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Elastic wave propagation in sinusoidally corrugated waveguides

Sourav Banerjeea� and Tribikram Kundub�

Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Arizona 85721

�Received 15 November 2005; revised 12 January 2006; accepted 13 January 2006�

The ultrasonic wave propagation in sinusoidally corrugated waveguides is studied in this paper.

Periodically corrugated waveguides are gaining popularity in the field of vibration control and for

designing structures with desired acoustic band gaps. Currently only numerical method �Boundary

Element Method or Finite Element Method� based packages �e.g., PZFlex� are in principle capable

of modeling ultrasonic fields in complex structures with rapid change of curvatures at the interfaces

and boundaries but no analyses have been reported. However, the packages are very CPU intensive;

it requires a huge amount of computation memory and time for its execution. In this paper a new

semi-analytical technique called Distributed Point Source Method �DPSM� is used to model the

ultrasonic field in sinusoidally corrugated waveguides immersed in water where the interface

curvature changes rapidly. DPSM results are compared with analytical solutions. It is found that

when a narrow ultrasonic beam hits the corrugation peaks at an angle, the wave propagates in the

backward direction in waveguides with high corrugation depth. However, in waveguides with small

corrugation the wave propagates in the forward direction. The forward and backward propagation

phenomenon is found to be independent of the signal frequency and depends on the degree of

corrugation. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2172170�

PACS number�s�: 43.20.Fn, 43.20.El, 43.20.Bi �TDM� Pages: 2006–2017

I. INTRODUCTION

In recent years acoustic frequency filters are gaining

popularity in the field of vibration and noise control and in

acoustic bandgap analysis. The structures are being designed

with periodic geometries to create acoustic bandgaps at de-

sired frequencies. For the efficient design of such structures

and correctly interpreting the experimental results with these

structures, a complete understanding of elastic wave propa-

gation in periodically corrugated structures is necessary. An-

other application of this study is in the nondestructive evalu-

ation of different aerospace structures, components of

integrated smart structures with nonplanar boundaries and

civil structural components �rebars, pipelines, etc.�.
The wave propagation analysis in structures with planar

and curved boundaries has been the subject of numerous in-

vestigations for over five decades. The analytical solution of

wave propagation in structures with nonplanar boundaries

and interfaces has been the topic of investigation in the last

three decades �Nayfeh et al., 1978; Boström, 1983, 1989;

Standström, 1986; Fokkemma, 1980; Glass and Maradudin,

1983; El-Bahrawy, 1994a, 1994b; Banerjee and Kundu,

2004; Declercq et al., 2005�. Stop bands and pass bands of

the Rayleigh-Lamb symmetric modes in sinusoidally corru-

gated waveguides have been studied by El-Bahrawy �1994a�.
Only recently, generalized dispersion equations for periodi-

cally corrugated waveguides have been studied and solutions

for both symmetric and antisymmetric modes in a sinusoi-

dally corrugated waveguide have been presented �Banerjee

and Kundu, 2006a�.
In this paper a complete problem with a corrugated

waveguide and two ultrasonic transducers is solved. The

complete problem involves excitation of the corrugated plate

by bounded acoustic beams that are generated by ultrasonic

transducers of finite dimension �see Fig. 1�a��. To solve this

complete problem, appropriate modeling of the bounded

acoustic beams in addition to the wave propagation modeling

in corrugated plates is necessary. Modeling of ultrasonic and

sonic fields generated by planar transducers of a finite di-

mension is one of the basic problems in textbooks �Rayleigh,

1965; Morse and Ingard,1968; Schmerr, 1998; Kundu, 2004�.
A good review of the earlier developments of the ultrasonic

field modeling in front of a planar transducer can be found in

Harris �1981�. A list of the more recent developments in this

field of research has been given by Sha et al. �2003�. The

pressure field in front of a planar transducer in homogen-

eous isotropic materials has been computed both in the

time domain �Stepanishen, 1971; Harris, 1981; Jensen and

Svendsen, 1992� and in the frequency domain �Ingenito and

Cook, 1969; Lockwwod and Willette, 1973; Scarano et al.,

1985; Hah and Sung, 1992; Wu et al., 1995; Lerch et al.,

1998�. In addition to the ultrasonic field modeling in isotro-

pic materials, progress has been made in the modeling of the

ultrasonic radiation field in transversely isotropic and ortho-

tropic media as well �Spies, 1994, 1995�. Most of the above-

mentioned investigations are based on Huygen’s principle,

where the total field is obtained from the linear sum of point

sources distributed over the transducer. The integral repre-

sentation of this field is known as the Rayleigh-Sommerfield

integral. Another technique based on the Gauss-Hermite

beam model for ultrasonic field modeling in anisotropic ma-
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terials with a paraxial approximation was proposed by New-

berry and Thompson �1989�. Since numerical integration is a

time-consuming operation, Wen and Breazeale �1988� pro-

posed an alternative approach. They computed the total field

by superimposing a number of Gaussian beam solutions.

They have shown that by superimposing only ten Gaussian

solutions, the field radiated by a circular piston transducer

can be modeled. Schmerr �2000� followed this approach to

compute the ultrasonic field near a curved fluid-solid inter-

face. Later Spies �1999� and Schmerr et al. �2003� extended

this technique to a homogeneous anisotropic solid and water

immersed anisotropic solid, respectively. Although a signifi-

cant progress has been made in the ultrasonic field modeling

in a homogeneous medium, the effect of curved interface

with gradually varying curvature near an ultrasonic trans-

ducer of finite dimension has not been studied extensively

yet. Recently Schmerr �2000� and Schmerr et al. �2003� stud-

ied the ultrasonic field near a fluid-solid curved interface.

