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Elastic wave scattering by periodic structures of spherical objects: Theory and experiment
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We extend the multiple-scattering theory for elastic waves by taking into account the full vector character.
The formalism for both the band structure calculation and the reflection and transmission calculations for finite
slabs is presented. The latter is based on a double-layer scheme which obtains the reflection and transmission
matrix elements for the multilayer slab from those of a single layer. As a demonstration of applications of the
formalism, we calculate the band structures of elastic waves propagating in a three-dimensional periodic
arrangement of spherical particles and voids, as well as the transmission coefficients through finite slabs. In
contrast with the plane-wave method, the multiple-scattering approach exhibits advantages in handling spe-
cialized geometries~spherical geometry in the present case!. We also present a comparison between theory and
ultrasound experiment for a hexagonal-close-packed array of steel balls immersed in water. Excellent agree-
ment is obtained.
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I. INTRODUCTION

In recent years, there has been growing interest in cla
cal wave propagation in periodic composite media.1–3 The
study of photonic crystals has led the way,1–3 with the theo-
retical prediction1–3 and experimental realization of photon
band gaps.1 Recently the focus has been extended to
study of acoustic and elastic waves in periodic media4–8

Currently, all elastic wave band structure calculations
based on the plane-wave~PW! approach.4–8 The PW method
exhibits flexibility in handling different types of periodi
structure, but has convergence problems when dealing
systems of either very high or very low filling ratios. Th
PW method is also less effective when dealing with dis
dered systems. Multiple-scattering theory~MST!,9 through
its success in electronic structure calculations for both
dered and disordered systems, shows great promis
complementing the PW approach for the study of ela
wave scattering and propagation in both ordered and di
dered media. MST, usually known as the KKR~Korringa,
Kohn, and Rostoker! approach, was developed mainly fo
the calculation of electronic band structures,9 although it
originated from the study of classical waves~including
acoustic waves!.9 MST, in the spirit of the KKR approach
has been developed for the electromagnetic wave, and
successfully applied to the band structure calculation of p
tonic crystals.3 At the same time, a layer MST theory10 of
electromagnetic waves was also successfully implemente11

thus enabling rigorous calculation of the transmission a
reflection coefficients for a slab of periodically arranged sc
terers, and providing a direct way to compare theory w
experiment. In this paper, we present a rigorous multip
scattering formalism for calculating the band structure
elastic systems, and further extend the layer MST theor
the elastic wave case.

In what follows, the MST equations for the elastic wav
are presented in Sec. II, and the low-energy electron diffr
PRB 620163-1829/2000/62~4!/2446~12!/$15.00
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tion theory for elastic waves is presented in Secs. III and
In Sec. V, we use two sets of examples to demonstrate
application of our formalism. In Sec. VI, we give a compa
son between theory and ultrasound experiment on a sys
of hexagonal-close-packed steel balls immersed in water.
cellent agreement is obtained. Derivation of some identi
is given in the Appendixes.

II. MULTIPLE-SCATTERING THEORY FOR ELASTIC
WAVES

Multiple scattering of elastic waves by particles has be
extensively studied during the last 20 years,12–14 and the
scattering of elastic waves by a periodic array of scatte
has also been studied by some authors.15,16 In this section,
we present MST for elastic waves in its modern form, a
formulates the MST equations so that they are convenien
use in numerical calculations.

In a homogeneous medium, the elastic wave equa
may be written as

~l12m!“~“•u!2m“3“3u1rv2u50, ~1!

wherer is the density andl,m are the Lame´ constants of the
medium. In spherical coordinates, the general solution can
expressed as

u~r !5(
lms

@almsJlms~r !1blmsH lms~r !#, ~2!

whereJlms(r ),H lms(r ) are defined as

Jlm1~r !5
1

a
“@ j l~ar !Ylm~ r̂ !#,

Jlm2~r !5
1

Al ~ l 11!
¹3@r j l~br !Ylm~ r̂ !#, ~3!
2446 ©2000 The American Physical Society
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Jlm3~r !5
1

Al ~ l 11!b
¹3¹3@r j l~br !Ylm~ r̂ !#,

and

H lm1~r !5
1

a
“@hl~ar !Ylm~ r̂ !#,

H lm2~r !5
1

Al ~ l 11!
“3@rhl~br !Ylm~ r̂ !#, ~4!

H lm3~r !5
1

Al ~ l 11!b
“3“3@rhl~br !Ylm~ r̂ !#,

wherea5vAr/l12m, b5vAr/m, j l(x) is the spherical
Bessel function, andhl(x) is the spherical Hankel function
of the first kind. In Eq.~2!, the indexs, ranging from 1 to 3,
stands for three kinds of modes—s51 is for the longitudinal
mode, ands52,3 represent the two transverse modes.
cept for the normalization theJ andH functions are the sam
as the L , M , and N functions employed by Morse an
Feshbach17 and thec functions by Waterman.12 When the
coefficients blms are zero,u(r ) represents the incomin
wave, andalms50 implies thatu(r ) consists of only the
outgoing wave. In a composite medium, the displacemen
each homogeneous region obeys Eq.~1!, and can thus be
expressed in the form of Eq.~2!. By regarding the composite
medium as composed of a host matrix and embedded s
terers, the incident wave for scattereri may be expressed a

ui
in~r i !5(

lms
alms

i Jlms
i ~r i !, ~5!
la
-

in

at-

wherer i is measured from the center of scattereri. The wave
scattered by scattereri may be expressed as

ui
sc~r i !5(

lms
blms

i H lms
i ~r i !. ~6!

According to MST, the wave incident on a given scatte
consists of two parts. One is the externally incident wa
ui

in(0)(r i), which may be expanded as

ui
in(0)~r i !5(

lms
alms

i (0)Jlms
i ~r i !. ~7!

