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Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport
and vibrations in mesoscopic systems
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The transmission coefficient for vibrational waves crossing an abrupt junction between two thin elastic
plates of different widths is calculated. These calculations are relevant to ballistic phonon thermal transport at
low temperatures in mesoscopic systems and@Her vibrations in mesoscopic oscillators. Complete results
are derived in a simple scalar model of the elastic waves, and results for long-wavelength modes are obtained
using full elasticity theory. We suggest that thin-plate elasticity theory provides a useful and tractable approxi-
mation to the three-dimensional geometry.
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[. INTRODUCTION netic field have been observed and remain unexplained.
Both the possibility of observing the universal thermal
The electronic properties of mesoscopic systems haveonductance and explanations for {Qeof small resonators
been studied experimentally and theoretically for manyinvolve the properties of phonon excitations with a wave-
years. More recently the behavior of other excitations, forength comparable to the system size. Here we investigate a
example, lattice vibrationgphonong and spin degrees of Particular issue relevant to both these questions, namely, the
freedom, have come under study in these systems. In thioupling of vibrational modes across an abrupt junction be-

paper we present results relevant to the issues of heat trarf/€en two blocks of the same material but with different

port by phonons and the dissipation of vibrational modes irflimensions. , , _
mesoscopic systems. The geometry typical of a number of experiments is

The interest in heat transport by phonons in mesoscopiéh{?‘(’j\’g l)nr F;ZIJI.' 1m ;?seenbdr(ledg: frﬁe?qafﬂ)thr: S'gf]%n_'ssglf'crgzt_
systems arises because for easily fabricated devices fhitrae, or gaiiiu \ce, | Y Ing, '

wavelenath of a tvoical thermal bhonon becomes com arablangular cross section. The bridge is connected to two larger
9 yp b P Blocks of the same semiconductor. In thermal-conduction ex-

o the dimension of the thermal'pathway at accessible terT}:’)eriments the block at one end, called the cavity, is also
peratures of order 1 K. Thuguantizedthermal transport due freely floating(and is physically supported by four bridges

to the discrete mode structure of the thermal pathway should,, 4 is of the same thickness. The block at the other end
become evident. Weand other$® showed that this leads to a provides both the mechanical support and a thermal reser-
natural quantum unit of thermal conductarig/h similar  yoir. In recent experimertéthe dimensions were thickness
to the role ofe’/h as a quantum of electrical conductance int=200 nm, widthb=300 nm, and length =5 xm. In vi-
one-dimensional wire$This quantum unit of thermal con- bration experiments the bridge may be supported just at one
ductance is predictédo be clearly observable at low enough end (a cantilever' or at both endsa bean.®*

temperatures where only the acousti®—¢0) vibrational An important question in both thermal transport and os-
modes are excited in the thermal pathway—the waveguideeillator damping experiments is the coupling of the vibra-
like modes with nonzero frequency cutoffs at long wave-tional modes of the bridge to modes in the supports—how
lengths are populated with exponentially small numbers: avell the energy in a mode in the bridge is transmitted to the
universal thermal conductance is predicted equal taupports, and vice versa. We have previously introduced a
NATeréT/3h with N, the number of acoustic modétur

for a freely suspended beam of material, corresponding to a y

longitudinal mode, two bending modes, and a torsional Cavity Reservoir
mode. These predictions were recently verified in beautiful T, X T,
experiments by Schwagt al? s

Vibrational modes in mesoscopic systems are found to Bridge

have anomalously lov® values, compared to larger systems
of the same materi&:** At first sight, the dissipation might

be expected to become smaller as the oscillator becomes
smaller, since defects such as dislocations are eliminated
when the size gets less than a typical defect separation. Thus
the observation of lower values 6 was a surprise. In ad- FIG. 1. Schematic of possible experimental geometry for the
dition, unexpected dependencies on temper&taed mag-  study of thermal transport and oscillations in mesoscopic systems.
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simple scalar model of the elastic waves to study this ques-
tion in the context of thermal transpdrin this paper we
give a more realistic description of the vibrational modes.
First, in Sec. Il, we introduce an improved scalar model,
using a better choice for the boundary conditions on the sca-
lar field that provides a more realistic approximation to the
waves in an elastic medium. The scalar model in its revised
form provides a useful first guide to the expected behavior of
the experimental system, and a simpler environment in
which to develop intuition and methods of theoretical attack.
With the scalar model we perform a complete calculation of
the scattering of the waves at the abrupt junction between the
bridge and the supports for all the modes and at all wave
vectors. We use the resulting transmission coefficients to
evaluate the effect of the abrupt junction on the thermal con-
ductance, particularly the universal low-temperature expres-
sion. In addition we introduce a simple method to calculate
the transmission coefficients for the long-wavelength acous-
tic modes, and compare the results with the general result§iom the reservoir is measured, yielding, for small heating,
In the full elastic calculation we will not be able to calculate the thermal conductance of the bridges. In practice issues
the transmission coefficient for the full range of modes, buisuch as the thermal contact between the electrons in the re-
will be restricted to this type of long-wavelength calculation. sistive heater and thermometer and the phonons, and other
Second we propose that the elasticity theory for a thinthermal pathways to the reservoir such as through the elec-
plate geometry provides a useful semiquantitative descriptrical contacts to the resistive heaters, have to be considered.
tion of the experimental geometry. This is described in Secln this paper we will focus on the ideal situation where the
[ll. The full elasticity theory for the modes in the two- phonon thermal pathway of the bridge dominates the con-
dimensional, thin-plate geometry is sufficiently tractable thatductance.
a complete mode spectrum is readily calculated. On the other In mesoscopic systems it is easy to cool to temperatures
hand, a fully three-dimensional elasticity theory can only bewhere the transverse dimensions of the beam are comparable
attacked purely numerically. The two-dimensional theory reto or smaller than the typical phonon wavelengitt/kgT
produces many important features of a fully three-wherekg is Boltzmann's constanhis Planck’s constant is
dimensional elasticity theory, for example the mixing of bulk a typical speed of sound in the material, ahds the tem-
longitudinal and transverse waves by reflection at boundperature. When this condition is satisfied the discrete mode
aries, the correct behavior of the dispersion relation at longtructure of the thermal pathway becomes evident. Ange-
wavelength and low frequency, including the “bending” lescuet al! showed that the thermal conductance takes on a
modes with the unusual quadratic dispersionk? at long  quasiuniversal form, largely independent of the material and
wavelengths, and regions of negative dispersion in the modmode structure of the beam, on the assumption that the con-
spectra. Thus the results should be more informative than thiect between the modes in the bridge and the cavity and
naive scalar model. The results should be accurate at suffieservoir can be considered ideal. An ideal contact implies
ciently low temperatures where the modes with structurghat the right-going phonon modes in the bridge in Fig. 1 are
across the thickness are frozen out. We use the thin-platgopulated with a thermal distribution at the temperature of
model to investigate the mode structure in the beam, and thidne cavity, and the left-going modes at the temperature of the
coupling of these modes to the supports, also treated as thieservoir.
plates of the same thickness. Finally, in Sec. IV we apply the In a thermal-conductance measurement the cavity and res-
results to the issues of heat transport and oscillations in meervoir are maintained at temperatuiies 6T andT with tem-
soscopic systems. perature differenceST small compared to their mean tem-
perature. If we first look at the transport by the right-moving
phonons, the energy flux is

FIG. 2. Experimental geometry of Tighet al. (Ref. 12.

A. Heat transport

A thermal transport experiment is shown in Fig. 2. Two 1
thermal masses are connected by four thermal pathways of ) *
mesoscopic dimensions in which heat transport by phonons H¢ )_ﬂ % fo dkvgm(K)hom(k)n(om(k), (1)
is the dominant mechanism. One of the thermal masses,
which we call the cavity, is a freely suspended thin block of
semiconductor, with resistive wires on the upper surface tovherek is the wave vector along the bridge,,(k) is the
act as heat source and thermometer. The four bridges act dispersion relation of thenth discrete mode of the bridge,
the thermal pathway to the outside world, as well as meand vyy,=dwy(K)/dk is the group velocity. Transforming
chanical supports. Conceptually, heat is added to the cavitthe integral to an integral over frequencies yields an expres-
by resistive heating, and the resulting temperature differencsion for the heat transport by right-moving phonons
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1 00
HO= S Lmdwﬁwmm)n(wm(k)), @

where w,, is the cutoff frequencyof the mth mode, i.e., the
lowest frequency at which this mode propagat®¥e have

assumed thenth mode propagates to arbitrarily large fre-
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face we would find a thermal conductangeturning to un-
scaled quantities in the integral for clapity

hZ w2eﬁﬁw

K =
kgT?

1 0
% > mem((v)mdw, (7)

quencies. If a particular mode only propagates over a finitévhere7n(w) is the energy transmission coefficient from the
band of frequencies, the upper limit of the integral will be modem of the bridge at frequency into the cavity modes.
replaced byw™.) The key simplification in this result is that Imperfect coupling at the bridge-reservoir junction, and elas-

m

the group-velocity factor is cancelled by the density of state$C Scattering due to imperfections in the bridge, can be simi-
in transforming from an integration over wave numbers to anlarly included through a total transmission matrix as in the

integration over frequencies.

For ideal coupling to the reservoirs the distribution func-

tion n(wy(k)) for the right-moving phonons in Eq2) is
evaluated as the Bose distribution at ttevity temperature

electron case.

A central issue in predicting the thermal conductance is
then to calculate the transmission coeffici@p{w). This is
particularly important in the question of the observability of

T+ 5T. The thermal conductance is given by subtracting thdhe universal conductance at low temperatures, since the

analogous expressiofl(™) for the left-moving phonons
given by Eq.(2), but now with the distributiom(w,(k))
given by the Bose distribution at theservoirtemperaturd

HO(T+6T)—H)(T)

K= lim 5T

6T—0

)

Finally, introducing the scaled frequency variabbte
=hwlkgT gives the expression

scattering of the long-wavelength phonons contributing to
this quantity becomes strong—indeed for the abrupt junction
in Fig. 1, 7(w)—0 asw—0 as we will see below. Al-
though it is feasible in experiment to “smooth off” the cor-
ners, as indeed was done in the experiment of Sctevah,
consideration of the worst-case abrupt junction provides in-
sight into the importance of geometric scattering.

