi-
cated earlier, the high-frequency limit of
the fundamental symmetric and antisymmetric
modes of a free plate is the Rayleigh velocity.
A floating plate has two branches of the funda-
mental mode, one corresponding to the Rayleigh
velocity and the other to the Stoneley velocity.

7. Love waves. In a layered transversely
isotropic medium Love waves exist independently
of Rayleigh waves; that is, there is no coupling
between motions of Rayleigh and Love types
for waves propagating in a plane perpendicular
to the unique axis. This is the lowest symmetry
for which this coupling does not, in general, exist.

Considering a free layer and taking the axes
as before, we see that the equations of motion
can be satisfied by putting w = w = 0,3/dy = 0.
T'or waves of the Love type we take

V(z)ei(wt—l.-x)

-
= [wshiz + vchiz)]e’ ™ (32)
and ubtain the reduced wave equation
0%/08 = (N — ¢“pwhk’/ 1L (33)
0 that
&= (N = p)E/L (34)
where N = (cn — ¢w)/2, L = cu. When

L= N = p= pB2, we have isotropy and
&= = w'/8)
The houndary conditions are
p.y = LWwdz=0 at z= 4]/

These conditions lead to the period cquation
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tanh 2kH[(N — p’)/L]"? = 0 (35)

If pcz < N, no roots of the above equation
exist. Therefore we must have pc? > N, or
¢t > B2 The period equation can therefore be
written

tan 2kH(N/L)'*[(¢°/B:") — 11" =0 (36)
Equation 36 is satisfied if
2kH(N/L)"[(*/8") — 11
= nr where n=0,1,2"-- (37)

which is the Love period equation for a free
anisotropic plate.

This differs by a factor of (N/L)'/? from the
isotropic Love wave period equation. Note that
¢ = B:1s always a solution. The above derivation
also holds for an anisotropic layer in contact
with a fliid layer on one or both sides.

As Stoneley [1949] has pointed out, it is the
modulus ¢, that resembles the isotropic rigidity
for Rayleigh wave motion, whereas the corre-
sponding modulus for Love wave motion is
(cu — c¢12)/2. This holds true for layered ani-
sotropic media in general and will make the
velocity structure as determined for Rayleigh
wave data inconsistent with Love wave informa-
tion unless the anisotropy is taken into account.

For an anisotropic layer of thickness 2H with
constants L;, N;, and 8. over an anisotropic
halfspace with constants L., N, and B* we
obtain for Love waves

2 1/2 1/2
N
s 2k11(£§—- 1) [ﬁ‘]
IR VR L,

B [L2N2]1/2[1 _ ((»'2/5*2)]”2
~ LL.N, /B, — 1

In the corresponding isotropic case N = L = g,
and we recover the Love equation in familiar
form. Stoneley’s (1949] derivation of the ani-
sotropic Love equation is apparently in error.

It can be shown that the period equation
expresses the condition of constructive inter-
ference between multireflected plane SH waves.
T'his condition may be written, for the free plate,

(38)

4H cos 0 = nl,

where 0 is the angle the ray makes with the
vertical and [, is the wavelength measured along
the ray. The velocity of SH waves satislies the
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equation
pB8(6) = I’N + »°L (39)

With the substitutions B(8)/c = sin 6,
k = 2w sin 6/1, 82 = L/p, and B2 = N/p
we can write for equations 38 and 39

) 2 1/2
L _ 2kHe [1 _ B_C@] (38a) -

()

L ¢

0 =L oS,

#0) = 3 ¢\

Substitution of (39a) into (38a) gives the
period equation

2kH(N/L)[(&*/8°) — 11'* = nrr

8. Numerical results. The gencral period
equation (17) was programmed for the Cal Tech
Computing Center’s Burroughs 220 electronic
digital computer, using a complex root-finding
subroutine developed by Phinney [1961]. Modifi-
cations were built into the program, making it
possible to solve for the symmetrical and anti-
symmetrical modes in a free plate and to evaluate
the Rayleigh and Stoneley equations.

We have calculated the dispersion of Rayleigh-
type waves in plates for three solids which
exhibit hexagonal symmetry: (a) beryl, (b) ice,
and (¢) a laminated solid. These results, of
course, apply also to any anisotropic solid having
the same relationship between the elastic con-
stants as one of the above examples.