Spies �2004� studied the effect of the interface on the ultra-

sonic wave propagation in an inhomogeneous anisotropic

medium with the farfield approximation. These investigators

followed multi-Gaussian beam modeling approach. Although

this technique has some computational advantage it also has

a number of limitations similar to those of other paraxial

models. For example, it cannot correctly model the critical

reflection phenomenon; it cannot model a transmitted beam

at an interface near grazing incidence. This technique also

fails if the interface has different curvatures �gradually vary-

ing curvature�, or when the radius of curvature of the trans-

ducer is small, as observed in acoustic microscopy experi-

ments with its tightly focused lens. A detail description of the

limitations of the multi-Gaussian paraxial models can be

found in Schmerr et al. �2003�.
The technique based on the DPSM �Distributed Point

Source Method�, proposed by Placko and Kundu �2001,

2004� avoids the above-mentioned limitations and does not

require any farfield approximation. In this technique, one

layer of point sources are distributed near the transducer face

and two layers are placed near the interface. The advantage

of the DPSM technique is that it not only avoids the paraxial

FIG. 1. �a� Sinusoidally corrugated

waveguide between two transducers—

geometry for the DPSM analysis. �b�
Sinusoidally corrugated waveguide

showing different parameters consid-

ered for the analytical solution.
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approximation it also does not require any ray tracing. The

DPSM technique can handle complex geometries of the in-

terface and the transducer. All methods developed before

DPSM for the ultrasonic field radiation modeling near an

interface requires ray tracing. The ray tracing technique be-

comes cumbersome in the presence of multiple interfaces

while such geometries can be easily modeled by the DPSM

technique �Banerjee, Kundu, and Placko, 2006�.
The DPSM technique for ultrasonic field modeling was

first developed by Placko and Kundu �2001�. They success-

fully used this technique to model ultrasonic fields in a ho-

mogeneous fluid, and in a nonhomogeneous fluid with one

interface �Lee et al., 2002; Placko et al., 2002� as well as

multiple interfaces �Banerjee, 2005�. The interaction between

two transducers for different transducer arrangements and

source strengths, placed in a homogeneous fluid, has been

studied by Ahmad et al. �2003�. The scattered ultrasonic field

generated by a solid scatterer of finite dimension placed in a

homogeneous fluid has also been modeled by the DPSM

technique �Placko et al., 2003�. Recently the method has

been extended to model the phased array transducers �Ah-

mad et al., 2005�. All these works modeled the ultrasonic

field in a fluid medium. Only recently, the method has been

extended to model the ultrasonic fields inside solid structures

with planar boundaries �Banerjee and Kundu, 2006b�. In the

current paper the ultrasonic field in a sinusoidally corrugated

waveguide has been modeled by the DPSM technique. The

details of this modeling, as described in the subsequent sec-

tions, are quite challenging because of the continuous varia-

tions of the curvature of the fluid-solid interface. Numerical

results for corrugated waveguides showing forward and

backward propagations of guided waves depending on the

degree of corrugation are reported here for the first time in

the literature.

II. THEORY

A. Problem geometry

A symmetrically corrugated sinusoidal waveguide is

considered. On two sides of the waveguide Fluid 1 and Fluid

2 are used as the coupling fluids that transmit ultrasonic

waves from the ultrasonic transducers to the waveguide �see

Fig. 1�a��. To model the ultrasonic field inside the waveguide

and the fluid, the DPSM technique �Placko et al., 2001; Lee

et al., 2002; Ahmad et al., 2005� is employed. Following the

basics of the DPSM technique, four sets of point sources are

distributed on both sides of the waveguide, as shown in Fig.

1�a�. Point sources are also distributed behind the transducer

faces. Transducer sources are denoted as AS and AR in Fig.

1�a�. AS ,AR ,A1 ,A2 ,A1
*, and A2

* are the source strength vec-

tors for the sources distributed near the transducer surfaces

and two interfaces �see Fig. 1�a��. The period of corrugation

of the sinusoidal waveguide is D and the depth of corruga-

tion is equal to � �see Fig. 1�b��.

B. Matrix formulation

The particle velocity and pressure in fluids at the inter-

faces can be expressed in matrix form �Kundu, 2004�. Let T1

and T2 be two different sets of target points in the fluid

below and above the Interfaces 1 and 2, respectively. The

velocity at the target points can be written as

VT1 = M�T1�SAS + M�T1�1A1, �1�

VT2 = M�T2�RAR + M�T2�2*A2
*. �2�

Similarly, the pressure fields at the target points are

PRT1 = PRT1
s + PRT1

1 = Q�T1�SAS + Q�T1�1A1, �3�

PRT2 = PRT2
s + PRT2

2*

= Q�T2�RAR + Q�T2�2*A2
*. �4�

Elements of the matrices written in Eqs. �1�–�4� are given in

Kundu �2004�.
Boundary surfaces of the sinusoidal waveguide are non-

planar. At every point of the interface, normal stress and

normal displacement are to be defined to satisfy the continu-

ity conditions across the interface. The direction cosine of

the sinusoidal waveguide at any point on the surface can be

defined as n= �n1e1+n2e2�. Projections of unit normal �n� on

x1 and x2 axes are given in Eqs. �5� and �6�, respectively,

n1 =

2��

D
sin�2�x1

D
�

��2��

D
�2

sin2�2�x1

D
� + 1�1/2

, �5�

n2 =
1

��2��

D
�2

sin2�2�x1

D
� + 1�1/2

. �6�

Point sources needed for modeling isotropic solids are dif-

ferent from those used for fluid modeling. Every point

source for the solid modeling has three different force com-

ponents in three mutually perpendicular directions. For a

point source acting at y in an isotropic solid, the stresses

developed at point x have been expressed by Banerjee �2005�
and Banerjee and Kundu �2006b�. Assuming a point force