B. Oscillator Q
The Q of an oscillator is given by

KaT
K=— > I(hwy,/ksT), (4) .
h m —1 |E|
wherel is given by the integral w
v y2eY where E is the rate of energy loss from the mode at fre-
X):f y_dy. (5) quencyw containing energ)e. If we consider the oscilla-
x (e¥—1)2 tions of a beam supported by two supports, or a cantilever

. . with one support, and estimate the energy loss as the ener
Eqpatlon(4) demonstrates the important result. that the ProP+ 2 hsmitted Fi)r?to the supports, we find fo%nt/he mate oy
erties of the bridge only enter through the ratio of the mode
cutoff frequencies to the temperatui®,,/kgT. The quan-
tity kéT/h plays the role of the quantum unit of thermal
conductance, analogous to the quantum of electrical conduc-

tancee?/h for one-dimensional wires. At very low tempera- wherev,=dw/dk is the group velocity of a wave propagat-
tures the contribution to the thermal conductance by théng in the beam, andl is the length of the beam. The exact
modes with nonzero cutoff frequency will be exponentially evaluation of this quantity depends on the nature of the mode
small leaving auniversalthermal conductanée (longitudinal, bending, etg. For the longitudinal and tor-

sional modes, which have a linear spectruwm ck, the fre-

©)

1%
-1 g
Qn NE ns

K=N mkgT 6 quency of the fundamental mode in a beam of lerigth of
& 3h 6) ordercw/L, the group velocity is 3=c, and so
where N, is the number of “acoustic” modes, i.e., modes ., T
with frequency tending to zero at long wavelengths. Usually Qn ~ 1 (10

this will be four for the beam(two transverse bending

modes, one longitudinal compressional mode, and a torsion&or the bending waves with a quadratic spectraipk?, the

mode. Note that there iso dependence on the bridge prop- result is more complicated, but tii¢ values are similar, and

erties in this expression. tend to this form for large, so we will use this expression as
More generally we cannot assume perfect coupling bea fairly accurate general estimate.

tween the modes in the bridge and the cavity and reservoir. We see from Eq(10) that good isolation of the modg,

This can be taken into account, following the Landauer ap-—0 is a criterion for highQ. In practice this expression for

proach to electrical conductantéhrough a transmission co- the dissipation may be an overestimate, since we are assum-

efficient for energy to be transported across the interfacesng that all the energy of the mode that enters the support

For example for imperfect contact at the cavity-bridge inter-either dissipates away, or propagates away to large distances

085324-3



M. C. CROSS AND RON LIFSHITZ PHYSICAL REVIEW B4 085324

so that the energy is not returned to the oscillations of the
L A : stress
beam. If this is not the case, the transmission of energy into P
the support is only one part of the problem—we would also A P free
have to consider the behavior of the vibrational energy in the
supports as well.
Il. SCALAR MODEL Q T
As a simple model of the elasticity problem consider a B yT—» b
. ; S X
single scalar fieldp. This might represent, for example, the v
(scalaj “displacement,” and thegvecton “stress” X would R
then be proportional toV¢. We will suppose a two-
dimensional domain corresponding to the thin plate. This
leads to a wave equation
v S
2
M =02V2¢ (11) FIG. 3. Geometry for the calculation of the transmission coeffi-
o2 cient. Stress-free boundary conditions are assumed on the edges as

shown. Angelescet al. used¢=0 boundary conditions on the end
with V2 the two-dimensional Laplacian and giving the PQ andRSof the cavity. A better choice is to use stress-free con-
speed of propagation of the wave. Stress-free boundary comtions here as well.
ditions at the edges are then
general three-dimensional case, if the cavity and bridge have
n-ve¢=0, (120  the same thickness, there is no mixing of theodes, and
R the problem separates into a set of two-dimensional prob-
with n the normal to the edge. Note that this Neumannlems, one for eaclz mode. Here we will only consider the
boundary condition allows the propagation of an acoustidowest mode with no structure across thdirection, which
mode[ w(k—0)—0] in the bridge as we expect for elastic is the only mode excited at low enough temperatures. Let
waves, whereas Dirichlet boundary conditions do not. Any¢(y) and x,(y) be orthonormal transverse modes satisfy-
example of an elastic system described by such a scalafig the stress-free boundary conditions on the edges in the
model is a stretched membrang:would then be the dis- cavity and the bridge, respectivelEor clarity we will de-
placement normal to the membrane an is the vertical note cavity-mode indices by Greek letters, and bridge-mode
force on a unit line in the membrane normal to the directionindices by Roman lettensThe solutions to the wave equa-
n tion take the form

' The scalar problem is sufficiently simple that we can cal- B i (Kx—ot)
culate the transmission across an abrupt junction such as the bm(X,Y, 1) = xm(y)€ (13

cavity-to-bridge junction in full detail. This allows us to gain for the bridge, where the frequency of the magdés given
insight into the more complicated elastic wave problem, anq)y 0?= w2+ c2Kk2 with wm=mmc/b the cutoff frequency of
m

also allows us to illustrate and test approximation schemeg,o minh bridge mode. The form is similar for the cavity

that will be useful there. . modes with the cavity widtB replacing the bridge width.
The model, Eqs(11) and(12), was studied by Angelescu yye il denote the frequency separation between bridge
et al.” using the mode matching method developed by Szafe

and Ston¥ for the analogous electron wave calculation.IlhOOIeS byA:

However, Angelescet al. implicitly used a rather unnatural A=wy,1— wy=mClb. (14)
boundary condition $=0) for the end of the cavity at the

junction planefalthough Eq.(12) was assumed everywhere  Consider a phonon incident on the interface from the cav-
else, i.e., on the edges of the beam and cavity parallel to thigy side (x<0), in the modex of the cavity, and with longi-
propag.ation directioh We .briefly re.view this work, explain  tydinal wave vectok!® . The solutions in the cavity and
how this boundary condition was introduced, and then treagridge, including the reflected waves in the cavity and the

the more natural cadéq. (12) everywherg using the same  ransmitted waves in the bridge, are
methods. This new treatment actually removes a weak loga-

rithmic divergence found in the original treatment, and pro- (©ik® (©) ik _
duces results at low frequencies that are more consistent with ~~ #©=x{Pea *+ > r 5x{Pe s cavity,
the results of the full elasticity treatment. #

A. Model of Angelescuet al. b= tumxm€ ™  bridge, (15
m

Assume a simple two-dimensional geometry consisting of
a rectangular bridge of transverse dimendi@monnected toa  with r,; andt,, reflection and transmission amplitudes to
rectangular cavity of transverse dimensiBnFig. 3. In the be determined. In the above equatiokg, and kﬁf) are the
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wave vectors of the transmitted and reflected waves, respec- ©
tively, given by the frequency matching condition 2Kk, ama:; Anmtan ™ tamKm - (22

w?=c%kD?+ 0P?= A + wi=ck?+ w{)%. (16)  This is a system of equations that determiitgg. In Eq.

) ) (22) the kernelA,, is given by
Note that the sums oven andg in Eq. (15) include evanes-

cent wavesimaginaryk or k{®) although only the propagat-

ing modes will contribute to the energy transport. The fi¢ld Amn= % amﬁanﬁkfec ). (23
and the longitudinal derivativeé¢/dx have to be matched in
the medium ak=0, which leads to the equations These equations may be solved for tfe and then the
flux transmission probability from the Wave-veckfcf) state
ngc)Jr% raﬁXl(BC)=§ X of cavity modea to bridge modam is given by
2 Km
Tom=taml " (24)
k&c)ch) - % ra,BkE}C)Xg:) = % tuzmkm)(m . 17 @

Now summing over all the cavity modes that are propagating

Equations for the reflection and transmission coefficients‘r’l.t frequencyw leads to the “iransport transmission coefil-

are extracted by integrating Eq4d.7) multiplied by a trans- cient” from the cavity to themth mode 7y(w) (for o
verse functiony, or ', and using the orthogonality of the > om) by

functions over the appropriate domain to extract relation- K

ships for the mode coefficients. We first multiply one of the Tn(@)= > Tom= > |tem 2_2‘, (25)
equations with acavity mode x%’, and integrate over the a00<w 20®<w %

cavity width, making use of the orthonormality relation © ) ) )
deXEf)X(ﬁC):5aB- In this section we follow Angelescu with k() andk;, (_w)_ given by I_Eq.(16). This also gives
et all and perform this operation on thiest equation(i.e., ~ the energy transmission coefficient from tieth bridge
the matching equation for the field). It is at this stage that Mode to the cavity, by the usual reciprocity arguments.
the boundary condition on the cavity field at the face0 Equations(23) and(25) involve sums over cavity modes.

for |y|>b/2 is introduced. The replacement in the integration V& may either evaluate the sums directly for a chosen value
on the right-hand side of the width ratioB/b, or take the limit of a large cavity

width B—o when the sums are replaced by integrals. We
B/2 b/2 calculate the matrixA,,, for m,n<N,.x With N,.x Some
J dYX(aC)¢(X:0):>f dyx' 9> tumxm (18 upper cutoff for the number of bridge modes retained and
B2 bl2 m invert theN ,,,X Nimax Mmatrix system numerically to fint,,,

implicitly forces the boundary conditioss(x=0)=0 for ~ &nd henceZy(w). — .
ly|>bi2. There is a simple approximatiththat provides an ana-

Multiplying the first equation in Eq(17) by a cavity lytic form for the S(_)Iution to Eq(22) t_hat is in reason_ably_
mode (), integrating over the cavity width, and using the good agreement with the exact solution. The approximation

orthonormality of the cavity modes leads to derives from three properties af,, . First,a,,,=0 unlesam
and « have the same parity. In other words, even modes

couple to even modes and odd modes to odd modes only.
lap= —5aﬁ+2 tom@mg » (19 Second, as a function af, a,,, is sharply peaked around
m a=mB/b, the width of the peak being of ord&/b. And

where a5 is the overlap of cavity and bridge transverse Nird, @,m must satisfy the completeness relation

functions

b2 2 Ama@na= Omn- (26)

ans= | vt 20 | | | |
—bi2 The first two properties permit the key approximation,

' . namely, thatA,, émn (since the product of two functions

~ Equation(19) may now be plugged into the second equa-peaked at different channeis,n is very small andA,,, is

tion in Eq.(17), and the result is rigorously zero wherm and n are different parity modés