The second part is the sum of all the scattered waves ex
that from scattereri, given by

ui
in~r i !2ui

in(0)~r i !5(
j Þ i

(
l 9m9s9

bl 9m9s9
j H l 9m9s9

j
~r j !, ~8!

wherer i andr j refer to the position of the same spatial poi
measured from scatterersi and j, respectively. WithRi ( j )
denoting the position of scattereri ( j ), we haver j5r i1Ri
2Rj . It may be proved that

H l 9m9s9
j

~r i1Ri2Rj !5(
lms

Gl 9m9s9 lms~Ri2Rj !Jlms
i ~r i !

~9!

~see Appendix A for details!. WhereG is the so-called vector
structure constant, which is essentially the translation ma
given by Bostrom,13 and is given by
Glms l 8m8s8~R!55
Xlml8m8

a
~R!, s5s851

(
m

c~ l1lm2mm!Xlm2m l 8m82m8
b

~R!c~ l 81l 8m82mm!, s5s852,3

2 i S 2l 811

l 811
D 1/2

(
m

c~ l1lm2mm!Xlm2m l 821m82m8
b

~R!c~ l 8211l 8m82mm!, sÞs8;s,s8Þ1.

~10!
d is
he
ion
Xlml8m8
k (R) is the so-called structure constant for sca

waves, defined as

Xlml8m8
k

~R!

54p(
l 9

i l 81 l 92 lCl 8m8 l 9m2m8
lm hl 9~kR!Yl 9m2m8~R̂!.

~11!

HereCl 8m8 l 9m9
lm is an integral,

Cl 8m8 l 9m9
lm

5E E
s
Ylm~V!Yl 8m8

* ~V!Yl 9m9
* ~V!dV. ~12!
rBy defining Gl 9m9s9 lms
i j

5Gl 9m9s9 lms(Ri2Rj ), H l 9m9s9
j (r j )

may be expressed as

H l 9m9s9
j

~r j !5(
lms

Gl 9m9s9 lms
i j Jlms

i ~r i !. ~13!

For a given scatterer, the scattered displacement fiel
completely determined from the incident field through t
scattering matrix. There is a relation between the expans
coefficientsA5$blms

j % andB5$alms
j %:

B5TA, ~14!
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where the scattering matrixT5$t lms l 8m8s8% can be obtained
from the elastic Mie scattering solution of a scatterer.12 Sub-
stituting Eqs.~5!, ~7!, ~13!, and~14! into Eq.~8!, we arrive at

(
j l 8m8s8

S d i j d l l 8dmm8dss8

2 (
l 9m9s9

t l 9m9s9 l 8m8s8
j Gl 9m9s9 lms

i j D al 8m8s8
j

5alms
i (0) .

~15!

This is the final equation for a multiple-scattering system
has the general form of the scalar KKR theory. For a fin
and/or disordered system, we must solve this equation
order to investigate the system response to external pertu
tions. The normal modes of the system may be obtained
solving the following secular equation, in the absence of
external incident wave:

detUd i j d l l 8dmm8dss82 (
l 9m9s9

t l 9m9s9 l 8m8s8
j Gl 9m9s9 lms

i j U50.

~16!

For a periodic system, Eq.~16! may be transformed to

detUdss8d l l 8dmm8dss82 (
l 9m9s9

t l 9m9s9 l 8m8s8
s8 Gl 9m9s9 lms

ss8 ~k!U
50, ~17!

wheres ands8 label the scatterers in the unit cell with pos

tion vectorsos andos8 , andGl 9m9s9 lms
ss8 (k) is defined as

Gl 9m9s9 lms
ss8 ~k!5(

R
Gl 9m9s9 lms~os2os82R!exp~ ik•R!,

~18!

where the sum(R is over all lattice sites. The solution of Eq
~17! gives the band structure of an elastic periodic syste

III. ELASTIC WAVE SCATTERING BY A PLANAR
LAYER OF SCATTERERS

The study of elastic wave scattering by a periodic array
scatterers has a long history.15,16 In this section and the next
we formulate MST in a layer-by-layer approach for calcul
ing the transmission and reflection from a finite slab of pe
odically arranged scatterers. The formulation is an extens
of the formalism of Modinos and co-workers11 developed for
electron and electromagnetic waves, starting with the pr
lem of elastic wave scattering by a planar layer of scatter
In this case, the scatterers are located on sites$Rn% of a
two-dimensional lattice in thex-y plane, i.e.,

Rn5n1a11n2a2 , ~19!

wherea1 anda2 are primitive vectors in thex-y plane, and
n1 ,n2 are integers. For reference, thez axis is assumed to
point to the left of thex-y plane. A plane elastic wave inci
dent on the scatterers may be expressed in general as
t
e
in
a-
y
n

.

f

-
-
n

b-
s.

ua
in6~r !5(

g
uag

in6~r !5(
g

Uag
in6exp~ ikag

6
•r !,

Uag
in63kag

6 50,

ub
in6~r !5(

g
ubg

in6~r !5(
g

Ubg
in6exp~ ikbg

6
•r !,

Ubg
in6

•kbg
6 50, ~20!

kag
6 5~ki1g,6Aa22uki1gu2!,

kbg
6 5~ki1g,6Ab22uki1gu2!, ~21!

where ua
in6(r ) and ub

in6(r ) represent the longitudinal an
transverse plane elastic waves, respectively, the sign1
means incident from the left of the plane~positive z), and
2 means incident from the right of the plane~negativez).
Here,g is one of the two-dimensional~2D! reciprocal lattice
vectors in the plane of the scatterers, andki is a reduced
wavevector in the 2D Brillouin zone of the reciprocal lattic
Thus, the incident plane elastic waves may be expresse

uin~r !5ua
in~r !1ub

in~r !5(
sg

uag
ins~r !1(

sg
ubg

ins~r !. ~22!