acting along the x j direction, stresses at point x on the bound-

ary of the sinusoidal waveguide can be written as

�
j = 	

�11
j �12

j �13
j

�21
j �22

j �23
j

�31
j �32

j �33
j 
 . �7�

The transformation matrix at point x is

T = 	
n2 − n1 0

n1 n2 0

0 0 1

 . �8�

Therefore, transformed stresses at point x is
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��
j = T�

jTT = 	
n2 − n1 0

n1 n2 0

0 0 1

	

�11
j �12

j �13
j

�21
j �22

j �23
j

�31
j �32

j �33
j 


�	
n2 n1 0

− n1 n2 0

0 0 1

 = 	

�11�
j �12�

j �13�
j

�21�
j �22�

j �23�
j

�31�
j �32�

j �33�
j 
 . �9�

To define the boundary conditions at point x, one normal

stress, perpendicular to the sinusoidal boundary surface and

two shear stresses, parallel to the boundary surface are

needed. Considering a set of M point sources distributed on

the sinusoidal surface, the normal stress and the shear stress

components can be defined as

S22� = �
m=1

M

���22�
1�mP1

m + ��22�
2�mP2

m + ��22�
3�mP3

m�

= �
m=1

M

s22�
m� P

4�
�m

, �10�

S21� = �
m=1

M

���21�
1�mP1

m + ��21�
2�mP2

m + ��21�
3�mP3

m�

= �
m=1

M

s21�
m� P

4�
�m

, �11�

S23� = �
m=1

M

���23�
1�mP1

m + ��23�
2�mP2

m + ��23�
3�mP3

m�

= �
m=1

M

s23�
m� P

4�
�m

. �12�

Displacements at point x generated by a point source acting

at point y in an isotropic solid can be obtained from Mal and

Singh �1991�. The displacements at x due to the point force

acting along the x j direction are denoted as G1j, G2j, and G3j.

Considering the same point force along the x j direction, the

normal displacement of the sinusoidal solid surface at x can

be written as

un
j = G1jn1 + G2jn2. �13�

Considering a set of M point sources distributed on the in-

terface, the normal displacement at point x on the sinusoidal

surface can be written as

un = �
m=1

M

��G11n1 + G21n2�mP1
m + �G12n1 + G22n2�mP2

m

+ �G13n1 + G23n2�mP3
m� = �

m=1

M

GnmPm. �14�

Let T be a set of target points in the solid. Normal dis-

placements at these points �T� on the sinusoidal surface can

be written in the following form:

unT = DSnT1*A1
* + DSnT2A2. �15�

Similarly transformed normal stress and shear stresses at the

target points �T� on the sinusoidal surface can be written as

s22T� = S22
T1*� A1

* + S22T2� A2, �16a�

s21T� = S21
T1*� A1

* + S21T2� A2, �16b�

s23T� = S23
T1*� A1

* + S23T2� A2. �16c�

Matrices DSnTS and S22TS� are given in the Appendix �see

Eqs. �A1� and �A2��. Similarly S21TS� and S23TS� can be ex-

pressed. Subscripts T and S denote sets of target and source

points, respectively.

In a fluid medium, the displacement components at point

x generated by a point source at y are expressed as follows

�Banerjee, 2005�:

u1 =
1

4���2�1

r
ik fR1eikfr −

eikfr

r2
R1� , �17�

u2 =
1

4���2�1

r
ik fR2eikfr −

eikfr

r2
R2� , �18�

u3 =
1

4���2�1

r
ik fR3eikfr −

eikfr

r2
R3� , �19�

where R j = �x j −y j� /r, j takes values 1, 2, and 3.

Using the direction cosines �ni� of the normal vector to

the corrugated surface, the displacement component normal

to the corrugated interface at point x can be written as

u fn = u1n1 + u2n2. �20�

Following the same rule in presence of transducers �see Fig.

1�a��, the displacement of the fluid at Interfaces 1 and 2 can

be written as

UnI1 = ��DF2�I1�S�n2 + �DF1�I1�S�n1�AS + ��DF2�I1�1�n2

+ �DF1�I1�1�n1�A1, �21�

UnI2 = ��DF2�I2�R�n2 + �DF1�I2�R�n1�AR

+ ��DF2�I2�2*�n2 + �DF1�I2�2*�n1�A2
*, �22�

or

UnI1 = DFn�I1�SAS + DFn�I1�1A1, �23�

UnI2 = DFn�I2�RAR + DFn�I2�2*A2
*. �24�

Matrix DFnTS is given in the Appendix �Eq. �A3��, where T

and S denote sets of target and source points, respectively.