Then we only need the diagonal partAf
Zk(aC)XEYC)_Z 2 tamamﬂk(BC)X,g:)ZE temKmXm >
o 5 A= S a2,k (27)
(21) mm z mpB™B

which, when integrated withy,, over the bridge width,  which is simply a weighted average of the complex wave
yields vector over the narrow range of reflected cavity modes for
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1.0 un WEBIRIP| with m and a integers, with the special cagg(y)=1/\/b
- 1 and xg(y) = 1/\B. Thea,,, are easily calculated:
c
2 0.8 .
£ am,=0 m,a notboth even or odd, (34)
306 -
S b m
— aTT T
[ +—+ 20 4 in —— — ——
g 0.4 P \/E sm( 5B 5 )
@ o—o 80 1 Amg= -] —
§0.2 — 100 Bl amb mm
= *—x 500 | 2B 2
0 é Lt 3 [amb N mar
M2 "2
+—F m,« event0, (35
amb mnw
FIG. 4. Transmission coefficier, coupling the lowest bridge 2B + 2
mode to the cavity modes as a function of the reduced frequency of
the modew/A with A the splitting between bridge modes at zero
wave vector. Curves for cavity wave-number cutoff equal to 20, 40, famb mw
80, 100, and 500 timesb ! (with b the width of the bridgeshow b sin DB 2
the weak dependence on this cutoff. Ama= \/:
B amh mw
which a is significant.(Note Eﬁaﬁqlg: 1 by completenes. 2B 2

In this case Eq(22) separates into _ (awb . mw)
sSinl =+ —

2k9a,= Amitam™ Kt (28) 2B 2
" miam - e e — m,« odd#0, (36)
and then amb mm
2B 2
t 2k®a, 29
oM ALKy lanb
The flux transmission probability from cavity mode to 5ol SN 2R
bridge modem is given in this approximation by 280~ VBl “arb a event0, (37)
km 4K amel? 2B
Tom= [taml? =5 = % (30)
K (Kt K>+ 35,
whereK ,=ReA, andJ,=ImA.,,. The energy transmis- mo=0 m=0, (38)
sion coefficient is
ag=1. (39
O L R "
w)= = .
" 2,00<w (Kt Km)2+\]r2n (Km+ Km)zwLJﬁq For largem,a (both even or both oddve can approximate
(31
We now use the explicit form of the transverse modes to sin( amb M)
evaluateZ,(w). With the boundary conditiod@¢/dy=0 at _ \/B 2B 2
they boundaries we have 8ma= B amb mm (40)

r \/E mamy 2B 2
BCO{_) m even,
(32 The a,,, are indeed sharply peaked as a function of cavity-
E ) m odd mode numberx. The largem approximation is essentially
b ' identical to the result in the electronic cdéedowever the
small, second term in the braces in E{R5) and (36) ig-
2

S( awy) nored in this approximation appears with the opposite sign in

Xm(Y)=

a even, our application. This turns out to render the sum over the
xS(y)= (33)  cavity modesp appearing in Eq(23) weakly (logarithmi-
\Fsin( C”TY) o odd cally) divergent for larges. (Note thalkgc’ is imaginary here,
B ’ so this divergent contribution is to Wy,, and to the compo-
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1.0

Nam-a—a-o-d-0-&F

= |5 ;

. ) T
YT
"GO_J »—x Diagonal approximation 8 i ! i
o 0.6 o——e Matrix Inversion o iy
c 1 < o
.9 .9 i ¢
204 1 3 ;
g | |
< c
= 0.2 1 o

- l_ 1 2
0 1 L 0 R
0 1 2 3 0 1 2 3 4 5
/A /A

FIG. 5. Transmission coefficierf, for the lowest bridge mode FIG. 6. Transmission coefficierfy coupling the lowest bridge

in the Angelescuet al. scalar model calculated using tliexac) mode to the cavity modes as a function of the reduced frequency
matrix diagonalization(pointg and the diagonal approximation /A in the scalar model with stress-free boundaries. The main
(crossesfor a cavity-mode wave-vector cutoff 4® %, with b the graph is for an infinite cavity width. The inset shows the compari-

width of the bridge. The diagonal approximation shows a somewhason with results for a finite cavity widthB=20.21D).

stronger dependence on this cutoff than shown by the exact results,
so that this comparison will vary as we change the cutoff assump-

tion. 1. Mode matching calculation

B. Stress-free ends

We now redo the scalar analysis, enforcing the boundary

nentJ,, of the diagonal termsWe must impose some upper condition n-V¢=0 on the end of the cavitx=0, |y|

cutoff to the sum to achieve finite results. Physically we;ﬁéfé This corresponds to a stress-free boundary every-
might suppose such a cutoff may come from the breakdown The analysis proceeds as before up to €. But now

of the sharp corner approximation at short enough scales, Qfe first muitiply thesecondequation(for the continuity of
ultimately, in a perfectly fabricated mesoscopic system, fromy 4/ %) py X(BC)’ and integrate over the cavity width. This
the atomic nature of the material leading to a finite numbeknforces the boundary condition on the cavity face

of modes.

Results for the transmission coefficient of the lowest ﬁ.v¢:o for x=0 and |y|>b/2. (42
bridge mode/y(w) are shown in Fig. 4. There is only a weak
dependence on the cavity sum cutoff. At small frequenc
To(w) is proportional tow®. The results shown were calcu-
lated for the case of an infinitely wide cavifgums over raﬂk%c):kglc) 5,13—2 tamKm@mg - (42)
cavity modes replaced by integralfesults for finite widths m
(e.g.,B/b=20) are very similar. The first 11 bridge modes Use this equation to eliminate, ; from the first of Eq.(17)
(six even modeswere retained in the matrix inversion for
the results shown: increasing this number did not change the
results significantly showing th&,,, indeed decreases rap- ZX(aC)_; % tan(kn/kg))anﬁxgz):; tanXn  (43)
idly for increasing|m—n|. Note that7;(w) rapidly ap-
proaches unity as the frequency grows. There is a small
(=10%) decrease at the frequenoy- 2A where thesecond
even bridge mode becomes propagating, and similar features 28m,= 2 AmKntant tam. (44)
of reducing size occur at subsequent integral multiples of n
2A. There is no coupling between even and odd modes fojhere
the symmetric geometry used. The comparison between the
results from the full matrix inversion and the diagonal ap- _
proximation is shown in Fig. 5. The diagonal approximation Amn=2 amaana/kg:)' (45)
gives results good to about 10%. However this comparison “
depends on the cavity wave-number cutoff, since the diago-
nal approximation depends rather more strongly on this paAgain we can solve the equation fofy,, Eq. (44), numeri-
rameter than for the full results shown in Fig. 4. Note that thecally or by using the diagonal approximation fAy,,. It is
feature atw=2A due to the interaction between different easily seen that the extra inverse powersk@‘ in A, ren-
bridge modes is absent in the diagonal approximation. der the sum ovew convergent, unlike the case fAg,,. The

yThe orthogonality of thecy) gives

and integrate withy,, over the bridge width to yield
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FIG. 8. Thermal conductivity divided by temperature reduced
FIG. 7. Values of the transmission coefficients from it py the zero-temperature universal valték3/3h as a function of
bridge mode to the cavity as a function @b { w,)/A with o, the  the reduced temperatukgT/%A: solid curve—full calculation in-
cutoff frequency for thexth mode and the spacing between mode ¢|yding the transmission losses due to the abrupt junction for stress-

cutoff frequencie\ = wn;— w, . The long-dashed line shows the free face; long-dashed curve—contribution from the lowasbus-
square-root dependence near cutoff for tie0 modes. The short-  tic) mode, showing the reduction at low temperatures due to the

dashed line is the linear dependenitgw)=2mw/A expected for  gcattering at the abrupt junction; dash-dotted curve—ideal result
the lowest mode. from all modes with full transmission; dotted line—low-

temperature asymptotic slope predicted from the low-frequency be-
energy transmission coefficient from tieth bridge mode  havior of the transmission coefficient. The short-dashed curves
Emain_s given by Eq(25). The diagonal approximation shows the result including scattering of the calculation of Angelescu
Amr=AmmOmn NOW leads to etall

AK K cgvity wid_th closely. Integrating the effect of the transmis-
__mem ’ (46)  sion coefficient in the thermal conductance over the thermal
(KK 1)2+ 32K, factors in Eq.(7) will effectively perform this smoothing, so
o o o o that the features will not be apparent in the thermal measure-
with J,=ReAy, and Kp,=ImAn,. The result forZo(w)  ments. The sharp features are presumably also smoothed out
for the lowest bridge mode is shown in Fig. 6 taking the limitif the junction is not perfectly abrupt. Results f@§(w) for
of an infinite cavity widththe sums in Eq(45), etc., evalu-  other values oh are shown in Fig. 7. It is now straightfor-
ated as integrajsAgain the transmission coefficient grows ward to calculate the thermal conductivity using Eg. We
rapidly, approaching close to unity as the frequency growsfocus on the low-temperature limit where the universal result
for example reaching 0.9 by abowt-0.5A. Note the impor-  for K/T applies in the ideal limit. With no reduction in the
tant difference from the previous scalar model that the lowthermal transport due to scattering at the junction the plot of
frequency asymptotic behavior I;ear, 75(w)>w, rather  K/T as a function of temperature develops a plateau at low
than cubic as obtained there, and%&gw) approaches unity temperatures at the universal vakék3/3h (see Fig. 8. In
more rapidly than anticipated in that work. A small reductionthjs regime the conductivity is dominated by the acoustic
in To(w) (by about 3%) nearo=2A and by smaller mode withw—0 ask—0. Scattering at the junction reduces
amounts at higher integral multiples of this frequency arehe transmission of the small,k waves, so that the value of
apparent. An analysis of the curve in this region shows &/T is reduced from the no-scattering value. As can be seen
square-root dependence an-2A, corresponding to a cou- from Fig. 8 this reduction begins to occur as the temperature
pling in the full matrix calculation to the second bridge js |owered at about the same temperature at which the pla-
mode, and to the square-root growth Th(w) that occurs  teau in the ideal case begins to develop. This suggests that
here. The diagonal approximati¢not shown gives results  the plateau at the universal value KfT will not be well
that are indistinguishable on the figure fos@<2A, but  developed for the abrupt junction. The full calculation using
the small decrease above=2A does not appear in this Eq. (7) and the reduced transmission coefficients of all the
approximation. modes(solid curve in Fig. 8 shows that this is the case—
The inset in Fig. 6 shows the comparison with results fofincluding the effects of scattering at the abrupt junction
a finite cavity width. The results are quite surprising, with yields aK/T curve that tends smoothly to zero®s-0. This
resonancelike features occurring whenever the frequencyesylt clearly demonstrates the importance of using smooth
passes through the cutoff frequency otavity mode. This  junctions between the bridge and the reservoirs, such as was
can be traced to the inverse powerksf occurring in Eq.  done in the experiments of Schwabal.® if the universal
(25) and Eq.(45). Sincek® goes to zero agw— o these  value ofK/T is to be apparent.
singularities are integrable, and the features disappear in the )
limit of infinite cavity width. Smoothing over the features 2. Long-Wavelength Calculation