The incident elastic waves may be expanded in the sphe
coordinate basis:

uin~r !5(
lms

almsJlms~r !, ~23!

or, more explicitly,

ua
in~r !5(

lm
alm1Jlm1~r !,

ub
in~r !5(

lm
alm2Jlm2~r !1alm3Jlm3~r !, ~24!

where the coefficientsalms , derived fromUag
in6 and Ubg

in6

~see Appendix B for the details!, may be expressed as

alm15(
sg

Uag
ins
•A lm1

gs ,

alm25(
sg

Ubg
ins
•A lm2

gs , ~25!

alm35(
sg

Ubg
ins
•A lm3

gs ,

with A lms
g6 defined as

A lm1
g6 5

4p i l 21~21!m

a
Yl 2m~ k̂ag

6 !k̂ag
6 ,
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A lm2
g6 5

4p i l 11~21!m11

Al ~ l 11!
$@Ml

mYl 2(m11)~ k̂bg
6 !

1Nl
mYl 2(m21)~ k̂bg

6 !# x̂1 i @Ml
mYl 2(m11)~ k̂bg

6 !

2Nl
mYl 2(m21)~ k̂bg

6 !# ŷ2mYl 2m~ k̂bg
6 !ẑ%, ~26!

A lm3
g6 5

4p i l~21!m11

Al ~ l 11!b
kbg

6 3$@Ml
mYl 2(m11)~ k̂bg

6 !

1Nl
mYl 2(m21)~ k̂bg

6 !# x̂1 i @Ml
mYl 2(m11)~ k̂bg

6 !

2Nl
mYl 2(m21)~ k̂bg

6 !# ŷ2mYl 2m~ k̂bg
6 !ẑ%,

andMl
m andNl

m given by

Ml
m5

1

2
A~ l 2m!~ l 1m11!,

Nl
m5

1

2
A~ l 1m!~ l 2m11!. ~27!

In general, the wave scattered by a scattereri may be
expanded as( lmsblms

i H lms
i (r i), which is completely deter-

mined by the incident waves plus the scatterer parame
and geometry. The total scattered wave contains contr
tions from all the scatterers in the plane:

usc~r !5 (
i lms

blms
i H lms

i ~r i !. ~28!

According to the Bloch theorem, we have

usc~r !5(
lms

blms(
R

exp~ iki•R!H lms~r2R!, ~29!

where$blms% are the expansion coefficients~defined above!
for the central scatterer, with the superscript omitted. It m
be proved~see Appendix C for the details! that

B5ZA,

Z5@ I 2TGTr~ki!#
21T, ~30!

whereA5$alms%, B5$blms%, T5$t lms l 8m8s8% is the scatter-
ing matrix for a single scatterer, andG5$Glms l 8m8s8(ki)%
with

Glms l 8m8s8~ki!5(
R

8

exp~ iki•R!Glms l 8m8s8~2R!.

~31!

Here the sum overR covers the whole two-dimensional la
tice, excludingR50. The superscriptTr of G in Eq. ~30!
denotes transposing.

It can be shown~see Appendix B! that

(
R

exp~ iki•R!H lm1~r2R!5(
g

Blm1
g6 exp~ ikag

6
•r !,
rs
u-

y

(
R

exp~ iki•R!H lm2~r2R!5(
g

Blm2
g6 exp~ ikbg

6
•r !,

~32!

(
R

exp~ iki•R!H lm3~r2R!5(
g

Blm3
g6 exp~ ikbg

6
•r !,

where

Blm1
g6 5

2p

S

~2 i ! l 21

a2

Ylm~ k̂ag
6 !

~a22uki1gu2!1/2
kag

6 ,

Blm2
g6 5

2p

S

~2 i ! l 11

bAl ~ l 11!

1

~b22uki1gu2!1/2
$@Ml

mYlm11~ k̂bg
6 !

1Nl
mYlm21~ k̂bg

6 !# x̂2 i @Ml
mYlm11~ k̂bg

6 !

2Nl
mYlm21~ k̂bg

6 !# ŷ1mYlm~ k̂bg
6 !ẑ%, ~33!

Blm3
g6 5

2p

S

~2 i ! l

b2Al ~ l 11!

kbg
6

~b22uki1gu2!1/2

3$@Ml
mYlm11~ k̂bg

6 !1Nl
mYlm21~kbg

6 !# x̂

2 i @Ml
mYlm11~ k̂bg

6 !2Nl
mYlm21~kbg

6 !# ŷ

1mYlm~ k̂bg
6 !ẑ%,

and the sign1 meansz.0 and2 meansz,0. Thus,

usc~r !5ua
sc6~r !1ub

sc6~r !

5(
g

@Uag
sc6exp~ ikag

6
•r !1Ubg

sc6exp~ ikbg
6
•r !#, ~34!

where

Uag
sc65(

lm
blm1Blm1

g6 ,

Ubg
sc65(

lm
~blm2Blm2

g6 1blm3Blm3
g6 !. ~35!

By substituting Eq.~25! into Eq. ~30!, and then substitut-
ing the resulting expression into Eq.~35!, we obtain

Uag
scs5(

s8g8
~Magag8

ss8
•Uag8

ins81Magbg8
ss8

•Ubg8
ins8!,

Ubg
scs5(

s8g8
~Mbgag8

ss8
•Uag8

ins81Mbgbg8
ss8

•Ubg8
ins8!, ~36!

whereM is defined as

Magag8
ss8 5 (

lml8m8
Blm1

gs Zlm1l 8m81A l 8m81
g8s8 ,
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Magbg8
ss8 5 (

lml8m8
~Blm1

gs Zlm1l 8m82A l 8m82
g8s8

1Blm1
gs Zlm1l 8m83A l 8m83

g8s8 !,

Mbgag8
ss8 5 (

lml8m8
~Blm2

gs Zlm2l 8m81A l 8m81
g8s8

1Blm3
gs Zlm3l 8m81A l 8m81

g8s8 !, ~37!