Beryl was chosen in order to extend Stoncley’s
results to a free plate. Ice was chosen as an
example of a solid which exhibits a rather strong
anisotropy and because lake icc commonly forms
with a vertical c-axis (the unique axis) orienta-
tion. The other axes are randomly oriented, but
since they are all cquivalent the result is a
large plate having the properties of a single
crystal. Sea ice and some lake ice form with a
c-axis horizontal orientation. Here again we
have a large plate with transverse isotropy, but
the effective elastic constants are not the same
as for a single crystal. A finely laminated solid

1 +7—]I\§>4 (390)

(40)
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is transversely isotropic with the unique axis
normal to the laminations; the effective elastic
constants of a laminated solid must obey certain
ordering rules which restricts the extent to which
anisotropy may be approximated by layering.
Table 1 gives the elastic constants used in
computing these three cases.

To show more clearly the effect of anisotropy
we have also calculated the dispersion for
equivalent isotropic ice, that isa = a;, 8 = B,
and for some intermediate cases.

For convenience we introduce the following
‘anisotropy factors’:

— . 2 _ 2
© = Caz/Cn ie. a = ooy

¢ = (Cll - 012)/2’344 i.c. 612 5622

n = (Cn - 2044)/013

Isotropic media haveg = & = 9 = 1.

Figure 1 shows the cffcet on the fundamental
symmetric mode? (M,;) of increasing all of the
anisotropy factors from below 1 to the values
attained by anisotropic ice. For this kind of
anisotropy, i.e. ¢, & and % increasing, the dis-
persion curve migrates uniformly toward higher
phase velocity. Note the shift of the Airy phasc.
The low-frequency limit of A, for an isotropic
plate satisfics ¢2/82 = 4(1 — (2/a?). Therefore
(c,/B) < 2. For an anisotropic plate with the
constants of ice, (24) gives (¢,/B) = 2.045.
This agrees with the numerical evaluation of the
general period equation.

Stoneley [1949] has previously noted that the
Rayleigh veloeity for an anisotropic solid can be
higher than that for a Poisson solid. We¢ note,
in addition, that it can be higher than is theoreti-
cally possible for an isotropic solid. This is true
in particular for solids with the constants of
beryl and ice. Therefore, both ends of My are
greater than the theoretical maximum under the
assumption ef isotropy.

(41)

2 We follow Tolstoy and Usdin’s [1953] mode
designation convention. See also Kwing, Jardclzky,
and Press [1957, p. 283].

TABLE 1. Elastic and Anisotropic Parameters Adopted for Computation
.Material C11/Cas C33/Cas c1a/Cas ci3/caa ¢ £ n o(g/cm?)
Beryl 4.13 3.62 1.47 1.01 0.88 1.33 0.47 2.7
Ice 4.70 4.96 2.27 1.60 1.05 1.21 1.69 0.917
Layered 4.54 3.32 1.64 1.31 0.73 1.45 2.06 2.4
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Fig. 1. Effect of anisotropy on M, in a transversely isotropic plate.

To pursue this point further we have plotted
in Figure 2 the variation in the phase velocities
of the four lowest modes of an isotropic plate
as Poisson’s ratio changes from 0.25 to 0.5, the
latter case indicating incompressibility. The
data are from Saté [1951]. It is of interest to
note that Poisson’s ratio has a much greater
cffect on the symmetrical than on the anti-
symmetrical modes. This is to be expected since
we have effectively held 8 constant while changing
a, and the M, modes are chiefly compressional
in nature while the 3/, modes tend to couple with

My (ICE) '

|

an ideal free shear mode [Tolstoy, 1957]. Plotted
for comparison are the four lowest modes for ice
and M, for beryl. All the modes except Ma (the
flexural mode), which is not drawn, and the
low-frequency end of M, for beryl are well
outside the theoretical limit of isotropie plates.
M, for ice deviates slightly from isotropic values
at both ends.

In Figure 3 are shown the complete results for
ice, for M, through M,. Note the negative
group velocity tail on M;,. This phenomenon
has been discussed by Tolstoy [1957], who

3

Fig. 2. TRange of existence of M, through M,

wH 4
B

for 1{ < ¢ < Y in isotropic plates and location

of corresponding modes for anisotropic plates.
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Fig. 3. Dispersion in a free anisotropic plate with the properties of ice.

attributes it to a negative phase velocity rather
than to an actual backward propagation of
energy.

Figure 4 gives the results for a laminated plate
consisting of alternating layers of sandstone and
limestone in the ratio 3 to 1. The effective elastic
constants for waves long compared with the
lamination thickness in this medium have been
computed by Postma [1955] and are listed in
Table 1. The anisotropy factors are ¢ = 0.733,
£ = 1450, and 5 = 2.0576, making the ani-
sotropy of this material quite different from that

of beryl or ice. Note the pulling down of the
group velocity minimum and, in particular, the
accentuated negative group velocity tail.