(e.g., taking the average over bins between successu Although we have performed the full calculation of the
gives points that follow the smooth curve for the infinite transmission coefficient for the scalar case, this will not be

Tn(w)=
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possible for the elasticity-theory calculation. We therefore—1,t=0, i.e., strong mismatch and almost perfect reflection
introduce a simple analytic technique for establishing thewith a sign change. Note thatat0 this implies¢=0, i.e.,
low-frequency limit of75(w) that can be extended to the full zero displacement boundary conditions, together with
elasticity description. d¢pl ax=2ik for unit incident amplitude. We now use this

The approach relies on the poor transmissigfw)— 0 result as the basis of the calculation of the transmissiok for
for ®—0 (long-wavelength waves are strongly affected bysmall but nonzero and the limi&— cc.
the abrupt junctionto treat the transmission perturbatively.  The transmission &+ 0 is calculated as a radiation prob-
First the bridge mode is calculated assuming perfect refledem, namely, via the power radiated by the end of the bridge
tion, i.e., isolated from the supports. A simple analysis showsnto the cavity. The zeroth-order approximation for the solu-
that the appropriate boundary condition on the end of theion in the bridge is the perfect reflection result calculated
bridge is zerodisplacementrather than zero stresdf we  above, giving the stress radiation source on the wall of the
now “reconnect” the bridge to the supports, the stress fieldsavity
at the end face of the bridge act as radiation sources of waves _
into the cavity. The total power in these waves for unit inci- dplox=2ike 't for |y|<b/2,
dent amplitude in the bridge gives us the transmission coef- s(y)= 0 for |y|>b/2, %2
ficient. The total power radiated may be readily calculated by
integrating the product of the stress source and resulting vevhere the second line is just the stress-free boundary condi-
locity across the end face of the bridge. tion

To establish the appropriate boundary conditions in the
To(w)—0 limit we first consider dinite cavity width, i.e., an
abrupt junction between a bridge of widthfor x<0 and a
cavity of finite widthB >b for x>0 in the limit w,k—0. (It
is simplest here to consider the transmission from bridge t
cavity, and we have reversed the sense ofxtmmordinate
compared to Sec. Il B LFor x<0 we consider an incident
wave of unit amplitude and a reflected wave of amplitude

dplox=0 for x=0,y|>b/2. (53

The problem of the radiation due to a stress source on the
goundary of an elastic half space is known as the Lamb
problem in elasticity theory, and has been considered by
many authors, for example, see Ref. 17. The radiation field
can be calculated by standard Fourier-transform techniques.
The solution in the cavity fox>0 can be written as

¢:eikx—iwt+re—ikx—ia)t, x<0. (47) 1 B
For x>0 there is only the transmitted wave ¢:eilwtﬁﬁm¢(§)emxel v, ®4
p=te* 1t x>0, (48 with
Here the wave numbetksare fixed by the dispersion relation s
w=ck, which is the same on both sides of the junction for - Vke-g= for [{]=k, (55
the acoustic mode. iVk2—¢% for |Z]>k

The reflection and transmission amplitudes can be calcu- ) ) .
lated by a simple matching at=0. (This is equivalent to a corresponding to propagation or exponential decay away
wave impedance calculatignMatching the displacement from the interface. The transforg(¢) is given by matching
field ¢ gives to the knownd¢/dx at x=0 yielding

0

1+r=t (49 s(y)e- 1y (56

iq<7><z>=f_

and matching the total force gives

b(1—r)=Bt. (50) The power radiated is the product of the streéggdx and the

velocity d¢/dt across the radiation source
Note that the forcethe integrated stresss conserved be-

cause there are no additional stresses on the cavity face for < fb/Z dp I >
X=

(57)

|y|>b/2: this matching would not be appropriate for the “\ 0t ox

boundary condition used by Angelesetial!
Thus we find where the(---) denotes the time average. For the fields
B—b b varying ase'“! this gives

"B ThiE 5D

r =
(58)

1 ) b/2

. N P=§RE[—Iw ¢(y)S*(y)dy}
These expressions are good fd8,kb<<1. In this limit the b/2
matching conditions can be applied outside of the region ) . )
close to the junction where the fields are perturbed from theilnSerting the Fourier expression fgi(x=0),
asymptotic forms, Eq947) and (48), but before the expo-

. . . - w o0 —_ ] .
nential phase factors of the wave propggatlon have signifi- p= _|mf dgqb(g)f dy st (y)e'®y (59)
cantly changed. FoB>b these expressions reduce rte 4 —o —

x=0
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2 quite complicated, involving the mixing of longitudinal and
. transverse components by reflection at the edges, explicit
expressions for the transverse structure of the modes in terms
(60) - . . ; ;
of a finite sum of sinusoidal functions can be written down.
Since the transverse wave vectois limited by {<k for the =~ Compare this with a full three-dimensional analysis, where a
integrand to be imaginarycorresponding toq real, i.e., finite-dimensional representation of the modes is not pos-
propagating waves in the cavjtyands(y) is nonzero only sible. In addition to the scattering at an abrupt junction pur-
for |y|<b/2, an expansion ilkb<1 is given by the expan- sued here, the thin-plate limit will permit an analysis of phe-

:ilmfc dgi fw s(y)e '¥dy
4 ) 7iQ| ) -

sion nomena such as the scattering of the waves off surface and
bulk imperfections, an issue that is pursued elsewttere.
” —i _ : We first review the general elastic theory for waves in a
s(y)e '¥dy=sy—i{s;+ - - -, 61 _ _ : . .
f_w ) y=So~1és: 61 thin plate, and confirm the expected dispersion relations for

the acoustic modes of a rectangular bgam, the “bridge”)

in the long-wavelength limit, and then use the equations to
study the coupling of long-wavelength modes across the

So:f s(y)dy, (620  abrupt bridge-support junctions.

wheres; are successive moments of the source

A. Review of elastic theory and modes

81=f s(y)ydy. (63 . . S .

The elasticity of an isotropic solid is summarized by the
We will need only the leading-order term, i.esy if the  relationship between the stress ten$aand the strain tensor
source is parity symmetric iy, s, if the source is antisym-
metric. In particular for the present casg=2ikb so that Tij=—KO&;—2u3. (67)

(64) Here® is the dilation and® is the shear strain,

b 1) jkd 4K?
27 )o g\/kz—f'

Normalizing by the power in the incident wag®wk gives @ Mx, Iy Y 684
the transmission coefficient ax dy dz’
4kb (k1
To(w)=— ds. (65) C1fou aup| 1
’ ™ Jo Jk?- {2 %=z 5x T x| 390 (680)

The integral expression faf, can be easily understood ) .
physically as integrating over the power radiated into theVith u(x) the displacement ankl and . elastic constants.
continuum of waves, traveling at the wave propagation speed FOr @ thin plate of thicknesd in the xy plane, linear
¢, and propagating at all angles into the half space. For thglastlc_lty theory can be separated into equations for thg nor-
scalar model there is a single type of propagating wave. Witfnal displacementi,=w(x,y) of the plate and for the in-
the full elasticity theory we will see a similar result, but with Plane displacements averaged over the depilx,y)
a number of propagating waves contributing to the power=(U,v) With u=(ux(x,y,2)), and v=(u,(x,y,2)),, all

radiated. functions of just two spatial variables. This is done by as-
Performing the integral gives suming, for in-plane wave vectokssuch thakd<1, that the
stresses in the vertical directidfy,;, which must be zero at
To(w)=2kb=2wb/c for kb<1. (66)  the nearby stress-free top and bottom surfaces, may be put to

zero everywhere. This allows the variation of the strains
across the thickness of the plates to be eliminated in terms of
the variableau,v,w. For example, settind,, to zero gives

This result confirms thénear dependence ow for small w,
as shown in Fig. 7.

lll. THIN-PLATE THEORY

2
A useful model of the mesoscopic geometry, that is more au K- 3% 00 oo
tractable than a fully three-dimensional elasticity calculation, i (— + —) ) (69
is to assume a thin-plate geometry. Thus we take the elastic oz K+ fﬂ ax gy
structure to be carved from a thin plate of uniform thickness 3

d, which is taken to be small with respect to the other dimen-

sions and also with respect to the wavelength of the elasti¥hus the modes separate into modes with in-plane polariza-
waves. In this model the mode frequency cutoffskatO,  tions, and modes with polarizations normal to the plane
important in the thermal conductance, can be readily calcutflexural modes The full development can be found in any
lated (for most of the modes they are given by simple ana-standard text on elasticity, for example Landau and Lifshitz
lytic expressionk In addition, although the mode structure is or Graff'® Here we collect the main results.
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1. In-plane polarization

Using relationships such as E@9) leads to an effective
two-dimensional elasticity theory for displacements in the

plane, summarized by the stress-strain relationship
TP =-KO@s;—2u3?, (70)

where the indice$,j now run only overx andy, ®@ and

32) are the two-dimensional dilation and shear strain tensor

Ju ou
@__*, 77y
¢ o + oy (71a
1/0u; du; 1
@Q_Z (1, _Ze@gs.
2” 2 ( &XJ &Xi) 2 © 6” (71b)

and the effective two-dimensional elastic constants are

w= (729
—  3Ku
= } 7 (72b)
+§,u

PHYSICAL REVIEW B 64 085324

Rather than using the Poisson ratio directly it is convenient
to introduce the parameter for the ratio of wave speeds

—CL—\/ 2 >1
r—C—T— E .