Mbgbg8
ss8 5 (

lml8m8
~Blm2

gs Zlm2l 8m82A l 8m82
g8s8

1Blm3
gs Zlm3l 8m83A l 8m83

g8s8 1Blm2
gs Zlm2l 8m83A l 8m83

g8s8

1Blm3
gs Zlm3l 8m82A l 8m82

g8s8 !.
v

a
h
le
li

sit
Equation~36! may be expressed in matrix form:

FUa
sc1

Ub
sc1G5FMaa

11 Mab
11

Mba
11 Mbb

11GFUa
in1

Ub
in1G1FMaa

12 Mab
12

Mba
12 Mbb

12GFUa
in2

Ub
in2G ,

FUa
sc2

Ub
sc2G5FMaa

21 Mab
21

Mba
21 Mbb

21GFUa
in1

Ub
in1G1FMaa

22 Mab
22

Mba
22 Mbb

22GFUa
in2

Ub
in2G ,

~38!

where Uk
scs and Uk

ins are column matrices andMkk8
ss8 are

square matrices, defined as
Uk
scs5@Ukg

1

scsUkg
2

scs
•••Ukg

N21

scs Ukg
N

scs#Tr, ~39!

Maa
ss853

Mkg
1
k8g

1

ss8 Mkg
1
k8g

2

ss8
•••

Mkg
1
k8g

N21

ss8 Mkg
1
k8g

N

ss8

Mkg
2
k8g

1

ss8 Mkg
2
k8g

2

ss8
••• Mkg

2
k8g

N21

ss8 Mkg
2
k8g

N

ss8

A A � A A

Mkg
N21

k8g
1

ss8 Mkg
N21

k8g
2

ss8
••• Mkg

N21
k8g

N21

ss8 Mkg
N21

k8g
N

ss8

Mkg
N
k8g

1

ss8 Mkg
N
k8g

2

ss8
••• Mkg

N
k8g

N21

ss8 Mkg
N
k8g

N

ss8
4 . ~40!
lud-
cen-
ion

al
Mkk8
ss8 gives the scattering of an incident plane elastic wa

by a planar layer of periodically arranged scatterers.

IV. CALCULATION OF THE TRANSMISSION
AND REFLECTION COEFFICIENTS

To facilitate the derivation of the relevant formulas th
follow, we write the displacement fields on both sides of t
scattering plane in an alternative way. By naming the
side as side 1 and the right side as side 2, the wave trave
from the left to the right on side 1 and that along the oppo
direction may be written as

FUa
1~1!

Ub
1~1!

G5FUa
in1

Ub
in1G ,

FUa
2~1!

Ub
2~1!

G5FUa
sc2

Ub
sc2G1FUa

in2

Ub
in2G . ~41!

Similarly, at the right side, i.e., side 2, we have

FUa
1~2!

Ub
1~2!

G5FUa
in1

Ub
in1G1FUa

sc1

Ub
sc1G ,
e

t
e
ft
ng
e

FUa
2~2!

Ub
2~2!

G5FUa
in2

Ub
in2G . ~42!

Substituting Eq.~38! into Eq. ~41! and Eq.~42!, we obtain

FUa
1~2!

Ub
1~2!

G5F I1Maa
11 Mab

11

Mba
11 I1Mbb

11GFUa
1~1!

Ub
1~1!

G
1FMaa

12 Mab
12

Mba
12 Mbb

12GFUa
2~2!

Ub
2~2!

G ,

FUa
2~1!

Ub
2~1!

G5FMaa
21 Mab

21

Mba
21 Mbb

21GFUa
1~1!

Ub
1~1!

G
1F I1Maa

22 Mab
22

Mba
22 I1Mbb

22GFUa
2~2!

Ub
2~2!

G . ~43!

One should note that all the plane-wave expansions, inc
ing the incident and scattered waves, are referred to the
tral scatterer in the plane. If we shift the center of expans
by 2a3/2 for waves on side 1 and bya3/2 for waves on side
2, wherea3 is the translation vector of the two-dimension
plane in forming a three-dimensional crystal, then
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FUa
1~2!

Ub
1~2!

G5FQaa
11 Qab

11

Qba
11 Qbb

11GFUa
1~1!

Ub
1~1!

G1FQaa
12 Qab

12

Qba
12 Qbb

12G
3FUa

2~2!

Ub
2~2!

G ,

FUa
2~1!

Ub
2~1!

G5FQaa
21 Qab

21

Qba
21 Qbb

21GFUa
1~1!

Ub
1~1!

G1FQaa
22 Qab

22

Qba
22 Qbb

22G
3FUa

2~2!

Ub
2~2!

G , ~44!

where

Qkk8
ss8 5fk

sfk8
s8 dkk8dss81fk

sMkk8
ss8 fk8

s8 , ~45!
a

ol
ou
u
a
re

h
th
ar

in
u
ng
u

nt

nl

al
with matricesfk
s defined as

fk
s5F exp~sikkg

1

s
•a3/2!

�

exp~sikkg
N

s
•a3/2!

G .

~46!

Once theQ matrices for one scattering plane are determin
one can easily obtain theQ matrices of a slab with two
scattering planes.11 The procedure can be repeated to obt
the Q matrices for a slab with 2n scattering planes, withn
being an arbitrary integer. The proper combination of the
slabs enables us to obtain theQ matrices for a slab with any
number of scattering planes.

Once theQ matrices for a slab are obtained, we can co
pletely determine the transmitted and reflected waves fr
Eq. ~44!, given the incident waves. Since the flux for a lo
gitudinal elastic wave is given by (l12m)v(Uag•Uag* )kag
and that for a transverse elastic wave is given
mv(Ubg•Ubg* )kbg , the transmittanceT and reflectanceR
for elastic waves from a slab~with the normal direction
along thez axis! is thus given by
T~R!5

(
g

$~l12m!Uag
trn(re f)

•Uag
trn(re f)* kagz

1 1mUbg
trn(re f)

•Ubg
trn(re f)* kbgz

1 %

(
g

$~l12m!Uag
inc

•Uag
inc* kagz

1 1mUbg
inc

•Ubg
inc* kbgz

1 %

. ~47!
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The requirement for energy conservation implies that the
sorbancej for a system with loss is given by

j512T2R. ~48!