Let us consider a set of target points on “Interface 1”

�then the set of target points will be denoted as I1� and the

transformed normal stress and shear stress matrices for the

referenced target points can be written as

s22I1� = S22
I11*� A1

* + S22I12� A2, �25a�

s21I1� = S21
I11*� A1

* + S21I12� A2, �25b�
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s23I1� = S23
I11*� A1

* + S23I12� A2. �25c�

Similarly, on Interface 2, the set of target points are denoted

as I2 and the transformed normal and shear stresses on the

sinusoidal surface can be written as

s22I2� = S22
I21*� A1

* + S22I22� A2, �26a�

s21I2� = S21
I21*� A1

* + S21I22� A2, �26b�

s23I2� = S23
I21*� A1

* + S23I22� A2. �26c�

Inside the solid at interfaces I1 and I2, the normal displace-

ments can be written as

unI1 = DSn�I1�1*A1
* + DSn�I1�2A2, �27�

unI2 = DSn�I2�1*A1
* + DSn�I2�2A2. �28�

C. Boundary and continuity conditions

Across the fluid-solid interface the displacement compo-

nent normal to the interface should be continuous. Also, at

the interface, the transformed normal stress �s22�� in the

solid and pressure in the fluid should be continuous.

Whereas, the shear stresses at the interface must vanish. Let

the normal velocities at the transducer faces be VS0 and VR0,

for the lower and upper transducers, respectively. The bound-

ary conditions at the transducer faces are

MSSAS + MS1A1 = VS0, �29�

MR2*A2
* + MRRAR = VR0. �30�

At the interfaces, from the continuity of the normal stress,

Q1SAS + Q11A1 = − S22
11*� A1

* − S2212� A2, �31�

Q22*A2
* + Q2RAR = − S22

21*� A1
* − S2222� A2. �32�

Continuity of the normal displacement gives

DFn1SAS + DFn11A1 = DSn11*A1
* + DSn12A2, �33�

DFn22*A2
* + DFn2RAR = DSn21*A1

* + DSn22A2, �34�

and from the vanishing shear stress condition at the fluid-

solid interface,

S21
11*� A1

* + S2112� A2 = 0, �35�

S23
11*� A1

* + S2312� A2 = 0. �36�

Equations �29�–�36� can be written in matrix form,

	
MSS MS1 0 0 0 0

Q1S Q11 S22
11*� S2212� 0 0

DFn1S DFn11 − DSn11* − DSn12 0 0

0 0 S21
11*� S2112� 0 0

0 0 S23
11*� S2312� 0 0

0 0 S23
21*� S2322� 0 0

0 0 S21
21*� S2122� 0 0

0 0 S22
21*� S2222� Q22* Q2R

0 0 − DSn21* − DSn22 DFn22* DFn2R

0 0 0 0 MR2* MRR



�2N+8M�x�2N+8M�

, �
AS

A1

A1
*

A2

A2
*

AR



�2N+8M�

=�
VS0

0

0

0

0

0

0

0

0

VR0



�2N+8M�

, �37�

or

�MT���� = �V� . �38�

D. Solution

The vector of source strengths of the complete system

can be obtained from Eq. �38� by taking inverse of �MT� and

multiplying it with the vector �V�,

��� = �MT�−1�V� . �39�

After calculating the source strengths, the pressure, velocity,

stress, and displacement values at any point can be obtained.

E. Analytical solution of wave propagation in
sinusoidally corrugated waveguide

The analytical solution for the complete problem geom-

etry including the waveguide and two transducers as shown

in Fig. 1�a� is not available. However, the problem of guided

wave propagation in a corrugated plate as shown in Fig. 1�b�
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can be solved analytically. Wave propagation in corrugated

waveguides with small corrugation, where the perturbation

method can be applied, was first studied by Nayfeh et al.

�1978�. This solution cannot be used in many practical ap-

plications when the corrugation height is not necessarily

small in comparison to the plate thickness. The analysis of

wave propagation in electromagnetic waveguides with a high

degree of corrugation was studied by Boström �1983�. Later,

Standström �1986� discussed stop bands in sinusoidally cor-

rugated waveguides by applying the null-field approach, de-

veloped by Waterman �1975�. Standström �1987� compared

different techniques for the corrugated plate analysis.

The elastic wave propagation analysis near sinusoidally

corrugated fluid-solid interface by the modal superposition

technique has been discussed by Fokkemma �1980�. Al-

though a number of researchers have studied the electromag-

netic wave propagation near surface grating and in corru-

gated waveguides, not many investigators have studied the

problem of elastic wave propagation in corrugated plates.

The problem of elastic wave propagation in a sinusoidally

corrugated waveguide has been considered by El-Bahrawy

�1994a� for only symmetric Rayleigh-Lamb modes. A classi-

cal modal technique was adopted for this analysis. In El-

Bahrawy’s study the dispersion equation was developed for

only symmetric modes. Stop bands and pass bands of the

symmetric modes were studied extensively by El-Bahrawy.