In terms of the component displacementsy and the pa-
rameterr the elastic wave equation can be written

(78)

1 % 2(92u+(?2u+( 21 v (79
- = PR R r<— ,
c2 a2 ox? 2 axay
1 9% 0% ) 2 o ) ) 2y (79D
— ——=——=+r°—+(r°— .
cz gt2  o9x? 2 axay

A result that we will find useful later is for the component
displacements in the solutions for the propagating waves

Ug(1,—kyy/kry)€'*T X~ transverse wave,

u= : .
Ug(Lkpy/k €' *=eY  ongitudinal wave.

(80)

We note for completeness that in tareedimensional
elastic medium, waves polarized in tkg plane having na

The elastic waves with in-plane polarization are then giverdependence are also described by an effective two-

by the equation of motion
(73

=KV, (V,-u)+uV3uy, (74

dimensional elasticity thg)ry as in E_QYO) but now with

effective elastic constanté =K+ 3, u=pu so thatc?/c3
=2(1-0)/(1-20). The difference in the effective elastic
constants in the two cases arises because in the three-
dimensional medium restricted to malependence, there can

be no expansion in thedirection to relieve the stresses set
up by the strain in they plane. In many elasticity textbooks,

with V, the horizontal gradient operator. In a horizontally the “two-dimensional elasticity” and “thin-plate theory”
infinite’ sheet there are longitudinal and transverse wavediscussed correspond to this case. We can relate these results

with speeds
S
cE=K:”=47“ i , (758
K+§/.L
Sy (75b)
p P

Alternatively, introducing Young’s modulug and the Pois-
son ratioo (with —1<o=<3) so that

Ke— 5 L E 76
T 3(1-20) M 2(1¥0) (76)
we have
c’= E (779
" op(1-a?)’
2 E 77b
2Ty o

to the thin-plate geometry we are considering by appropri-
ately transforming the effective elastic constants.

For a finite plate we must apply stress-free boundary con-
ditions at the side edges

n.-T@=o, (81)

with n the normal to the edge. For waves propagating in the
x direction in a long finite plate of widtlb the no-stress
boundary condition at the edges of the platgat=b/2 are

therefore
Ju  Jdvu
@_g=pgl =4+ &
Ty =0 ;(0y ax)’

dv Jou
2)_n= 27 2_9y__
Tyy=0=pulr ay-i—(l’ 2) &X)'

The boundary conditions have the effect of reflecting in-
cident longitudinal waves into both longitudinal and trans-
verse reflected waves, so that these waves become coupled in
the finite geometry, leading to a complicated dispersion rela-
tionship. The solutions propagating in tikxedirection de-
couple into either an even or odd signature with respegt to
reflection, and take the forfusing Eqs.(80)]

(829

(82b)
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FIG. 9. Dispersion relation of in-plane polarized modes for the
thin plate. The wave numbers are scaled by the bridge viidémd
the frequencies by/ct with ¢t the transverse wave speed in a
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FIG. 10. Dispersion curves for the long-wavelength in-plane
modes of a thin-plate beam of widthfor Poisson ratioy (wave
speed ratioy3). Solid lines: numerical results, long-dashed line:

large, thin plate. The dashed lines are the speeds of the transversmallk linear dispersion for compression mode, long-short-short
and longitudinal waves in a large thin plate. The value of the Poisdashed: linear dispersion for longitudinal wave in infinite plate,

son ratio isoc=0.33.

u®=[afcos xry) +a{?cog x y)Je'** Y, (833
v©@=[(~ik/x7)a?sin(xry)

+(ixL k)al@sin( x,y)]e!kxeb (83b)

and
u©@=[aPsin(xry) +afsin(xy)Je'®* Y,
(843

v@=[(ik/x7)al” cos x1y)

—(ixL/k)al?cog x y)le' ey, (84b)

where y1 | are given through the dispersion relation
K2=w?/ci=k*+ x5=r2(k*+ x)) (85)

and we have defined = w/ct, the wave number of aans-
verse wavat the frequencw in an infinite plate. The values

short dashed: linear dispersion for edge mode, and long-short
dashed: quadratic dispersion for smalbending mode. Note the
anomalous dispersion of the fourth mode at srkall

For a given value of the speed ratishese equations can be
solved numerically forw(k). The spectrum for the value of
r=1/3 corresponding to GaAso{=3) is shown in Figs. 9
and 10.

At large values ok the slopes of the curves, except for
the lowest two, asymptote tg or ¢y corresponding to the
freely propagating waves in the plai@his is not yet fully
evident at the values aob,k plotted in Fig. 9, but is con-
firmed by extending the numerics to higher valu@$e low-
est two modes on the other hand asymptote to a sigjpess
than bothcy and ¢, . In this case for largek we have
tan(yr, b/2)—i in Egs.(86) and(87) so that the slope&s
=rgCt is given by the solution of

AT T=Tr= (2122

This is an edge wave analogous to the Rayleigh wave on the
surface of a three-dimensional slab of material. Fery/3,

(89)

of xt . may be real or imaginary. Note that each wave COMEq, (88) givescg= Y 7_3CT-

bines both shearx(;) and compressionaly{) distortions,

The values of the finite-frequency intercepts of the

which are mixed by the reflection of the plane waves off the“waveguide“ modes fork—0 can also be calculated analyti-

edges.
The amplitudesal®)

, must be adjusted to satisfy the
boundary conditions at=

+b/2, Eqs.(82). Substituting into

cally. For the even mode intercepts, E§6) is satisfied at
k—0 by tan(ytb/2)=0 or tan(y, b/2)—«. Similarly Eq.
(87) is satisfied by tang, b/2)=0 or tan(ytb/2)—. Thus

these conditiczgs E;’rlds to a syst?or)n C(’Z) two homogeneougie zero wave-number intercepts are given by the simple
equations fom;” ,a;” (and two foray” ,a;™) and so a con-  expressions for transverse and longitudinal wave propagation
sistency condition that leads to a transcendental equation for

w for eachk, known as the Rayleigh-Lamb equatidiidor
the even-signature modes the transcendental equation is

b
e =0,

b
nXL + 4k2)('|')(|_ ta 2

5 (86)

(K*=x$)? ta
For the odd-signature modes the transcendental equation i

b b
-+ (K= x3)? tar s =0,

> (87)

4k xTxL ta

w"=nmcr/b, w=rnmcr/b=nmc /b. (89
(These simple results hold because ker O there is no in-
terconversion of longitudinal and transverse waves on reflec-
tion at the edges.The shapes of the curves betwden 0
and the largée asymptotes are quite complicated, with vari-
Bdus mode crossings and regions of anomalous dispersion
dw/dk<0.

We are particularly interested in the long-wavelength

modesk—0. The dispersion relation in this limit can be
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found by Taylor expansion of the tan functions in E(R6) The first term gives the effective force per unit area on the

and(87). The even mode tends to plate, and hence the equation of motion
J1=r 2ck=+/ W
w—2y1-r"“ctk=+E/pk. (90 de-FDVjW:O. 95)

This agrees with the usual expression for the stretching mode

of a rod. This is not the same as the dispersion for the bulkrhe last two terms on the right-hand side are boundary terms
longitudinal modes in the thin platey=c kK, but the speeds given by integration by parts. Physically they give the work
are quite close forr=0.33. On the other hand the odd mode done at the boundaries by the vertical force per length of
gives aquadraticdispersion, characteristic of bending modeshoundaryV; against the vertical displacemedw and by the

of beams, moment per unit lengtivl; against the angular displacement

of the platé* —V,w. Thus atx=a/2 we have

2_
r<—1 ’
w— 3 bcrke. (91 9 [ Pw 22w
Vi=—D—| —+12-0)—], (963
L . ) . X\ gx? ay
(This is given by expanding the tan functions up to cubic
order) Rod-bending theory gives the expressiank? 2 P
= JEI/pA with | the areal moment of inertia about the mid- M, =— D(_W + U_W , (96b)
line, andA the cross-section area. For the rectangular beam ax? ay?
_h2 ; —2\~2
we havel/A=b“/12, and using (+r~°)c5=E/2p shows and aty=b/2
the correspondence.
2 2
2. Flexural modes Vy= -D i ( &_W +(2—-0) &_W) (979
. . . J 2 2/’
The flexural modes are most easily derived by using rela- Y\ oy X
tionships such as EJ69) to derive an expression for the 5 5
i W 9w
energy of transverse displaceméfts M,=—b| 2+ 0_2) _ (97b
A ay X
1
F= EDJ f (Vfw)2+ 2(1—0)[ ((9 3 ) For free edges, these quantities must be set to zero. In addi-
Xoy tion to the force per unit length there are also point forces

localized at the corners, e.g.,>ata/2)y=*b/2 (Ref. 19.