V. NUMERICAL RESULTS AND DISCUSSION

We have performed band structure calculations for g
spheres embedded in a silicon matrix, arranged in vari
periodic structures. It has been shown that for the fcc str
ture there can be electromagnetic as well as elastic b
gaps.1,4 The middle panel of Fig. 1 is the fcc band structu
for the Au/Si composite with a filling ratio of 10%, whic
was reported to have the largest elastic stop band for
system.4 The material parameters used in the calculation
r519.5 g/cm3, cl53.36 km/s,cl /ct52.71 for Au, andr
52.33 g/cm3, cl58.95 km/s,cl /ct51.67 for Si. The cut-
off angular momentum is set atl max53. Convergence was
checked at selected points in the Brillouin zone by us
l max55. Only changes on the order of 0.1% were found
to the maximum frequency shown in the figure, indicati
excellent convergence. For higher filling fractions of A
spheres, a largerl max setting is required. However, excelle
convergence is always obtained (l max57 is good enough for
filling fractions close to close packed!. The calculation is
also reasonably fast. For the case of 10% filling ratio, o
40 min on a Pentium II 400 MHz machine~with 128 mega-
byte memory! is required to complete the band structure c
b-

d
s

c-
nd

is
e

g
p

y

-

culation. Forl max55, which is sufficient for a filling ratio of
60%, only 80 min is required. Our results are noted to co
cide with those of Ref. 4 for the lower frequencies. Howev
at higher frequencies there are some minor differences.
we can see, there is a small absolute band gap at freque
just above 0.6~in units of 2pct /a), first reported by Econo-

FIG. 1. Band structure and amplitude transmission coefficien
elastic waves propagating in a fcc structure formed with g
spheres embedded in a silicon matrix. The filling ratio of sphere
10%. ~a! Right panel: transmission amplitude through 32 laye
along the@001# direction. ~b! Middle panel: band structure of thi
system.~c! Left panel: same as~a!, but along the@111# direction.
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mou and co-workers.4 The transmission calculation for ela
tic waves propagating along the~001! and~111! directions in
this structure with a thickness of 32 layers are shown in
left and right panels of Fig. 1. Excellent agreement is fou
with the band structure. In particular, we note that the siza
directional stop band in the transmission along~001! cen-
tered at about 0.65 units coincides with the correspond
directional gap along theG-X direction in the band structure
In the transmission along~111!, we observe a narrow sto
band at about 0.65 units, corresponding to the small ga
the L point in the band structure at the same frequency.

In the second set of examples, we calculate the ela
wave band structure for a system involving just one so
medium, with periodically arranged spherical voids. Unli
other heterogeneous elastic systems, this system invo
just two intrinsic parameters—the filling ratiof of the voids,
and the ratioct /cl of the longitudinal to the transverse soun
velocities in the host medium. The small number of para
eters means that we can afford to carry out a more comp
search for elastic wave band gaps in this system. Figure~a!
shows the band structure of elastic waves in the fcc struct
for a typical parameter set off50.34, ct /cl50.4. Similar
band structures have been calculated for bcc, hcp, and
mond structures, with void fraction varying from 10%
66%. We do not find a complete gap in this system with
the range of our search. However, deep dips in the densit
states18 do exist, as shown in Fig. 2~b!. By comparing the
density of states with the band structure, we observe tha
the first dip frequency, transverse waves are almost for
den and only the longitudinal modes propagate. Thus in
case the absence of the transverse modes accounts fo
low density of states.

FIG. 2. ~a! The band structure of elastic waves propagating in
isotropic solid with spherical voids arranged in a fcc structure. T
filling ratio is 34%. The velocity ratio of the transverse wave to t
longitudinal wave in the matrix medium is 0.4.~b! The correspond-
ing density of states.
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VI. EXPERIMENTAL RESULTS AND DISCUSSION

To further examine and test the predictions of our MS
approach, we have compared our theoretical calculati
with ultrasonic experiments on a hexagonal-close-pac
~hcp! array of stainless steel beads immersed in water. In
case the water matrix supports only longitudinal waves,
though the full elastic behavior of the steel scatterers m
of course, be included. The samples were constructed u
steel balls that were extremely monodisperse and accura
spherical in shape, with a diameter of 0.80146 0.0005 mm
and a sphericity of 0.25mm. The hcp crystal was prepare
by placing the beads very carefully by hand in an acry
cell having hexagonal sidewalls which were accurately po
tioned to force the first layer of beads to form a defect-fr
triangular lattice. Subsequent layers were added in
ABABAB. . . sequence, in which each layer was co
strained in a triangular arrangement by the beads underne
thus forming a hcp lattice withc axis perpendicular to the
layers. Two slab-shaped samples were prepared, one ha
five and the other ten layers, with each layer containin
sufficiently large number of beads~approximately 6000! that
boundary reflections at the perimeter of each layer could
neglected. The choice of steel beads~with longitudinal and
shear velocitiescl56.01 km/s andct53.23 km/s, and den-
sity r57.673103 kg/m3) and a water matrix (cl
51.49 km/s, r51.03103 kg/m3) ensured that high con
trast was achieved in these ultrasonic experiments on
count of the large difference in their elastic properties.