The Stoneley wave equation was evaluated
numerically for p,/p; = 1.12 (the water to ice
density ratio) and several a*/B; ratios. As in
the isotropic case, the Stoneley veclocity is
always a fraction of the slower of o*, 3, but for
the constants tested it is a larger fraction than
for the corresponding isotropic case. For ex-
ample, when a*/83; takes on the values 0.79
0.9, 1.0, 1.1, and 1.2, the Stoneley velocity

|

e

o

B
Tig. 4.

Dispersion in a laminated plate.
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csr/ B is 0.70, 0.74, 0.76, 0.78, and 0.79 for the
anisotropic case and 0.67, 0.71, 0.72, 0.74, and
0.75 for the isotropic case.

9. Matrix formulation of the gemeral problem
of a layered medium. Following Haskell [1953]
we now show how the solution of the wave
propagation problem in a single anisotropic
layer leads naturally to the n-layer problem.
The normalized velocities and stresses in the
mth layer can be written (understanding an
eilwt=kz) factor):

w/e = [thshy, 2U,, + thchv, 2175,
+ ikshvy, Us, + ikchv,,2Us,,]

w/e = [—kychv 22U, — kyy,shy 20U,

— kya,chws,2Us, — kys,shw,, 22U, ]

2

7:: = L(’yl,,l'.“ Zm Fm]‘)“hyl ZI/

L

ANDERSON

— F.k)chw,,2U,,

+ i(Venb2n Cn
Pe: = Lo, + kyi,)chw,2Us,

+ L., + kyi)shy 2 Us,

+ L., + va.k)chv,, 2Us,

+ L,.(vs,, + vo,k)shws,2U,, (42)

where €, L, and F arc the elastic constants cj;,
€ss, and ¢i;. The boundary conditions to be met
at each solid-solid interface are that these four
quantitics be continuous.

Taking z = 0 at the interface (m — 1), we
can write the linear relationship between the
motion stress veetor and the displacement
cocflicients as

(W /) W

W, l/(’ Pzem vy Doz 1)

/m( (/my "my va; Z",) (43)
+ i((jm’Ylmylm - I"mk>('.]l/vlmz(/2m ’ ’
\Vh(‘-l'(‘, ((/l, (]2, []3, []4)711 ((]m) " t my Am)’
+ i(ye, 2, Con — FLE)shv,,2U,,, and where 7, is the matrix
) 0 ik 0 ik |
| — kv, 0 — ke 0
B, = ' Yen (14)
0 W(Cv i1, — Fok) 0 W(Cops,ye, — Fok)
i
LL,(v,, + kvy.) 0 L., + kv.,) 0
Setting 2 = d, we can write the relationship between the motion stress vector of the mth
interface and the U/,,:
(/s W)y Poiy Doin) = Dol Uiy Voo Wois Zn) (45)
where D, is the matrix
ikshv,,, d, ikehw,,, d,,
T —kyi,.chvy,, d, —kyy 5w, d,,
i iy, 1 nCn — Fok)slw,,d,}  i(Coyivn, — Fuk)elw,d,}
L Lm(ylm + k’eru)Cthm dm LnA(V]m + k'Yxm)sthm dm
1kshys,, d.,, thehw,,, d,,
—kys, chv,, dn — kv, shv,, d.
’Y-—m 2m ’Yz". V‘Zm (46)
{'L.(Vzm'Yz,,. C, — ka)ShV‘z,,.dm} {'i<C1y;Vz,,,72 " F,,,k)(‘hl/_;" d, }

Lm<V2m + ‘Yka)ChVZm dm

Lm(DZm + 72mk)3h1’2m dm -
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The cocllicients U7; may be eliminated between
equabions 43 and 46, giving a linear relationship
between the motion stress vector at the hottom
and the top of the mth layer:

(u,,‘/C, wm/c) p:Zm} pzzm)

= DmEm—‘l(ka-,/C, wm—l/CJ p::m—” P;:m—.)
(47)

Applying (47) recursively we may carry our
solution down through a stack of n layers. The
development follows that of Haskell, and the
properties of the matrices arc the same as he
discusses. By suitable alterations existing com-
puter programs for isotropic layers can be
modified to handle anisotropic layers.

Calculations for the n-layer problem will be
presented in future papers.
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