W *w dnd -
_ﬁa_yz - e F.=x2D(1 P 98
e=*2D(1-0) 7o (98)
where
These must be included when we are calculating the total
Ed? force acting across the width of the beam, for example,
D=——— (93
12(1-0?) bi2
F= f V,dy+F(b/2)+F.(—b/2) (99
—b/2

is the flexural rigidity of the plate of thickness The equa-

tion of motion and boundary conditions are given by setting
the variation of the energy with respect to displacements _7
w(X,y) to zero. For a region with rectangular boundaries at )
x=*a/2 andy= *b/2 the variation is

9 (b2
M, dy (100

and the latter equality shows the consistency with the mac-
BAw roscopic equation for the rotational equilibrium of the beam
_ (see Sec. Il B 2 beloy
ax3 We now calculate the modes propagating in xheirec-
tion w(® w(® el (k= jn the bridge of widthb. Again the

5F=Df JViwa‘wdxdy—fdy[é\N

x=al2
(o P w _dow Fw - FPw modes have either even or odd signature with respegt to
(2=0) axay?| X | gx2 7 dy? reflections. Since the wave equation is fourth order in the
X=-a2 spatial derivatives, for each frequeneythere aretwo even
Bw Bw or odd components. The solutions to the wave equation are
—fdx oW —3+(2—a') 5 (even
ay X2y
(&) =r4(® (€) i (kx— wt)
2 2 1) |yebi wi®=[aPcostiy ,y) +acoshix_y)]e
_gowjaw oW (04 (101
ay ay?  ax? '
y y=—bi2 and (odd)
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w@=[aPsinh y,y)+a@sinh x_y)Je!*kx—, o 2507
(102 3 i
& 200
where Q [
T L
S 150 |
x+=Vk**+K?, (103 > |
c [
and we have written % 100 ;
T gof
Vpd/D o=K?2. (104 b [
< I
Again the dispersionw(k) and the ratio of amplitudes » ok . ; ; .
a./a_ are determined by the requirement of consistency 0 20 40 260 80 100
with the boundary conditions at the edggs *=b/2, Eq. (kb)

(97). This gives for the even modes FIG. 11. Dispersion relation of the flexural modes of a thin plate

2 . 212 with Poisson ratiar=0.33. The wave numbelsare scaled by the
[K=+ (1= o)k“]"x-tank(x_b/2) width b and the frequencies by @/D)¥??. Note that the modes
=[K?—(1-0)k?]?x,tani x.b/2) (105 have approximately a quadratic wave-number dependeree?
+ ak? with a=/D/pd, corresponding to the “bulk” flexural wave.
The two lower modes have a different form: one mdthe torsion
5 22 mode has a linear dispersion relation at low frequenciesk and
[K+ (1= 0)k?]x-coth(x_b/2) both modes asymptote to= Sk? at largek with < « correspond-
_ [Kz_ (1- 0)k2]2)(+cotf()(+b/2). (106 gg;ousgdegg;eef/vave. It turns out that= 8 for the particular value
For w—0 we can expand the hyperbolic functions and solve

and for the odd modes

algebraic equations to determine the dispersion curve. ~ The solutions are well f;ppzrm;imated b = (5/2+2n) 7
For the even mode this givé&/k?= \1— o2 yielding the  [i.e., @=D/pd(5/2+2n)*7/b"] for n=0,1. - -.
quadratic dispersion of the beam bending mode Combining the even and odd modes, the zero wave-

number frequency intercepts can be written

B [D(1-d?) B [E
w= p—dkz_ Edkz, (107) e 1 3

E‘Fn

2
w2d/b?. (112

n T <
agreeing with the expression from simple rod theory. We can 6(1~0)
follow this mode to largek where we find again a quadratic
dispersion but with a different slope

The dispersion curves far=3 corresponding to GaAs

are shown in Figs. 11 and 12.

2,12 1-30+2y1-20(1-0) B. Transmission coefficient in the infinite-wavelength limit
Kelkc— .

(108
(1-0)*(3+0) The transmission coefficients for the acoustic modes in
This is again an edge wav@ow an edge bending wae thedlﬁng-V\I/avleIer(Ingh Ilrhnlt and for flnlrt]_e cawtyr:/wgth cafn beh
The intersections of the higher modes with the l‘requencJealIy calcu aii _yt e wavehmatc ng .met 0 fsas olrt e
axis are given bjk?—0, y_—iK, y,—K so that Eq(105) scalar waves. We investigate the transmission of very long-
reduces to

-
o

—tan(Kb/2) =tanh(Kb/2). (109 o .
The solutions are well approximated W§b=(3/2+2n) %
[i.e., w=D/pd(3/2+2n)27?/b?] for n=0,1--- (with an 58
error of less thars% for the worst cas@=0). 5
For the odd mode, Eq106) gives forw,k— 0 the disper- g 4
sion relation for the torsion mode E
32
/D k \ﬁ d 3
w= p—dZ\IG(l—O')B—Z ;Bk, (110 0

which agrees with the usual result calculated in elastic rod Scaled Wavenumber kb

theory. The largde asymptote of this mode is the same as  FIG. 12. Dispersion relation as in Fig. 11 but at smalk. Note
Eq.(108. The intersections of the higher odd modes with thethat the abscissa is proportional kain this plot. Solid lines: nu-

frequency axis are from Eq106) given by merical results, long-dashed line: expected quadratic dispersion for
rod-bending mode, and short-dashed line: expected linear disper-
tan(Kb/2) =tanh Kb/2). (111 sion for rod-torsion mode.
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wavelength modes at the abrupt junction between the bridgerhere u is the bending displacement ad is the cross-
(x<0) of width b and the cavity x>0) of finite widthB. It ~ section area. The moment is given by the moment of the
is easiest to evaluate the wave fields by simple macroscopiensile stresses due to the extension and compression of the
arguments. As well as providing the long-wavelength limit of beam from its curvature
the transmission coefficients, these results also provide the
basis for calculating the leading-order finikecorrections, 52U
following the same methods as in Sec. 11 B 2. M=—ElI ﬁ’ (121
1. Compression modes . . .
. ] wherel is the areal moment of inertia of the beam around the
The compressionalextension modes forkb—0 are  migline normal to the displacement. These equations to-

given by the simple one dimensional calculatfon gether give the equation of motion
d%u d%u 2 4
—2 Jcu EIl J°u
=Cg—, (113 _
a2 ax? pe + oA =0. (122

wherecZ=E/p.

. - - . . _ 2 .
For x<0 we have incident and reflected waves The_dispersion refation is quadratiay=ak® with «

=EIl/pA. For a rectangular beam A=d?/12 with d the

u=(e*x+re kg iot (114  thickness of the beam in the direction of the displacement.
As we saw in the previous section, this reproduces the long-
and forx>0 a single transmitted wave wavelength limit of the acoustic bending modes calculated in
oot thin-plate theory[Eq. (91) for the in-plane mode and Eq.
u=te™e ', (1159 (107) for the flexural modg

At a frequencyw, as well as the propagating modes at
wave numbert \w/«, there are also evanescent modes with
decay ratet \w/a: the modes localized at the junction and

wherew/k=cg. We match the displacementand the total
force on either side of the interface

1+r=t, (116  decaying toxc must be included in the mode transmission
problem.
ikb(1—r)=ikBt. (117 For the bending mode with displacement normal to the

plane the dispersion relation is the same in the bridge and
Note that the force matching requires that the end surface afavity. Thus for an incident wave =Y in the bridge with
the cavity be stress free. This gives k=+w/a we have

2 h—1 ek y reikay g gk yoQ)

t=——, r=—-—, (119 ={
1+h h+1 u telkx+d+eka x>0.

(123
whereh is the width ratioh=B/b. In the limit h— o« we find
r——1,t—0, i.e., perfect reflection with a sign change of

the displacement. This implies that at the junction0 we
haveu=0 and the stresBJu/dx=2ikEe !,

At the junction we require continuity of the displacement
the rotation angl&u/ 9x, the total moment- El5%u/dx?, and
the total force— El1d%u/ax3. This gives the matrix equation

2. Bending modes 1 -1 1 -1 r -1
At long wavelengths both in-plane and flexural bending 11 i i t _ 1 (124)
modes are given by equations for the total fofc@nd the 1 —h -1 h d | | =11
total momentM on each cross sectidf.The moment from 1 h i —in d 1
n

opposite forces on each end of a small element of the beam

must cancel the net moment from the forces on the faces whereh=1_/1,=B/b is the ratio of the appropriate moment

of inertia for the cavity and bridge. In the limit of lardethe

F= (;_M (119 solution is easily found to be
X
(Since the moments scale as the length of the elerdent r=i, (1253
whereas the moment of inertia scales &, there is no
inertial term in this equatioh.The net force on an element t=4/, (125b
gives its acceleration
d_=—(1+1i), (1250
Aazu _dF (120
PR~ ox d,=2(1—i)/h. (1259
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For the bending mode with displacements in the plane of
the plate the dispersion relation is different in bridge and
cavity. For frequency the wave numbers in the bridge and

cavity arek, ,k. with
K /kp=(ap!ag)?=(b/B)Y2. (126
On the other hand the ratio of the moments of inertia is
I./1,=(B/b)3. (127

Thus the continuity of the displacemantthe rotation angle
aul ax, the total moment- Eld%u/9x?, and the total force

—El#3u/dx® gives the matrix equatiofwriting h= \/B/b)

1 -1 1

-1 r -1
1 ht i jht t
1 - -1 pe || d || 2] **®
1 h —i —ip3]Lds 1
In the limit of Iargeﬁthe solution is
r=i, (1299
t=2/h3, (129h
d_=—(1+i), (1299
d,=2/h3. (1299

With these expressions in both cases we have=ad to
leading order irh~* orh~?

u=0, (1303
duldx=0, (130b

92Ul ox?=—2(1+1i)k?, (1300
Pulaxd=—2(1+i)k3, (1300

so that the displacementsand the angl&u/Jx tend to zero,

PHYSICAL REVIEW B34 085324

torque=Cr. (132

It is given by'®

C=4MJ x dxdy, (133

wherey satisfies the equation in the cross section

Viy=-1 (134

and y=0 on the boundaries. The form of the solutigns
the same as the profile of the flow of a viscous fluid through
the section andC is then proportional to the integrated flux.
For the thin-plate geometry with thicknesisand width b
>d, the value ofC is 1 «d®b and value of is db®, so that
the ratio of propagation speeds in bridge and cavity is again
the width ratioh=B/b.

It is interesting to evaluate the stress distribution for the
thin plate. The stresses in thg,£) section are given in terms
of y by'®

Oyx=2u1dX!9Z, (1359

(135h

The solution fory is analogous to Poiseuille flow, so that

O,=—2u7dX! Y.