We used pulsed experiments to directly measure the
trasonic wave field that was transmitted parallel to thec axis
of the crystals, allowing us to determine both the dispers
curve and amplitude transmission coefficient along this
rection. These measurements were accomplished by pla
the samples in a water tank between two planar immers
transducers that were oriented so that the direction of pro
gation was vertical. Thus there was no need for a top wall
the sample, simplifying the boundary conditions. The bott
supporting wall was made sufficiently thick that no multip
reflections in the wall could arrive at the lower sample fa
until after the initial transmitted pulse through the samp
had decayed to below the detection noise threshold. To
sure that the incident pulse was a good approximation t
plane wave, the sample was placed in the far field of
generating transducer, positioned on the bottom of the ta
The receiving transducer was 25 mm in diameter and w
placed sufficiently far above the sample to avoid compli
tions due to multiple reflections between sample and
ceiver. A digital oscilloscope was used to record the sign
averaged time-domain wave forms of the transmitted fi
both with and without the sample in place. Thus it w
straightforward to account for the presence of the supp
wall in making accurate phase and amplitude measurem
of the field propagating through the sample. A typical inp
pulse and the corresponding transmitted field through
ten-layer sample are shown in Figs. 3~a! and 3~b!; note the
marked increase in duration of the transmitted pulse, and
modulation of its shape, due to the interference effe
caused by Bragg scattering within the crystal. Four pairs
broadband immersion transducers were used to measur
transmitted field over a continuous range of frequencies fr
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FIG. 3. Typical input~a! and transmitted~b!
ultrasonic pulses through a ten-layer hcp crys
of stainless steel beads in water. The input pu
shown in~a! represents the pulse that has travel
through the support layer and is incident at t
interface between the support layer and the cr
talline sample. The results obtained by digital
filtering the pulses at a central frequency of 2
MHz and a bandwidth of 0.1 MHz are shown i
~c! and~d!, allowing the phase velocity to be de
termined by measuring the phase delay. For b
the unfiltered and filtered pulses, the data ha
been normalized to center the input pulses at
50 ms, and to scale the vertical axes so that t
peak amplitude of the input pulses is unity.
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below 0.5 MHz to over 4 MHz, corresponding to the fr
quencies at which the lowest band gaps are expected in
crystal.

To determine the band structure, we first measured
phase velocityvp by digitally filtering the transmitted wave
forms using a narrow-band Gaussian filter centered at
quency f 5v/2p and determining the phase delay betwe
the filtered input and transmitted pulses at this frequen
The process was then repeated over the entire frequ
range spanned by the transducers. The filter bandwidth
chosen to be sufficiently narrow that the filtered pulses
tended over a long enough time to incorporate the contr
tions to the net phase from all multiply reflected waves in
sample. Typical examples of the digitally filtered pulses
shown in Figs. 3~c! and 3~d!, for a central frequency of 2.0
MHz and a bandwidth of 0.01 MHz. The phase velocity w
then determined from the ratio of the sample thickness to
measured phase delay between the input and transm
pulses. Since the measurements were performed for
sample thicknesses, uncertainties in the phase shift of m
tiples of 2p could be unambiguously eliminated. Note th
this method of determining the phase delay is equivalen
measuring the phase difference directly from the fast Fou
transforms of the input and transmitted pulses;19 however,
our digital filtering method allows the phase delay to
is
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readily visualized in the time domain, where it can be
garded as a simple generalization of conventional pulsed
trasonic techniques. These measurements of the phase v
ity directly give the dispersion curve,v versusk5v/vp , in
the extended zone scheme. The band structure in the u
reduced zone scheme was then obtained by subtracting
propriate multiples of the reciprocal lattice vectorG001

52p/ck̂ from the wave vector in the extended zone sche
and making use of the symmetry of the dispersion cu

about 6 k̂, where k̂ denotes a unit vector parallel to thec
axis. Our experimental results for the ten-layer sample
compared with the theoretical predictions of the MST theo
in Fig. 4~a!, where the solid squares connected by das
curves represent the experimental data, and the solid cu
represent the theoretical calculations. Overall, the agreem
between theory and experiment is very good over this ra
of frequencies. However, at higher frequencies~not shown!
the agreement is not as good, probably reflecting small
perfections in the crystal that become more important
shorter wavelengths. Other possible reasons for disagree
could be the fact that the experiment was performed o
ten-layer sample, while the theory is for an infinite mediu
and also the possible influence of the support layer in
experiments.
s-
at-

a-

er
tal
-

FIG. 4. Band structure and amplitude tran
mission coefficient of ultrasound waves propag
ing along the@001# direction of a hcp structure
consisting of stainless steel balls immersed in w
ter. ~a! Band structure.~b! and ~c! Amplitude
transmission coefficient through the ten-lay
sample. The upper panel gives the experimen
results~b!, while the lower panel shows the the
oretical calculations~c!. Excellent overall agree-
ment is seen.
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By taking the ratio of the fast Fourier transforms of t
transmitted and input pulses, we also measured the frequ
dependence of the amplitude transmission coefficient. Fig
4~b! shows the experimental results for the ten-layer sam
where we plot the frequency dependence of the transm
amplitude through the crystal sample and its support la
normalized by the amplitude of the pulse transmitted throu
the support layer only. Thus attenuation in the support la
did not add a misleading additional contribution to the m
sured transmission. These results are compared with our
oretical calculations in Fig. 4~c!. To ensure that the theor
and experiment are normalized in the same way, bound
reflections at the input and output faces of the crys
samples were also included in the calculations, using
known phase velocities and densities of the support wall
surrounding water. However, the effects of multiple refle
tions in the support layer were eliminated from the calcu
tions, since they were not measured in our time-resol
pulsed experiments.20 Comparison of Figs. 4~b! and 4~c!
shows that excellent correspondence between theory an
periment is found in the positions of the minima and maxi
in the transmitted amplitude. There is also excellent co
spondence between the positions of the transmission min
and the gaps in the dispersion curve. The small eve
spaced oscillations in the transmitted amplitude arise fr
multiple reflections in the crystal slab; conclusive eviden
for this comes both from the fact that these oscillations w
less closely spaced in the thinner sample~not shown! and
from a calculation of this interference effect based on
measured frequency dependence of the phase velocity in
sample. While the overall structure of the measured tra
mission coefficient is well captured by the theoretical cal
lations, the magnitude of the measured transmission is c
sistently lower, the difference becoming more pronounce
higher frequencies. This difference arises from absorptio
the sample, most likely due to viscous losses at the wa
solid interfaces, an effect that has not been included in
present calculations.