In this paper the analytical solution is adopted from El-

Bahrawy’s �1994a� work. The dispersion relation for the

symmetric modes in a sinusoidally corrugated waveguide is

presented in Eq. �40�. The parameters �� ,D ,h� used in the

following equations are defined in Fig. 1�b�:

Tij� j = 0. �40a�

Therefore, for nontrivial solutions of � j,

Det�T� = 0, �40b�

where

T1n1m = − i
D

2
� kn

�n

��in−meih�n − im−ne−ih�n�

���4�n − m��
D

�kn + 2�n
2 − ks

2�Jn−m���n� ,

T1n2m = − �in−meih	n − im−ne−ih	n�

��� �n − m��
	n

��ks
2 − 2	n

2� + Dkn	n�Jn−m���n� ,

T2n1m = − kn�in−meih�n + im−ne−ih�n�

��� �n − m��

�n
2 ��ks

2 − 2�n
2� + Dkn�Jn−m���n� ,

T2n2m = − �in−meih	n + im−ne−ih	n�

��−
D

2
�ks

2 − 2�n
2� + 2��n − m�kn�Jn−m���n� .

�40c�

In the above equations, if n and m take values 1, 2, 3, ¼, p,

then i and j take values 1, 2, 3, ¼, 2IpI, �2IpI+1�.
The displacement function can be written as

uk = wkj� j , �41�

where k takes values 1, 2, and 3.

The displacement functions have been given by El-

Bahrawy �1994a�. Equation �40� is solved for a particular

frequency and the eigenvectors corresponding to the wave

number solutions are calculated. The eigenvector solutions

are substituted in Eq. �41� to get displacement mode shape in

the waveguide for a specific mode.

The above analytical solution is for the plane wave

propagation in the waveguide. However, the wave field in the

waveguide for the DPSM modeling is generated by two

bounded acoustic beams. Therefore, perfect matching be-

tween the DPSM generated results and the analytical mode

shapes is not expected. Only a qualitative comparison be-

tween these two results is presented in the following section.

The symmetric transducer placement in the DPSM formula-

tion generates only the symmetric modes in the waveguide.

Hence, only the symmetric mode solutions of the analytical

formulation are compared with the DPSM results.

III. NUMERICAL IMPLEMENTATION

MATLAB 7.1 R-14 and Lapack library functions are used

to generate the numerical results based on the formulation

presented above. The numerical results are presented for the

corrugated aluminum waveguides with Lamé constants 
 and

� equal to 54.55 and 24.95 GPa, respectively, and density

equal to 2.7 gm/cm3. P-wave and S-wave speeds �cp

=6220 m/s and cs=3040 m/s� in the material are obtained

from the above elastic constants. Four different waveguides

are considered in the analysis. Dimensions of the waveguides

are presented in Table I. Comparisons between DPSM and

analytical solutions are presented for Waveguide 2.

Equation �40� is solved numerically for two different

frequencies from the pass band frequencies �El-Bahrway

�1994a��. The ultrasonic fields for these frequencies are also

generated by the DPSM technique. The absolute values of

the horizontal and vertical displacement components com-

puted by these two methods are presented in Figs. 2�a� and

2�b�, respectively. The plots show the displacement varia-

tions along the plate thickness. The displacement fields are

normalized with respect to the horizontal displacement at

x2=0 �see Fig. 1�b��. For comparison purposes the displace-

ment field from the DPSM formulation is generated away

from the transducers to capture the propagating guided wave

modes away from the zone affected by the striking ultrasonic

beams. The displacement fields corresponding to the first two

symmetric modes generated from Eq. �41� are multiplied by

TABLE I. Waveguide geometry �see Fig. 1�b��.

2h � D � /D

Waveguide 1 10 0.5 10 0.05

Waveguide 2 10 1 10 0.1

Waveguide 3 10 1.5 10 0.15

Waveguide 4 10 2 10 0.2
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two weight factors and added to approximately match the

DPSM results. The weighted displacement field is calculated

as

ui = w1ui
1 + w2ui

2, �42�

where ui
1 and ui

2 are displacement components along the xi

direction generated by the fundamental and first higher sym-

metric modes, respectively. Results presented in Fig. 2�b� are

generated with w1=0.68 and w2=0.32. Clearly, the DPSM

results are qualitatively in good agreement with the ana-

lytical solution.

Ultrasonic fields in four different waveguides �see Table

I� are generated by the DPSM technique. A normal incidence

of the ultrasonic beam on a corrugation peak of the wave-

guide is considered first and then the transducers are inclined

at two different angles. Results for three different orienta-

tions of the transducers are presented. Figure 3 shows differ-

ent transducer orientations. The transducer frequency is set at

1 MHz. Figures 4 and 5 show the horizontal �u1� and vertical

�u2� displacement fields, respectively, inside the waveguides.

In these two figures the displacement fields are presented for

Waveguides 2, 3, and 4 �see Table I for their dimensions�.
Figures 4�a�, 4�b�, and 4�c� show the u1 displacement for

normal incidence �transducer orientation is shown in Fig.

5�a�� in Waveguides 2, 3, and 4, respectively. Figures 4�d�,

FIG. 2. Horizontal and vertical displacement variations at 0.35 MHz along the plate thickness obtained by �a� DPSM and �b� analytical solution techniques.

FIG. 3. Transducer orientations �a� Orientation—I: Normal Incidence. �b�
Orientation—II: 30° inclination. �c� Orientation—III: 45° inclination.
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4�e�, and 4�f� show the u1 displacement for 30° striking angle

�transducer orientation is shown in Fig. 3�b�� in Waveguides

2, 3, and 4, respectively. Similarly, Figs. 5�a�, 5�b�, and 5�c�
show the u2 displacement for normal incidence in

Waveguides 2, 3, and 4, respectively, and Figs. 5�d�, 5�e�,

and 5�f� show the u2 displacement for a 30° striking angle in

Waveguides 2, 3, and 4, respectively. It can be seen from

Figs. 4 and 5 that the ultrasonic waves in Waveguide 2 �Figs.