X= %(d2—422) (136)

except within a distancé~d from the side wall, wherey
must decrease to zero. Thus there is a distributed stress act-
ing in they direction

(137)

and a stress in the direction that is effectively localized
(within a distanced) at the edge

Oyy=—2uTZ

1
T g wut(d?—4z%) 8(y—bl2). (139
This localized stress corresponds to the corner forces, Eq.
(98), in the thin-plate theory. .
For an incident torsion wavé=e >~ Y in the bridge

but the corresponding stresses are large. Note that althoughr x<0 we have incident and reflected waves
the force and moment are out of phase for the single wave

e' =« hecause of the evanescent waves near the junction

they are in phase at the junction plaxe 0. Equationg130)

become the zeroth-order input for the radiation calculation af

nonzero wave number.

3. Torsion modes

The long-wavelength limit of torsion waves is described
by the one-dimensional wave equation giving the angular

acceleration in terms of the torque

2?0 %0
F:CF. (131)
X

HereC is the torsional rigidity giving the torque on a section

due to the twistr=96/dx

6= ("X +rekoX)e it (139
nd forx>0 a single transmitted wave
o=te'xe ', (140

where k. /k,=B/b. The matching of the angular displace-
ment # and torqueCd6/dx for an incident wave gives

1+r=t, (1413
ikpb(1—r)=ik.Bt (141b
so that
= 2 h*-1 (142
:—1 r:_—1
1+h? h?+1
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with h=B/b. In the limith— we findr——1, t—0, im- ,0u 5 v
plying #(x=0)=0 and the stres€d6/ix=2ikCe ", p e T _Z)W =3n, (145a
. . Ju Jdv
C. Transmission coefficient for smallb | =
;(&y + (9)() ¢ (145b

In this section we calculate the small wave-vector ] it o
asymptotic limit of the transmission coefficient from the four IN the present cas®,=2iEke™'*" for unit incident wave
acoustic modes of the beam into the cavity. The method folaMplitude and=0. Both components of the stress are zero

lows that of Sec. Il B 2. Thus we calculate the radiation fromfor |Y|>b/2. Taking the leading-order expansion Kb for
oscillating Stresses(y)efiwt on the edge of the cavity. The the Fourier transform of the source stress as in the scalar

stresses are calculated as the stresses arising on the end§%lf:u'at'on' Sec. 11 B 2, gives for the Fourier components

the bridge for zero displacement boundary conditions, as foly2(jk a+ik a )+ (r?—2)(—ikyar+i?a, Ik ) =3 b/ u,

lows from the analyses in the previous section of the modes (1463
at infinite wavelengths coupling into a cavity of finite width. _ L _
For the long-wavelength value of the transmission coeffi- if(ar+ay) +(—ikfar/{+ifa )=0.  (146b

cients, only the radiation by the integrated strfs§y)dy for  These equations are readily solved &ry from which we
the even-parity modes, or the integrated first momentan calculatei(x=0) for unit driving stress

Js(y)ydy for the odd-parity modes, is needed. The Lamb

problem of the radiation from surface sources into an elastic u(x=0) r?b i (2K (&)

half space has been much studied in the literature, for ex- ST Fo(g)dg’ (147
ample, segRef. 17 and the reader is referred there for a

more exhaustive discussion of this aspect of the calculatiovhereé=r¢/K is they-wave vector scaled by tHengitudi-
The details of the calculations are quite complicated, and thal wave numbeK/r =w/c,_,

reader may choose to skip these sections and refer to the (D2 2\2 2

discussion of the results in Sec. IV and the summary in Table Fo(£)=(267-1)7+ 48%kr(&) k() (148
| there. and

1. In-plane compression

E b= [(F e
e Jgen CTIVET 1>t

For a compressional wave in the bridge of unit incident (149
amplitude in the displacement, the oscillating end of the ) _ )
bridge acts as a stress source on the cavity face of amplitude [This result is analogous to Ed123 of Miller and
2iEk over the source regioly| <b/2, embedded in the oth- Pursey’ who calculate the average displacement at the aper-

erwise stress-free line=0. The solutions to the wave equa- {U'® Per unit oscillating stress for &ne on a three-
tions (79) in the cavity can be writteficf. Eq. (80)] dimensional half space. Indeed we can use their result if we

express it in terms of the ratio of wave speeds, and the elastic
constantu which retains its significance unchanged between
1 (= o 1K X Y et f[he two geometries. The translation from th@itP) notation
u= gﬁw[aﬂz)e T+a (e ]eYemNdL, is then U, yp—(w/C)Uy, aup—(w/c)b/2, myp—T,
(1433 Cqamp— m- Note carefully that the usage ofu” is different
in their work and ours. We have also taken the leading-order
term in wb/c, by making the replacemert’—1 for |y|

1 (= . <b/2.]
v= ﬂf [~ (kr/Dar(yer™ For unit incident wave in the beam the longitudinal stress
o at the aperture is iEke '“' and the power radiated is
+(Zlk)a, (0)ek¥e Ve td¢, (1430  ibRe(—uX¥). In the incident wave the stressike '

and the velocity, is —iwe™ ! so that the incident power is
whereky andk, are thex components of the wave vectors of ;bEwk. The transmission coefficient is therefore
the transverse and longitudinal components
9 P 4 (1+0)_ Jm(&)

S e 7 (1=0)  Jo Fo(é)
[ oL =, [ B have useBl/u=2(1+0) andr?=2/(1-0). Th
T=3. L= . where we have usell/ u=2(1+o¢) andr<=2/(1— o). The
=K =K, NEE=KEE [ =K various contributions to the the integral are easily understood
in terms of the different waves radiated into the cavity. Re-
member that is they-wave number of the radiated waves in
with K2=w?c%. (The signs chosen correspond to wavesunits of k, . There are contributions to the integral for 0

To(w)=4(kb) dé|, (150

(144

propagating away or exponentially decayinghe ampli- < ¢&<r corresponding to the radiation of transverse and lon-
tudesa, 1 are fixed by matching to the normal and tangentialgitudinal waves over all angles. In addition there is a contri-
stress Sources ,= —Tii) andX,= —Tyx(z) for |y|<b/2 bution from the residue of the pole B(£) =0 which cor-
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responds to the radiation @dgewaves. Miraculously, the 1 .
quantity in the square brackets numerically evaluates to 1.0 To(w)= 7z (bk)". (158
independent ofr in the allowed range- 1<o<3, so that

To( w) = 4KD. (151) 3. Flexural modes
The flexural displacement(x,y) for a wave at frequency
2. In-plane bending w satisfies the equation

For an incident bending wave with unit displacement am- 4 4
plitude v in they direction there are two sources of radiation Viw=K"w, (159
into the cavity: the oscillating momenty2Elk%e~'“! and
the oscillating sheaftangential force 22EIk3e~'“! over
the source widthb in the cavity wall. The moment can be
described in terms of the normal stresg2ZEk?e~'“y since
fy?dy=1. The tangential force has an additional power of W(x,y)= LJW W(x,0)evdg (160
k~ Jw compared to this, but the radiation efficiency of the Y 2m)
normal force is reduced by a power lgfb with k. the wave
number of a propagating mode in the cavity- w/cy, since  the Fourier amplitudev satisfies
the two halves of the radiation source cancel at leading order.

with K?2=\/pd/D w, cf. Sec. lll A 2. Expanding the cavity
solution in transverse Fourier modes

This means that the contribution of the normal stress to the (&Zlaxz—gz)ZVv:K“\Tv (161)
power radiated is higher order in for small w, and may be '
neglected. The solutions arev~ e’ with

The analysis proceeds as in the previous section. We again
use Egs.(145 but now with 3,=22E(1/b)k3e~'“! and

2__ 2_ ¢2
3,,=0. This gives the equations for the mode amplitudes k== K"={% (162

2(ikeaetik +(r2—2)(—ikrar+ic2a, [k )=0, Solutions corresponding to a wave propagating away from
r(ikrar ik a,)+(r )(=ikrarticta fk) (1523 the source atk=0 or exponentially decaying te-o are
given byk. as

iZ(ar+ay)+(—ik2ar/{+iza)=3b/u, (152b

k. =iVKZ+ 2 (163
which can be solved to yield the response to leading order
and
v(x=0) r’b ij“KT(f)
S wleF % (153 [P ek, 164
T iVEE-K?2 P>K2

[This result is analogous to Ed124) of Miller and

Pursey'’] This gives the average power radiated to leadingThys the solution in the cavity can be written
order in smallw

1 . 1 W(X,y)= ifm [V\I ({)eik+x+vv () -*elvd¢
Prag=5b Re(—u3{) = 5b(2V2EIK*/b)’Reli wv/Zy). V)=o) W - :
(154 (165

For the incident wave of unit amplitude we have The sources ak=0 are a momenM(y) and an effective
force per unit lengthV(y),

(u,u’,M,F)=(1,ik,EIK%iEIKk®)e (=D (155

so that the average incident power is M(y)=—-D o—
x> oy

(1663

I*w (92W>

1 ,
Pinc=5Re —iw(Fu* +Mu*]= wEIK3. (156

V(y)=-D

IPw IPw
—3+(2_0')
dIX

The ratio gives the transmission coefficient A

+b [ F.(b/2)+F.(—b/2)], (166b

To(w)=%(bk)3 déj. (157

4 (1+o) fm(f)
7 (1-0) Jo Fo(é) _ _ - -

with Fourier transform& () andV({). The last two terms
Again the quantity in the braces turns out to be unity, so wen the second equation are the corner forces. Matching these

have boundary conditions gives
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[K?+ (1= o)W, (§) —[K*= A (1-a)w_({)
(1673

—M(¢)/D,

ik, [K2= 21— o)W, (O — ik _[K2+ {3(1— o) Tw_ (&)

-V()ID. (167b

The average power radiated is

p:_<Jw(x=o,y)V(y)+'0(x=0,y)M(y)dy ;
t(168)

with 6= —dw/dx the tilt angle and the dot denoting a time
derivative. For oscillations™'“! the average over time gives

P=P,+P,

1
_§w|m{f w(x=0y)V*(y)dy

+f O(x=0y)M*(y)dy|. (169

Evaluating the first integral in terms of Fourier expansions

we find the power radiated by the force

1
——wlm

Pu= 47

|” adi. o+ 00|
(170

As in the scalar case, the imaginary part of this integral cor-
responds to the excitation of propagating waves for which

(<K and we may evaluaté(¢) to lowest nonzero order in
Kb

V(§)=F§ dyVy)e "¥=Vo—igVi+---, (171
—b/2
with

Vto dy My), 172

Vi= J dy yMy). (173

PHYSICAL REVIEW B 64 085324

with Mg, M, the zeroth and first moments & over the
bridge end. Now we can calculate explicit results for the
bending and torsion modes.

a. Bending mode&=rom Eq.(130) we see that an incident
wave of unit displacement amplitugg**~ Y in the bridge
gives oscillating sources on the edge of the cavity

Mo=22D(1— o?)bk2e ™4 iet, (176

Vo=22D(1-0?)bk3e e iet, 177

Note that we are using the macroscopic formulation to derive
these expressions. It is somewhat subtle to directly use the
expressions, Eq.166), since they dependence of the mode
structure cannot be ignored. We have verified that these ex-
pressions are reproduced using the long-wavelength limit of
the mode structure given by solving Eq401) and (102.