VII. CONCLUDING REMARKS

In summary, we have extended multiple-scattering the
for elastic waves and demonstrated its application to two
of examples. In the first example, we show the applicabi
of our theories through comparison of the band structure
transmission calculations. In another example, we find
elastic wave band gap in the system of an isotropic s
filled with periodically arranged voids. The band structu
and transmission calculations for a hcp array of steel b
immersed in water show excellent agreement with exp
ment.
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Note added. Recently noted that a paper by Kafesaji a
Economou on the acoustic wave KKR approach appeare21
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using the Green’s function formalism. In contrast, our wo
uses a multiple-scattering approach, and the code is suit
for both acoustic and elastic waves. In addition, the form
ism for both transmission and reflection calculations h
been formulated and implemented, thus facilitating comp
son with experiment. We note also that Psarobas, Stefa
and Modinos22 have formulated a layer KKR approach sim
lar to our formulation in Sec. IV.

APPENDIX A

In this appendix, we prove Eqs.~9! and ~10!, where the
vector structure constantGlms l 8m8s8 is defined by the rela-
tion

H lms~r1R!5 (
l 8m8s8

Glms l 8m8s8~R!Jl 8m8s8~r !. ~A1!

It is known that

hl~kur1Ru!Ylm~r1R̂!

5 (
l 8m8

j l 8~kr !Yl 8m8~ r̂ !(
l 9

4p i l 81 l 92 lCl 8m8 l 9m2m8
lm

3hl 9~kR!Yl 9m2m8~R̂!

5 (
l 8m8

Xlml8m8
k

~R! j l 8~kr !Yl 8m8~ r̂ !. ~A2!

Thus, according to the definition ofH lms ,

H lm1~r1R!5
1

a
“@hl~aur1Ru!Ylm~r1R̂!#

5 (
l 8m8

Xlml8m8
a

~R!
1

a
“@ j l 8~ar !Yl 8m8~ r̂ !#

5 (
l 8m8

Xlml8m8
a

~R!Jl 8m81~r !

5 (
l 8m8s8

Xlml8m8
a

~R!d1s8Jl 8m8s8~r !. ~A3!

Comparison of Eq.~A1! with the last line of Eq.~A3! gives

Glm1l 8m8s8~R!5Xlml8m8
a

~R!d1s8 . ~A4!

Now we turn toH lm2(r1R). From the definition Eq.~4! of
H lm2(r ), we get

H lm2~r !52
1

Al ~ l 11!
hl~br !r3“Ylm~ r̂ !, ~A5!

from which we can write

H lm2~r !52 ihl~br !(
m

c~ l1l ,m2mm!Ylm2m~ r̂ !ĵm ,

~A6!

where
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ĵ152
1

A2
~ x̂1 i ŷ!,

ĵ05 ẑ, ~A7!

ĵ215
1

A2
~ x̂2 i ŷ!,

and c( l1l ,m2mm) are the Clebsch-Gordan coefficient
Thus

H lm2~r1R!52 i(
m

c~ l1l ,m2mm!hl~bur1Ru!Ylm2m

3~r1R̂!ĵm . ~A8!

Substituting Eq.~A2! into the above equation and followin
the derivation by Wanget al.,3 we arrive at

H lm2~r1R!5 (
m l 8m8

c~ l1l ,m2mm!

3FXlm2m l 8m82m
b

~R!c~ l 81l 8,m8

2mm!Jl 8m82~r !

2 i S 2l 811

l 811
D 1/2

Xlm2m l 821m82m
b

~R!

3c~ l 8211l 8,m82mm!Jl 8m83~r !G .

~A9!

From Eq.~A9! we obtain

Glm2l 8m82~R!5(
m

c~ l1l ,m2mm!

3Xlm2m l 8m82m
b

~R!c~ l 81l 8,m82mm!,

Glm2l 8m83~R!52 i S 2l 811

l 811
D 1/2

(
m

c~ l1l ,m2mm!

3Xlm2m l 821m82m
b

~R!

3c~ l 8211l 8,m82mm!. ~A10!

To get the expression forH lm3(r1R), we use (1/b)“3 to
act on Eq.~A9!, leading to

H lm3~r1R!5 (
m l 8m8

c~ l1l ,m2mm!

3F2 i S 2l 811

l 811
D 1/2

Xlm2m l 821m82m
b

~R!c~ l 8

211l 8,m82mm!Jl 8m82~r !1Xlm2m l 8m82m
b

~R!

3c~ l 81l 8,m82mm!Jl 8m83~r !G . ~A11!
From this we get

Glm3l 8m82~R!52 i S 2l 811

l 811
D 1/2

(
m

c~ l1l ,m

2mm!Xlm2m l 821m82m
b

~R!

3c~ l 8211l 8,m82mm!,

Glm3l 8m83~R!5(
m

c~ l1l ,m2mm!

3Xlm2m l 8m82m
b

~R!c~ l 81l 8,m82mm!.

~A12!

APPENDIX B

In this appendix, we prove Eqs.~25! and ~26! and Eqs.
~32! and ~33!. First, we introduce an equation that can
obtained from the definitions ofJlm2(r ) and H lm2(r ), and
Eq. ~A6!:

Jlm2~r !52
i

Al ~ l 11!
j l~br !$@Ml

mYlm11~ r̂ !

1Nl
mYlm21~ r̂ !# x̂2 i @Ml

mYlm11~ r̂ !

2Nl
mYlm21~ r̂ !# ŷ1mYlm~ r̂ !ẑ%,

H lm2~r !52
i

Al ~ l 11!
hl~br !$@Ml

mYlm11~ r̂ !

1Nl
mYlm21~ r̂ !# x̂2 i @Ml

mYlm11~ r̂ !

2Nl
mYlm21~ r̂ !# ŷ1mYlm~ r̂ !ẑ%. ~B1!

To prove Eqs.~25! and ~26!, we write

ua
in~r !5(

sg
Uag

insexp~ ikag
s
•r !. ~B2!

By using the identity

exp~ ik•r !5(
lm

4p i l~21!mYl 2m~ k̂! j l~kr !Ylm~ r̂ !,

~B3!

we obtain
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Uag
insexp~ ikag

s
•r !