4�d� and 5�d�� propagate in the forward direction, or in other

words, in the same direction as the horizontal component of

FIG. 4. Horizontal displacement fields in three different corrugated waveguides �2, 3, and 4� for two different angles of strike �0° and 30°�. �a� in Waveguide

2 for normal incidence, �b� in Waveguide 3 for normal incidence, �c� in Waveguide 4 for normal incidence, �d� in Waveguide 2 for a 30° inclination angle, �e�
in Waveguide 3 for a 30° inclination angle, �f� in Waveguide 4 for a 30° inclination angle. However, for inclined incidence, more energy is observed in the

backward direction �x�0� in Fig. 4�f� �large corrugation� while the opposite trend is noticed in Fig. 4�e� �small corrugation�. Table I gives waveguide

dimensions.
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the striking beams. In Waveguide 4 �Figs. 4�f� and 5�f�� ul-

trasonic waves in the waveguide propagate in the backward

direction, or, in other words, opposite to the direction of the

striking beams. In Waveguide 3 �Figs. 4�e� and 5�e�� the

wave propagates in both directions. The phenomenon of the

wave propagation in the backward direction in Waveguides 4

and 3 is called “back-propagation.” The back-propagation

phenomenon can be more clearly seen in Fig. 6. Figure 6

shows amplitudes of u1 displacement along the central plane

of the waveguides. In this figure the displacement variations

FIG. 5. Vertical displacement fields in three different corrugated waveguides �2, 3, and 4� for two different angles of strike �0° and 30°� �a� in Waveguide 2

for normal incidence, �b� in Waveguide 3 for normal incidence, �c� in Waveguide 4 for normal incidence, �d� in Waveguide 2 for a 30° inclination angle, �e�
in Waveguide 3 for a 30° inclination angle, �f� in Waveguide 4 for a 30° inclination angle. As expected, symmetric displacement fields are observed for normal

incidence ��a�, �b�, �c��. However, for inclined incidence, more energy is observed in the backward direction �x�0� in �f� �large corrugation� while the

opposite trend is noticed in �e� �small corrugation�. Table I gives waveguide dimensions.
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in all four waveguides listed in Table I are shown. These

displacement fields are generated for three different trans-

ducer orientations, as shown in Fig. 3. Figure 6 clearly shows

the back-propagation of ultrasonic waves �Figs. 6�d� and

6�f�� for large corrugation �� /D=0.2 and 0.15� and forward

propagation �Figs. 6�c� and 6�e�� for small corrugation

�� /D=0.05 and 0.1� when the ultrasonic beam strikes the

plate at an angle. The � /D ratio was carefully changed be-

tween 0.1 and 0.15 to find out for what value of this ratio the

back-propagation starts to dominate. It is found that for the

inclined incidence of the ultrasonic bounded beam on a cor-

rugation peak when � /D�0.11 the ultrasonic waves propa-

gate in both directions with almost equal strength. For � /D

�0.11 the back-propagation dominates and for � /D
0.11

the forward propagation dominates. When the signal fre-

quency in Figs. 4–6 was changed from 1 to 2 MHz, the de-

tails of the figures changed to some extent, however, the

general conclusion about the forward and backward propa-

gation phenomenon did not change. For 2 MHz plots also

�not shown here� it was observed that for � /D�0.11 the

back-propagation dominates and for � /D
0.11 the forward

propagation dominates.

IV. CONCLUSION

Elastic wave propagation in corrugated plates is mod-

eled by the DPSM technique. Displacement mode shapes

FIG. 6. Vertical displacements at the horizontal central planes of four different corrugated waveguides �dimensions are given in Table I� for three different

striking angles �shown in Fig. 3� �a� normal incidence in Waveguides 1 and 2, �b� normal incidence in Waveguides 3 and 4, �c� 30° incidence in Waveguides

1 and 2, �d� 30° incidence in Waveguides 3 and 4, �e� 45° incidence in Waveguides 1 and 2, �f� 45° incidence in waveguides 3 and 4. As expected, �a� and

�b� show the symmetric response for normal incidence. For inclined incidence, �c� and �e� show strong wave propagation in the forward direction for small

corrugation �Waveguides 1 and 2�, while �d� and �f� show strong backward direction wave propagation for large corrugation �Waveguides 3 and 4�.
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generated by DPSM are compared with those obtained ana-

lytically. Good qualitative matching between the two sets of

mode shapes is obtained. This analysis shows that when

bounded acoustic beams strike a corrugated plate at an angle,

the elastic waves can propagate in both forward and back-

ward directions in the waveguide depending on the degree of

corrugation. The back propagation of ultrasonic waves in

corrugated waveguides for large corrugation depth is re-

ported for the first time in this paper.
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APPENDIX:

Matrices expressions:
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m and i take values 1, 2, and 3, except an

imaginary quantity.

Ahmad, R., Kundu, T., and Placko, D. �2003�. “Modeling of the ultrasonic

field of two transducers immersed in a homogeneous fluid using distrib-

uted point source method,” I2M �Instrumentation, Measurement and Me-

trology� Journal; Vol. 3, pp. 87–116.