Now definingé=¢/K and

W-({)=—22bd™u_ (&), (179

using the dispersion relatioh®=K?/\1—a?, and then
matching to the sources gives

[1+&(1—0)Ju, —[1-&(1-0)Ju_=(1-0?)*?

(1793
—V1+&[1-(1—0o)u,—iV1— &1+ & (1—o0)]Ju_
=(1-aH)" (179h

The power radiated is

2 1)
P=wDb2k2K2(1—02);lm“' (Uy+u_)(1—g?) ¥4

—(—\/1+§2u++i\/1—§2u)d§}. (180

Normalizing by the incident poweP;=wDbk3(1—o?)
gives the transmission coefficient

To(w)=kbly(0),
wherel ; is the integral

(181)

I(0)=V1—0? %Imfm [(uy+u_)(1—o?) ¥4

We only keep the second term for antisymmetric sources for

which Vg is zero. Note thaV/, is the total force normal to the
plate, andV, is the torque about theaxis, and these can be
evaluated from macroscopic arguments.

Similar arguments foP, give

1 % ~ - ~
szﬂw Im fwd§[|k+W+(§)+|k_W—(§)]M*(§)}’
(174
with
M(O)=Mg—i{My+ -, (179

+(V1+&2u, —iy1—£%u_)]dé. (182
For 0=0.33, evaluatingi.. from Eq. (179 we find
[,=2.3 (0=0.33. (183

b. Torsion modeA unit amplitude modeg=e'(*~«V
gives the oscillating torque source

r=4Db(1—o)ike '“, (184
Here the wave number in the beam is givertly Eqg.(110)]

1
kb= ——=————=(Kb)? 1
b=> 6(1_0)( b)*, (189
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TABLE |. Long-wavelength properties of the modes of a thin beam. See text for the details.

Mode w(k—0)/ctk wq/(mcy/b) To(k—0) To(w—0),z=wbl/cy
Compression V2(1+ o) 2 4kb 2
Vis *Niig ?
Torsion A/b 8014 /d I,kb . [b
_) Elz(a>z
(1-0)\b
_ 1 3 3/4
In-plane bend 1+ i 1 3(kb) i 6 a2
6 S\l+o
Flex bend 1+ I.Kb 6 \U4p\L2
de 2.886 9 1 l (_) S112
6 1-0) b 1+o d

with K?=/pd/Dw as before. The torque, E¢184), corre-

lation in terms of the propagation speeg of the in-plane

sponds to a force source term given by a nonzero first moshear wave in a thin plate, which is the same as the shear

mentV, of the tangential force

_2Db’K*1-o
1 \/g .
This gives a source term on the right-hand side of §7b

V(¢)=—i{V; and the source ter in Eq. (1673 is zero.
Now defining

(186)

- 2b%\1—
Wi(i):Tgui(f)

with ¢é={/K from Eq. (167) we find u.. satisfies

(187

[1+&(1-0)Ju, —[1-&*(1-0)Ju_=0, (1883
—V1+E[1-E(1—o)u, —iV1— &1+ (1—0o)Ju_
=¢. (188b

Solving these equations for. and sow.. , substituting into
Eq. (170 for the power radiatedR, does not contribute for
this mode, and normalizing by the

wDb?K?\1— /26 yields the transmission coefficient
To(w)=kbly(0), (189

wherel, is the integral

4 %
L(o)=(1—0) ;Imj_w(u++u_)§d§. (190

For 0=0.33, solving Eq(188) for u.. yields

1,=0.6 (0=0.33. (197

IV. APPLICATIONS AND DISCUSSIONS

incident power

wave speed in the bulk medium. The third column gives the
frequency cutoffw, of the lowest waveguide mode with the
same transverse parity symmetry as the acoustic nibie
would be 2A in the scalar model The fourth column ex-
presses the smaidh,k energy transmission coefficieff of

the acoustic mode in terms of the wave numken the
bridge and the widttb of the bridge. This is useful in con-
sidering theQ of the fundamental vibration modes of the
beam for whichk is of order#/L with L the length of the
beam. The quantitiek; and |, are Poisson-ratio-dependent
numbers defined by Eq$182 and (190 and take on the
valuesl;=2.3 andl,=0.6 for o= 3. Finally, the fifth col-
umn reexpresses the smallk dependence of the energy
transmission coefficieri, in terms of the frequency. This
form is particularly useful to estimate the reduction from the
universal thermal conductance at low temperatures due to the
strong scattering of the long-wavelength modes by an abrupt
junction.

A. Implications for heat transport

The low-frequency asymptotic limit of the transmission
coefficient 7,(w—0) allows us to calculate the low-
temperature variation of the thermal conductivity. If we write
the dependence as

To(w—0)=A(wb/cy)P (192
then relative to the universal low-temperature one-mode
valueK/T|,=m?k3/3h we have for each acoustic mode

—dXx,
0 (eX—1)?

KIT (kBTb)p 3 fw x2*PeX

KiTl, "\ hcr (193

7T2

where the prefactoA for each mode can be found from
Table I. The integral is just somgdependent constant. Us-

The results for the long-wavelength properties in a thin-ing the expressions in Table | the result can be written in

plate beam of widthb and thicknessl are brought together in
Table I. The second column gives the snialllispersion re-

terms of the frequency, cutoff of the first waveguide mode
of the corresponding symmetry
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K/T kgT\P from the supports sufficiently strong to give a lar@efor
G ﬁ_wl) (194  accessible geometriée.g.,L/b<100). The strong isolation

of this mode is easy to understand physically: the wide sup-
The prefactoB is a numerical constant that depends on theports are very rigid against bending motion in the plane.
Poisson ratiar, but not on geometrical factors such dsb. In many experiments on mesoscopic oscillators, modes
Since the thermal excitation of the waveguide modes occursther than the in-plane bending modes are used, and values
for kgT=0.2X w4 (cf. the plot for the scalar model in Fig. of Q significantly higher than the value suggested by the
8) this expression indicates to what degree the plateau igeometric ratiorL/b are obtained. One way this is done is to
K/T becomes apparent as the temperature is lowered and tiige more complicated geometries, such as compound tor-
waveguide mode freezes out, before the reduced transmisional oscillators arranged so that the amplitude of vibration
sion coefficient at small frequencies begins to lokém to  in the bridge supports is reduced. Also, in oscillators at larger
zero. The ideal low-temperature universal valueeT will scales it is relatively easy to produce more rigid supports, for
be more evident for smaller powgps(As an example of this  example by fabricating a bridge or cantilever making an
consider the comparison of the scalar results in Fig. 8: thabrupt junction to a three-dimensional support, which can
solid curve showX/T for the boundary conditions leading also be of a different elastic material, both of which will
to p=1, whereas the short-dashed curve is the results fareduce the coupling to the support modes. In mesoscopic
boundary conditions leading fo= 3.) This suggests that the oscillators, where the geometry is typically etched out of a
compression and torsion modes will give contributions tosingle material, and undercutting by the etch comprises at-
K/T curves similar to the result for the stress-free scalatempts to make an abrupt junction to a three-dimensional
model in Fig. 8, without a well-defined plateau at low tem- support, our estimates of the coupling will be more appropri-
peratures(all havep=1), and the in-plane bend mode ( ate.
=3) will probably have no indication of a plateau. On the  Our estimates of) suppose that all the energy communi-
other hand for the flexural-bend modp= 1) the transmis- cated to the support modes is lost from the energy of the
sion coefficient increases more rapidly with increasing fre-oscillator. This is not necessarily the case, for example, if the
quencyT,~ \Jo/w,. This will lead to a more rapid increase Support material is also of sufficiently low loss and isolated
in K/T towards the universal value before significant excita-from the rest of the experiment. However, our results do
tion of additional modes occurs @t-%w, /kg, leading to a show that when the bridge-support coupling is large, it is
more pronounced plateau. It should be noted that for thigmportant to consider the dissipation properties of the sup-
mode the plateau iK/T only develops at very low tempera- Port structures as well as the bridge, cantilever, or other os-
tures in the thin-plate limit, reduced from the simple estimateCillator that is the obvious focus of attention.
fict/kgb by the ratiod/b of the thickness to the width of the
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20The Rayleigh-Lamb equations usually occur in the somewhat dif- now (Ref. 2 plot dispersion curves for these modes across the
ferent context of the analysis of the modes in a plate which is thickness of an infinite plate.
considered infinite in they plane, with propagation in thg 2lThe sign convention for the momeri, ,M, is thatM; is posi-
direction and no dependence on thecoordinate. The wave tive if it tends to produce compression in the negatiwde of
numbersyr, then give the variation across the thickness of the  the plate. The angular displacemeis 6, are defined with the

plate. The equations take the same form, with the wave speed same convention. This is the usual definition in the elasticity
ratio r given by the expression for two-dimensional elasticity jiterature(Ref. 18.

theory,r=2(1-0))/(1-20). For example Rego and Kircze-
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