5S Uag
ins
•

kag
s

a D 1

ia
“@exp~ ikag

s
•r !#

5S Uag
ins
•

kag
s

a D 1

ia
¹S (

lm
4p~21!mYl 2m

3~ k̂ag
s ! j l~ar !Ylm~ r̂ ! D

5~Uag
ins
•kag

s !(
lm

4p i l 21~21!m

a
Yl 2m~ k̂ag

s !Jlm1~r !,

~B4!

which gives

ua
in~r !5(

sg
~Uag

ins
•kag

s !(
lm

4p i l 21~21!m

a
Yl 2m~ k̂ag

s !Jlm1~r !

5(
lm

(
sg

~Uag
ins
•kag

s !
4p i l 21~21!m

a
Yl 2m~ k̂ag

s !Jlm1~r !.

~B5!

Comparing this equation with Eq.~24!, we arrive at the first
lines of Eqs.~25! and ~26!. To prove the second and thir
lines of Eqs.~25! and ~26!, we first write each term of the
expansion

ub
in~r !5(

sg
Ubg

insexp~ ikbg
s
•r !, ~B6!

as

Ubg
insexp~ ikbg

s
•r !5(

lm
@alm2

sg Jlm2~r !1alm3
sg Jlm3~r !#.

~B7!

By multiplying both sides of this equation byJlm2* (r ) and
integrating on a spherical surface using the orthogonal r
tion

E Jlm2~r !•Jl 8m82
* ~r !dr̂5 j l

2~br !d l l 8dmm8 , ~B8!

we obtain

j l
2~br !alm2

sg 5E Ubg
insexp~ ikbg

s
•r !•Jlm2* ~r !dr̂ . ~B9!

From Eqs.~B1!–~B3!, it follows that

alm2
sg 5Ubg

ins
•

4p i l 11~21!m11

Al ~ l 11!
$@Ml

mYl 2(m11)~ k̂bg
6 !

1Nl
mYl 2(m21)~ k̂bg

6 !# x̂1 i @Ml
mYl 2(m11)~ k̂bg

6 !

2Nl
mYl 2(m21)~ k̂bg

6 !# ŷ2mYl 2m~ k̂bg
6 !ẑ%. ~B10!

SinceJlm35(1/b)“3Jlm2, we use (1/b)“3 to act on Eq.
~B7! to obtain
a-

1

b
“3@Ubg

insexp~ ikbg
s
•r !#5(

lm
@alm2

sg Jlm3~r !1alm3
sg Jlm2~r !#.

~B11!

Similarly, we have

j l
2~br !alm3

sg 5E 1

b
“3@Ubg

insexp~ ikbg
s
•r !#•Jlm2* ~r !dr̂

5E i

b
kbg

s 3Ubg
insexp~ ikbg

s
•r !•Jlm2* ~r !dr̂ ,

~B12!

which leads to

alm3
sg 5Ubg

ins
•

4p i l~21!m11

Al ~ l 11!b
kbg

6 3$@Ml
mYl 2(m11)~ k̂bg

6 !

1Nl
mYl 2(m21)~ k̂bg

6 !# x̂1 i @Ml
mYl 2(m11)~ k̂bg

6 !

2Nl
mYl 2(m21)~ k̂bg

6 !# ŷ2mYl 2m~ k̂bg
6 !ẑ%. ~B13!

Substituting Eqs.~B10!–~B13! into Eq. ~B7!, and then sub-
stituting the resulting expression into Eq.~B6!, we arrive at
the second and third lines of Eqs.~25! and ~26!.

We now prove Eqs.~32! and ~33!. We first introduce the
formula ~see Pendry10!

(
R

exp~ iki•R!hl~kur2Ru!Ylm~ r̂2R̂!

5
2p

Sk (
g

Ylm~ k̂!

~k22uki1gu2!1/2
exp~ ik•r !, ~B14!

wherek5(ki1g,Ak22uki1gu2), R is the two-dimensional
lattice translation vector, andg is the reciprocal lattice vec
tor. According to the definition ofH lm1(r ), we have

(
R

exp~ iki•R!H lm1~r !

5(
R

exp~ iki•R!
1

a
“@hl~kur2Ru!Ylm~ r̂2R̂!#

5(
g

2p

S

~2 i ! l 21

a2

Ylm~ k̂ag
6 !

~a22uki1gu2!1/2
kag

6 exp~ ikag
6
•r !.

~B15!

Thus, we obtain the first lines of Eqs.~32! and ~33!. Simi-
larly, by substituting the expression forH lm2(r ), Eq. ~B1!,
into (Rexp(iki•R)H lm2(r ), we obtain the second lines i
Eqs.~32! and ~33!. To obtain the last equations in Eqs.~32!
and ~33!, we write

(
R

exp~ iki•R!H lm3~r !5
1

b
“3S (

R
exp~ iki•R!H lm2~r ! D ;

~B16!

this leads directly to the desired expressions.
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In addition to the externally incident wave, the incide
wave for the central scatterer includes the contributions fr
all the other scatterers in the scattering plane:

(
iÞ0

(
lms

blms
i H lms

i ~r i !

5(
lms

blms(
R

8

exp~ iki•R!H lms~r2R!

5(
lms

blms(
R

8

exp~ iki•R! (
l 8m8s8

Glms l 8m8s8

3~2R!Jl 8m8s8~r !5(
lms

alms8 Jlms~r !, ~C1!

where

alms8 5 (
l 8m8s8

bl 8m8s8Gl 8m8s8 lms~ki!. ~C2!
t
m

For the explicit expression ofGlms l 8m8s8(ki), see Eq.~31!.
The total incident wave for the central scatterer in the pla
is thus( lms(alms1alms8 )Jlms(r ). It follows that

blms5 (
l 8m8s8

t lms l 8m8s8~alms1alms8 !, ~C3!

whereT5$t lms l 8m8s8% is the scattering matrix of the centra
scatterer. To write Eq.~C3! in the matrix form, we have

B5T~A1A8!5T@A1GTr~ki!B#; ~C4!

thus

B5ZA, ~C5!

where theZ matrix is defined as

Z5@ I 2TGTr~ki!#
21T, ~C6!

with I being the unit matrix.
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