Ahmad, R., Kundu, T., and Placko, D. �2005�. “Modeling of phased array

transducers,” J. Acoust. Soc. Am. 117, 1762–1776.

Banerjee, S. �2005�. “Elastic wave propagation in corrugated wave guides,”

PhD dissertation, University of Arizona, Tucson, AZ.

Banerjee, S., and Kundu, T. �2004�. “Analysis of wave propagation in sym-

metrically periodic sinusoidal wave-guide,” Health Monitoring and Smart

Nondestructive Evaluation of Structural and Biological Systems, SPIE’s

9th Annual International Symposium on NDE for Health Monitoring and

Diagnostics, March 15–17, 2004, edited by T. Kundu, San Diego, CA, Vol.

5394, pp. 89–98.

2016 J. Acoust. Soc. Am., Vol. 119, No. 4, April 2006 S. Banerjee and T. Kundu: Periodically corrugated waveguide



Banerjee, S., and Kundu, T. �2006a�. “Symmetric and anti-symmetric

Rayleigh-Lamb modes in sinusoidally corrugated waveguides: An analyti-

cal approach,” Int. J. Solids Struct. �in press�.
Banerjee, S., and Kundu, T. �2006b�. “Ultrasonic field modelling in plates

immersed in fluids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control �sub-

mitted�.
Banerjee, S., Kundu, T., and Placko, D. �2006�. “Ultrasonic field modelling

in multilayered fluid structures using DPSM technique,” ASME J. Appl.

Mech. �to be published�.
Boström, A. �1983�. “Passbands and stopbands for an electromagnetic

waveguide with a periodically varying cross section,” IEEE Trans. Micro-

wave Theory Tech. 31, 752–756.

Boström, A. �1989�. “Propagating, damped, and leaky surface waves on the

corrugated traction-free boundary of an elastic half-space,” J. Acoust. Soc.

Am. 85, 1549–1555.

Declercq, N. F., Degrieck, J., Briers, R. and Leory, O. �2005�. “Diffraction

of homogeneous and inhomogeneous plane waves on a doubly corrugated

liquid/solid interface,” Ultrasonics 43, 605–618.

El-Bahrawy, A. �1994a�. “Stopbands and passbands for symmetric

Rayleigh-Lamb modes in a plate with corrugated surfaces,” J. Sound Vib.

170�2�, 145–160.

El-Bahrawy, A. �1994b�. “Point force excitation of surface waves along the

doubly corrugated traction-free boundary of an elastic half-space,” Comm.

Div. Mech. 2.

Fokkemma, J. H. �1980�. “Reflection and transmission of elastic waves by

the spatially periodic interface between two solids �Theory of integral-

equation method�,” Wave Motion 2, 375–393.

Glass, N. E., and Maradudin, A. A. �1983�. “Leaky surface-elastic waves on

both flat and strongly corrugated surfaces for isotropic, nondissipative

media,” J. Appl. Phys. 54, 796–805.

Hah, Z. G., and Sung, K. M. �1992�. “Effect of spatial sampling in the

calculation of ultrasonic fields generated by piston transducers,” J. Acoust.

Soc. Am. 92, 3403–3408.

Harris, G. R. �1981�. “Review of transient field theory for a baffled planar

piston,” J. Acoust. Soc. Am. 70, 10–20.

Ingenito, F., and Cook, B. D. �1969�. “Theoretical investigation of the inte-

grated optical effort produced by sound field radiated from plane piston

transducers,” J. Acoust. Soc. Am. 45, 572–577.

Jensen, J. A., and Svendsen, N. B. �1992�. “Calculation of pressure fields

from arbitrary shaped, apodized, and excited ultrasound transducers,”

IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 262–267.

Kundu, T. �2004�. Ultrasonic Nondestructive Evaluation: Engineering and

Biological Material Characterization �CRC Press, Boca Raton, FL�, Chap.

2.

Lee, J. P., Placko, D., Alnuamaini, N., and Kundu, T. �2002�. “Distributed

point source method �DPSM� for modeling ultrasonic fields in homoge-

neous and non-homogeneous fluid media in presence of an interface,”

Ecole Normale Superieure de Cachan, France, 1st European Workshop on

Structural Health Monitoring, edited by D. L. Balageas �Pub. DEStech,

PA�, pp. 414–421.

Lerch, T. P., Schmerr, L. W., and Sedov, A. �1998�. “Ultrasonic beam mod-

els: An edge element approach,” J. Acoust. Soc. Am. 104, 1256–1265.

Lockwood, J. C., and Willette, J. G. �1973�. “High-speed method for com-

puting the exact solution for the pressure variations in the near field of a

baffled piston,” J. Acoust. Soc. Am. 53, 735–741.

Mal, A. K., and Singh, S. J. �1991�. Deformation of Elastic Solids �Prentice–

Hall, Englewood Cliffs, NJ�.
Morse, P. M., and Ingard, U. K. �1968�. Theoretical Acoustics �McGraw-

Hill, New York�.
Nayfeh, A. H., and Kandil, O. A. �1978�. “Propagation waves in cylindrical

hard-walled ducts with generally weak undulations,” AIAA J. 16, 1041–

1045.

Newberry, B. P., and Thompson, R. B. �1989�. “A paraxial theory for the

propagation of ultrasonic beams in anisotropic solids,” J. Acoust. Soc. Am.

85, 2290–2300.

Placko, D., and Kundu, T. �2001�. “A theoretical study of magnetic and

ultrasonic sensors: Dependence of magnetic potential and acoustic pres-

sure on the sensor geometry,” Advanced NDE for Structural and Biologi-

cal Health Monitoring, Proceedings of SPIE, SPIE’s 6th Annual Interna-

tional Symposium on NDE for Health Monitoring and Diagnostics, edited

by T. Kundu, 4–8 March, Newport Beach, California, Vol. 4335, pp. 52–

62.

Placko, D., and Kundu, T. �2004�. “Modeling of ultrasonic field by distrib-

uted point source method,” Ultrasonic Nondestructive Evaluation: Engi-

neering and Biological Material Characterization, edited by T. Kundu

�CRC Press, Boca Raton, FL�, Chap. 2, pp. 144–201.

Placko, D., Kundu, T., and Ahmad, R. �2002�. “Theoretical computation of

acoustic pressure generated by ultrasonic sensors in presence of an inter-

face,” Smart NDE and Health Monitoring of Structural and Biological

Systems, SPIE’s 7th Annual International Symposium on NDE and Health

Monitoring and Diagnostics, San Diego, CA, Vol. 4702, pp. 157–168.

Placko, D., Kundu, T., and Ahmad, R. �2003�. “Ultrasonic field computation

in presence of a scatterer of finite dimension,” Smart NDE and Health

Monitoring of Structural and Biological Systems, SPIE’s 8th Annual In-

ternational Symposium on NDE and Health Monitoring and Diagnostics,

San Diego, CA, Vol. 5047, pp. 169–179.

Placko, D., Liebeaux, N., and Kundu, T. �2001�. “Presentation d’une method

generique pour la modelisation des capteurs de type ultrasons,” Magnet-

iques at Electrostatiques, Instrumentation, Mesure, Metrologie �I2M Jour-

nal�: Evaluation Nondestructive, Vol. 1, pp. 101–125.

Rayleigh, L. �1965�. Theory of Sound �Dover, New York�, Vol. II, pp. 162–

169.

Scarano, G., Denisenko, N., Matteucci, M., and Pappalardo, M. �1985�. “A

new approach to the derivation of the impulse response of a rectangular

piston,” J. Acoust. Soc. Am. 78, 1109–1113.

Schmerr, L. W. �1998�. Fundamental of Ultrasonic Nondestructive

Evaluation-A Modeling Approach �Plenum, New York�.
Schmerr, L. W. �2000�. “A multi-Gaussian ultrasonic beam model for high

performance simulations on a personal computer,” Mater. Eval. 882–888.

Schmerr, L. W., Kim, H.-J., Huang, R., and Sedov, A. �2003�. “Multi-

Gaussian ultrasonic beam modeling,” Proceedings of the World Congress

of Ultrasonics, WCU 2003, Paris, 7–10 September, 2003, pp. 93–99.

Sha, K., Yang, J., and Gan, W.-S. �2003�. “A complex virtual source ap-

proach for calculating the diffraction beam field generated by a rectangular

planar source,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 890–

895.

Spies, M. �1994�. “Transducer-modeling in general transversely isotropic

media via point-source-synthesis theory,” J. Nondestruct. Eval. 13, 85–99.

Spies, M. �1995�. “Elastic wave propagation in transversely isotropic media

II: the generalized Rayleigh-function and an integral representation for the

transducer field theory,” J. Acoust. Soc. Am. 97, 1–13.

Spies, M. �1999�. ‘transducer field modeling in anisotropic media by super-

position of Gaussian base functions,” J. Acoust. Soc. Am. 105, 633–638.

Spies, M. �2004�. “Analytical methods for modeling of ultrasonic nonde-

structive testing of anisotropic media,” Ultrasonics 42, 213–219.

Standström, S. E. �1986�. “Stopbanda in a corrugated parallel plate wave-

guide,” J. Acoust. Soc. Am. 79, 1293–1298.

Standström, S. E. �1987�. “A comparison of some techniques for corrugated

parallel plate wave guides,” J. Acoust. Soc. Am. 82, 1797–1803.

Stepanishen, P. R. �1971�. “Transient radiation from piston in an infinite

planar baffle,” J. Acoust. Soc. Am. 49, 1627–1638.

Waterman, P. C. �1975�. “Scattering by periodic surfaces,” J. Acoust. Soc.

Am. 57, 791–802.

Wen, J. J., and Breazeale, M. A. �1988�. “A diffraction beam field expressed

as the superposition of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752–

1756.

Wu, P., Kazys, R., and Stepinski, T. �1995�. “Analysis of the numerically

implemented angular spectrum approach based on the evaluation of two-

dimensional acoustic fields. Part I. Errors due to the discrete Fourier trans-

form and discretization,” J. Acoust. Soc. Am. 99, 1139–1148.

J. Acoust. Soc. Am., Vol. 119, No. 4, April 2006 S. Banerjee and T. Kundu: Periodically corrugated waveguide 2017


	Elastic Wave Propagation in Sinusoidally Corrugated Waveguides
	Publication Info

	I. INTRODUCTION
	II. THEORY
	III. NUMERICAL IMPLEMENTATION
	IV. CONCLUSION
	ACKNOWLEDGMENTS APPENDIX:

