Elastic waves in a prestressed Mooney material

J.A. Belward

Abstract

The dynamic response of a prestressed incompressible Mooney material is studied by investigating plane wave propagation and the response of the material to impulsive lines of force. The choice of an initial deformation which is axially symmetric gives a particularly simple form for the secular equation for the plane wavefront velocities. The speeds of propagation and the amplitudes of the two permissible transverse waves are found and necessary and sufficient conditions for there to exist two real wave speeds in all directions are established. The simple form of the secular equation enables the response of the material to concentrated disturbances to be readily solved using Fourier transforms. The motions caused by a line of impulsive forces is examined in some detail.

1. Introduction

In this paper an account will be given of some investigations into the dynamic properties of a prestressed incompressible elastic material.

In previous work the propagation of finite amplitude waves in incompressible materials has been investigated by Ericksen [1] and Manacorda [6] (see also Truesdell and Noll [7]) and Knowles [5]. Flavin and Green [2] have examined the propagation of small amplitude thermoelastic waves superposed on a finite deformation for both

Received 28 March 1972. The author thanks the governing body of the School of Mathematics and Physics at the University of East Anglia for generous assistance towards a visit in the course of which this work was carried out.
compressible and incompressible materials. The present work focusses on the particular case of an incompressible Mooney material which is subjected to an initial pure homogeneous deformation with equal extension ratios in two perpendicular directions. The propagation of plane waves in the material is discussed and the response of the material to impulsive line forces is examined in detail.

Because the material is incompressible only two plane waves are possible and these must both be transverse waves. The simple form of the secular equation which determines the wave speeds in the present problem enables the speeds of propagation to be expressed as simple functions of the material constants in the problem. The amplitudes associated with each wave are found and necessary and sufficient conditions for the propagation of plane waves in every direction of the material are given.

Fundamental problems involving the response of the material to line disturbances are examined using transform techniques. When the secular equation has the simple form which it has in the current problem the response of the material to impulsive disturbances or sustained harmonic oscillations can be reduced to simple Fourier inversions ${ }^{1}$.

A detailed analysis is made of the disturbances caused by line concentrations of forces, one acting along the axis of symmetry of the initial deformation and the other perpendicular to and passing through the axis of symmetry. In the former case the solutions are found in terms of simple algebraic functions. In the second case certain of the solutions can only be expressed as double integrals. However these solutions are shown to have the same asymptotic behaviour as the first set for t small and for t large. In both cases for large times the displacements are independent of position to first order. They are proportional to t^{-1} and the displacement in the i th direction is proportional to the component of applied force in that direction only and independent of the other components.

[^0]
2. Basic equations

The equations of motion which form the basis of the investigations will be derived first. Consider 2 body of homogeneous, isotropic, incompressible, perfectly elastic material with strain energy W per unit volume. Let the body be subjected to a finite static deformation, under the action of surface tractions only, in which a particle at X_{i} in some rectangular cartesian coordinate system moves to the point y_{i} referred to the same coordinate system. Call this state A_{1}. For an incompressible material the Cauchy stress $t_{i j}$ is given by ${ }^{2}$

$$
\begin{equation*}
\stackrel{0}{t}_{i j}=-p_{0} \delta_{i j}+\left(2 \frac{\partial W}{\partial{ }^{0}}+2 I_{1} \frac{\partial W}{\partial I_{2}}\right) \stackrel{0}{B}_{i j}-2 \frac{\partial W}{\partial{ }^{0}} \stackrel{B}{B}_{i k} \stackrel{0}{B}_{k j}, \tag{2.1}
\end{equation*}
$$

where $\stackrel{0}{B}_{i j}$ is the left Cauchy-Green strain tensor defined by

$$
\begin{equation*}
\stackrel{0}{B}_{i j}=\frac{\partial y_{i}}{\partial X_{k}} \frac{\partial y_{j}}{\partial X_{k}} \tag{2.2}
\end{equation*}
$$

and $\stackrel{0}{I}_{1}$ and $\stackrel{0}{I}_{2}$ are two invariants of the deformation defined by

$$
\begin{equation*}
\stackrel{0}{I}_{1}=\stackrel{0}{B}_{i i} \quad \text { and } \quad \stackrel{0}{I}_{2}=\frac{1}{2}\left(\stackrel{0}{B}_{i i} B_{j j}-B_{i, j}^{B}{ }_{i j}\right), \tag{2.3}
\end{equation*}
$$

and p_{0} is a hydrostatic pressure defined up to an arbitrary constant. Since the body is in equilibrium with no body forces applied,

$$
\begin{equation*}
\frac{\partial t_{i j}}{\partial y_{j}}=0 \tag{2.4}
\end{equation*}
$$

Now consider a further time dependent deformation in which the particle at y_{i} moves to x_{i}. This second deformation will be assumed small in the sense that if

$$
\begin{equation*}
x_{i}-y_{i}=\varepsilon u_{i} \tag{2.5}
\end{equation*}
$$

terms in ε^{2} and higher powers may be neglected in comparison with terms in ε. Let the stress in this new configuration be denoted by

[^1]\[

$$
\begin{equation*}
\stackrel{0}{t}_{i j}+\varepsilon t_{i j} ; \tag{2.6}
\end{equation*}
$$

\]

then if the strain energy, pressure and strain tensor are expanded in powers of ε about their values in the state A_{1}, thus

$$
\begin{align*}
W & =\stackrel{0}{W}+\varepsilon \frac{1}{W}+\ldots \\
\tilde{p} & =\stackrel{0}{p}+\varepsilon p+\ldots \tag{2.7}\\
\tilde{B}_{i j} & =\hat{B}_{i j}+\varepsilon B_{i j}+\ldots
\end{align*}
$$

it can be shown that
(2.8) $\quad t_{i j}=-p \delta_{i j}+4 u_{k, I^{B}}{ }^{0}{ }^{0} \frac{\partial W}{\partial I_{2}^{0}}{ }^{0}{ }_{i j}$

$$
+2\left(\frac{\partial W}{\partial \frac{0}{I_{1}}}+I_{1} \frac{\partial W}{\partial I_{2}^{0}}\right)\left(u_{i, z^{B}} z_{j j}+u_{j, z^{B}}{ }^{\frac{0}{2}}\right)
$$

$$
+4 \stackrel{0}{i j}_{i j}\left(J_{1} \frac{\partial}{\partial^{\frac{0}{I}}}+J_{2}{ }^{\ell} 1 \frac{\partial}{\partial^{0}}\right)\left(\frac{\partial W}{\partial \frac{0}{I}}+\frac{\partial W}{\partial I_{2}^{0}}\right)
$$

$$
-4 \stackrel{0}{B}_{i k^{0} \stackrel{0}{B j}_{k j}\left(J_{i} \frac{\partial^{2} W}{\partial I_{1}^{0} \partial^{0} I_{2}}+J_{2} \frac{\partial^{2} W}{\partial I_{2}^{2}}\right), ~ ; ~, ~}^{\text {, }}
$$

where

$$
\begin{equation*}
J_{1}=u_{k, I^{B}} \stackrel{0}{B l}, \quad J_{2}=u_{k, 2}\left({ }^{0} B_{k 2} \stackrel{0}{B}_{m m}-{ }^{\circ}{ }_{2 m} \stackrel{0}{B}_{k m}\right) \tag{2.9}
\end{equation*}
$$

and

$$
u_{i, j}=\frac{\partial u_{i}}{\partial y_{j}}
$$

In the state A_{2} the equations of motion of the body are

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}\left(\stackrel{t}{i j}_{0}+\varepsilon t_{i j}\right)+\rho b_{i}=\rho \frac{\partial^{2} x_{i}}{\partial t^{2}} \tag{2.10}
\end{equation*}
$$

The body forces which are applied to disturb the body from the state A_{1} are assumed to be of the form εf_{i}. Thus if equations (2.4), (2.5)
and (2.6) are applied to equation (2.10), then to order ε we have

$$
\begin{equation*}
\frac{\partial t_{i j}}{\partial y_{j}}-\frac{\partial u_{k}}{\partial y_{j}} \frac{\partial t_{i_{j}}}{\partial y_{k}}+\rho f_{i}=\rho \frac{\partial^{2} u_{i}}{\partial t^{2}} \tag{2.11}
\end{equation*}
$$

Applying equation (2.4) reduces this equation to

$$
\begin{equation*}
\frac{\partial t_{i,}}{\partial y_{j}}+\rho f_{i}=\rho \frac{\partial^{2} u_{i}}{\partial t^{2}} \tag{2.12}
\end{equation*}
$$

In the problems to be investigated in this paper the material of the body is assumed to be a Mooney material, and the initial deformation has principal axes of strain parallel to the coordinate axes with equal extensions in two directions. Thus we have

$$
\begin{equation*}
2 W=\alpha\left(I_{1}-3\right)+\beta\left(I_{2}-3\right) \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{1}=\mu x_{1}, \quad y_{2}=\mu X_{2}, \text { and } y_{3}=\lambda X_{3} \tag{2.14}
\end{equation*}
$$

with $\mu^{2} \lambda=1$, since the material is incompressible. When these expressions are used to calculate the explicit form of the perturbed stress given by (2.8) we find

$$
\begin{align*}
& t_{11}=-p+(2 a+d) u_{1,1}+(2 b+d) u_{2,2}+d u_{3,3} \\
& t_{12}=t_{21}=(a-b)\left(u_{2,1}+u_{1,2}\right), \quad t_{31}=t_{13}=c u_{1,3}+a u_{3,1}, \\
& t_{22}=-p+(2 b+d) u_{1,1}+(2 a+d) u_{2,2}+d u_{3,3}, \tag{2.15}\\
& t_{32}=t_{23}=a u_{3,2}+c u_{2,3} \\
& \text { and } t_{33}=-p+d\left(u_{1,1}+u_{2,2}\right)+(2 c+d) u_{3,3}
\end{align*}
$$

where
(2.16) $a=\mu^{2}\left(\alpha+\beta \mu^{2}\right), \quad b=\beta \mu^{2}\left(\mu^{2}-\lambda^{2}\right), \quad c=\lambda^{2}\left(\alpha+\beta \mu^{2}\right) \quad$ and $d=2 \beta \mu^{2} \lambda^{2}$.

Finally, since the material is incompressible we have

$$
\begin{equation*}
u_{1,1}+u_{2,2}+u_{3,3}=0 \tag{2.17}
\end{equation*}
$$

and the final form of the equations of motion (2.12) is
(2.18) $-p, 1+2 a u_{11,1}+(a-b) u_{1,22}+o u_{1,33}+(a+b) u_{2,21}$

$$
+a_{3,31}=\rho u_{1, t t}-\rho f_{1}
$$

(2.19) $-p, 2+(a+b) u_{1,21}+(a-b) u_{2,11}+2 a u_{2,22}+c u_{2,33}$

$$
+a u_{3,32}=\rho u_{2, t t}-\rho f_{2}
$$

(2.20) $-p, 3+c u_{1,31}+c u_{2,32}+c u u_{3,11}+a u_{3,22}$

$$
+2 c u_{3,33}=\rho u_{3, t t}-\rho f_{3}
$$

These are the equations of motion which will be solved in the next three sections.

3. Elementary properties of the basic equations

In this section we shall discuss three problems whose solutions provide important information about the fundamental dynamic properties of the material. These are the problems of propagation of plane waves, the response of the material to forced vibrations and the response to an impulsive excitation. The main results of the work concern the last of these problems which is dealt with in detail in the next two sections.

We seek plane wave solutions of equations (2.17)-(2.20) by substituting

$$
\begin{align*}
u_{k} & =A_{k}\left(y_{j}\right) \exp \left(i\left(c_{p} y_{p}-\omega t\right)\right) \tag{3.1}\\
p & =p\left(y_{j}\right) \exp \left(i\left(c_{p} y_{p}-\omega t\right)\right)
\end{align*}
$$

into these equations and we set

$$
\begin{equation*}
f_{k}=0 \tag{3.3}
\end{equation*}
$$

to obtain free vibrations.
If

$$
\begin{equation*}
c_{p}=S \tau_{p} \text {, and } \tau_{i} \tau_{i}=1, \tag{3.4}
\end{equation*}
$$

then the displacements and pressure given by equations (3.1) and (3.2) represent plane waves with amplitudes A_{k} and P which propagate in the
direction Z_{k} with velocity (ω / S). On substituting (3.1)-(3.4) into equations $(2.17)-(2.20)$ and rearranging the equations we see that u_{k} and p are solutions if and only if

$$
\begin{equation*}
i \frac{Z_{1}}{S} p+\left(2 a z_{1}^{2}+(a-b) z_{2}^{2}+c z_{3}^{2}-\rho \frac{\omega^{2}}{S^{2}}\right) A_{1} \tag{3.5}
\end{equation*}
$$

$$
+(a+b) Z_{1} Z_{2} A_{2}+a Z_{1} Z_{3} A_{3}=0,
$$

$$
\begin{equation*}
i \frac{z_{2}}{S} P+(a+b) z_{1} z_{2} A_{1}+\left((a+b) z_{1}^{2}+2 a z_{2}^{2}+c z_{3}^{2}-\rho\left(\frac{\omega^{2}}{S^{2}}\right)\right) A_{2}+a z_{2} z_{3} A_{3}=0 \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
i \frac{z_{3}}{S} p+c \tau_{1} z_{3} A_{1}+c l_{2} z_{3} A_{2}+\left(a z_{1}^{2}+a z_{2}^{2}+2 c z_{3}^{2}-\rho\left(\frac{\omega^{2}}{S^{2}}\right)\right) A_{3}=0 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
i I_{1} A_{1}+i I_{2} A_{2}+i \tau_{3} A_{3}=0 \tag{3.8}
\end{equation*}
$$

These equations are of the form

$$
\begin{equation*}
M U=0 \tag{3.9}
\end{equation*}
$$

where M is a 4×4 matrix and $U^{T}=\left(P, A_{1}, A_{2}, A_{3}\right)$. There exist non-trivial solutions for U if and only if

$$
\begin{equation*}
\operatorname{det} M=0 \tag{3.10}
\end{equation*}
$$

Equation (3.10) is the classical secular equation. It is the equation for the permissible squared speeds of propagation in the direction Z_{k}. In the current problem the secular equation is explicitly

$$
\begin{equation*}
\left(a\left(z_{1}^{2}+z_{2}^{2}\right)+c l_{3}^{2}-\rho\left(\frac{\omega^{2}}{s^{2}}\right)\right)\left((a-b)\left(l_{1}^{2}+z_{2}^{2}\right)+c l_{3}^{2}-\rho\left(\frac{\omega^{2}}{s^{2}}\right)\right)=0 \tag{3.11}
\end{equation*}
$$

There are thus at the most two real wave speeds in any direction in the material and since this is an equation for $\left(\frac{\omega}{S}\right)^{2}$ we require positive roots for real wave speeds. It will be stipulated that there be two real wave speeds in every direction in the material; thus from equation (3.11) we require each of a, c, and $(a-b)$ to be strictly positive. Recalling (2.16) we see that this implies

$$
\begin{equation*}
\mu^{2}\left(\alpha+\beta \mu^{2}\right)>0, \quad \lambda^{2}\left(\alpha+\beta \mu^{2}\right)>0 \quad \text { and } \mu^{2}\left(\alpha+\beta \lambda^{2}\right)>0 . \tag{3.12}
\end{equation*}
$$

Now $\mu^{2} \lambda=1$, so that $0<\mu, \lambda$; thus these conditions can be satisfied if and only if

$$
\begin{equation*}
\alpha, \beta>0 . \tag{3.13}
\end{equation*}
$$

The condition (3.13) is thus the necessary and sufficient condition on the strain energy function of a Mooney material for there to be 2 waves propagated in all directions for all possible initial finite deformations of an incompressible material of the class characterised by equations (2.14).

The wave speeds given by equation (3.11) can be substituted into equations (3.5)-(3.8) to find the amplitudes. For

$$
\begin{equation*}
\rho\left(\frac{\omega}{S}\right)^{2}=a\left(z_{1}^{2}+z_{2}^{2}\right)+a z_{3}^{2} \tag{3.14}
\end{equation*}
$$

the solutions are

$$
\begin{equation*}
P: A_{1}: A_{2}: A_{3}=0: \tau_{1}: \tau_{2}: \tau_{3}-\tau_{3}^{-1} \tag{3.15}
\end{equation*}
$$

and for

$$
\begin{gather*}
\rho\left(\frac{\omega}{S}\right)^{2}=(a-b)\left(l_{1}^{2}+z_{2}^{2}\right)+c l_{3}^{2}, \tag{3.16}\\
P: \tau_{1} A_{1}+\tau_{2} A_{2}: A_{3}=\frac{b \tau_{3}}{i}\left((a-b)+(c+b-a) z_{3}^{2}\right)^{\frac{1}{2}}:-l_{3}: 1,
\end{gather*}
$$

where A_{1} and A_{2} are arbitrary within the ratios (3.17).
The problem of the response of the material to impulsive or harmonically oscillating forces can be investigated using Fourier transforms. In the initial stages no distinction need be made between the two sets of problems. We take a four-fold Fourier transform in space and time, thus:

$$
\begin{equation*}
\bar{g}\left(\xi_{p}, \omega\right)=\int_{\Omega} \exp \left(i\left(y_{k} \xi_{k}+\omega t\right)\right) g\left(y_{p}, t\right) d y_{p} d t \tag{3.18}
\end{equation*}
$$

where Ω is the whole $\left(y_{p}, t\right)$ space. Equations (2.17)-(2.20) transform to the equation
(3.19) $\left(\begin{array}{cccc}-i \xi_{1} & \Xi_{1} & -(a+b) \xi_{1} \xi_{2} & -a \xi_{1} \xi_{3} \\ -i \xi_{2} & -(a+b) \xi_{1} \xi_{2} & \Xi_{2} & -a \xi_{2} \xi_{3} \\ -i \xi_{3} & -c \xi_{1} \xi_{3} & -c \xi_{2} \xi_{3} & \Xi_{3} \\ 0 & i \xi_{1} & i \xi_{2} & i \xi_{3}\end{array}\right)\left(\begin{array}{l}\bar{p} \\ \bar{u}_{1} \\ \bar{u}_{2} \\ \bar{u}_{3}\end{array}\right)=\left(\begin{array}{c}-\bar{f}_{1} \\ -\bar{f}_{2} \\ -\bar{f}_{3} \\ 0\end{array}\right)$,
that is

$$
\overline{N U}=\bar{F},
$$

Where we have used the following abbreviations:

$$
\begin{aligned}
& \bar{\Xi}_{1}=\left(\rho \omega^{2}-2 a \xi_{1}^{2}-(a-b) \xi_{2}^{2}-c \xi_{3}^{2}\right) \\
& \bar{E}_{2}=\left(\rho \omega^{2}-(a-b) \xi_{1}^{2}-2 a \xi_{2}^{2}-c \xi_{3}^{2}\right) \\
& \Xi_{3}=\left(\rho \omega^{2}-a\left(\xi_{1}^{2}+\xi_{2}^{2}\right)-2 c \xi_{3}^{2}\right)
\end{aligned}
$$

Thus
(3.20)

$$
\bar{U}=N^{-1} \bar{F}
$$

The matrix N^{-1} is given by

$$
\operatorname{det} N^{-1}\left(\begin{array}{llll}
11 & 12 & 13 & 14 \\
21 & 22 & 23 & 24 \\
31 & 32 & 33 & 34 \\
41 & 42 & 43 & 44
\end{array}\right) \text {, }
$$

where

$$
\left\{\begin{align*}
& \frac{11}{i \xi_{1}}=\frac{12}{i \xi_{2}}=\frac{13}{i \xi_{3}}=\frac{\operatorname{det} N}{\left(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}\right)} \\
& 21=-\xi_{2}^{2} Z_{1}-\xi_{3}^{2}\left(z_{1}-b \xi_{1}^{2}\right) \\
& 22=31=\xi_{1} \xi_{2}\left(z_{1}+b \xi_{3}^{2}\right), \tag{3.21}\\
& 32=-\xi_{1}^{2} Z_{1}-\xi_{3}^{2}\left(z_{1}-b \xi_{2}^{2}\right), \\
& \frac{23}{\xi_{1} \xi_{2}}= \frac{33}{\xi_{2} \xi_{3}}=\frac{41}{\xi_{1} \xi_{2}}=\frac{42}{\xi_{2} \xi_{3}}=\frac{-43}{\xi_{1}^{2}+\xi_{2}^{2}} \\
&=z_{1}-b\left(\xi_{1}^{2}+\xi_{2}^{2}\right)
\end{align*}\right.
$$

and

$$
Z_{1}=a\left(\xi_{1}^{2}+\xi_{2}^{2}\right)+c \xi_{3}^{2}-\rho \omega^{2}
$$

Also
(3.22) $\operatorname{det} N=-\left(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}\right)\left((a-b)\left(\xi_{1}^{2}+\xi_{2}^{2}\right)+c \xi_{3}^{2}-\rho \omega^{2}\right)\left(a\left(\xi_{1}^{2}+\xi_{2}^{2}\right)+c \xi_{3}^{2}-\rho \omega^{2}\right)$.

The last column of N^{-1} is irrelevent because the last element in F is always zero. The problem is completed by finding the inverse transform of \bar{U}.

We distinguish between the quasi-steady problems in which
(3.23) $u_{k}=u_{k}^{*}\left(y_{p}\right) e^{i \omega t}, p=p^{*}\left(y_{p}\right) e^{i \omega t}$ and $f_{k}=f_{k}^{*} e^{i \omega t}$, and the genuinely time dependent problems, by regarding ω as a constant in the former cases. For when equations (3.23) are introduced into equations (2.17)-(2.20) and Fourier transforms taken in y_{p}, then equations (3.19) result. In the case of the problems of the response to an impulse the forcing functions f_{k} have the form

$$
\begin{equation*}
f_{k}=f_{k}\left(y_{p}\right) \delta(t) \tag{3.24}
\end{equation*}
$$

and since the Fourier transform of $\delta(t)$ is unity it can be seen that the function \bar{F} which appears in equation (3.20) does not involve ω. From
the form of the elements of N^{-1} it follows that the solutions of these two groups of problems reduce to the problems of inverting functions of the form

$$
\frac{\phi\left(\xi_{k}\right)}{\left(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}\right]\left[a\left[\xi_{1}^{2}+\xi_{2}^{2}\right]+c \xi_{3}^{2}-\rho \omega^{2}\right)\left[(a-b)\left(\xi_{1}^{2}+\xi_{2}^{2}\right]+c \xi_{3}^{2}-\rho \omega^{2}\right]}
$$

Because we shall consider the response to point or line forces the function ϕ will always be a polynomial in the $\xi^{\prime} s$. The factorisation of the denominator is essential if the inverses of these functions are to be reduced to manageable expressions. In turn this factorisation is only possible if the secular equation has some particularly simple form as it does in this problem.

In the next sections the response of the body to an impulsive line of force will be examined in detail when the line of force is aligned along the y_{3} axis and when the line of force is aligned along the y_{1} axis, that is, when
(i) $f_{k}=\delta(t) \delta\left(y_{1}\right) \delta\left(y_{2}\right)\left(0, W_{2}, W_{3}\right)$, and
(ii) $f_{k}=\delta(t) \delta\left(y_{2}\right) \delta\left(y_{3}\right)\left(W_{1}, W_{2}, W_{3}\right)$,
(each of W_{j} is constant).
4. An impulsive line of force along the y_{3} axis

If a line of force acts on the material with constant force per unit length and fixed orientation along the entire y_{3} axis then the proolem becomes two-dimensional in the $y_{1} y_{2}$ plane. Since the initial deformation is axially symmetric with respect to the y_{3} axis there is no loss of generality in assuming that the component of the force perpendicular to the y_{3} axis acts in the y_{2} direction. When the applied force is an impulsive force the body force terms are:

$$
\begin{equation*}
f_{1}=0, \quad f_{2}=W_{2} \delta(t) \delta\left(y_{1}\right) \delta\left(y_{2}\right), f_{3}=W_{3} \delta(t) \delta\left(y_{1}\right) \delta\left(y_{2}\right) \tag{4.1}
\end{equation*}
$$

These transform to give

$$
\begin{equation*}
\bar{f}_{1}=0, \quad \bar{f}_{2}=w_{2} \delta\left(\xi_{3}\right), \quad \bar{f}_{3}=w_{3} \delta\left(\xi_{3}\right) \tag{4.2}
\end{equation*}
$$

From the inverse N^{-1} given by equations (3.21) and (3.22) and equation (3.20) we deduce that

$$
\begin{equation*}
\bar{p}=\frac{-W_{2} i \xi_{2}}{\xi_{1}^{2}+\xi_{2}^{2}} \delta\left(\xi_{3}\right) \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\bar{u}_{1}=\frac{-w_{2} \xi_{1} \xi_{2} \delta\left(\xi_{3}\right)}{\left(\xi_{1}^{2}+\xi_{2}^{2}\right]\left[(a-b)\left(\xi_{1}^{2}+\dot{\xi}_{2}^{2}\right)-\rho \omega^{2}\right]} \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
\bar{u}_{2}=\frac{w_{2} \xi_{1}^{2} \delta\left(\xi_{3}\right)}{\left(\xi_{1}^{2}+\xi_{2}^{2}\right]\left[(a-b)\left[\xi_{1}^{2}+\xi_{2}^{2}\right]-\rho \omega^{2}\right]} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{u}_{3}=\frac{w_{3} \delta\left(\xi_{3}\right)}{\left(a\left(\bar{\xi}_{1}^{2}+\dot{\xi}_{2}^{2}\right)-\rho \omega^{2}\right)} \tag{4.6}
\end{equation*}
$$

The property of the delta function

$$
\delta(\alpha) f(\alpha)=\delta(\alpha) f(0)
$$

has been used repeatedly here.
The inversions of \bar{p} and \bar{u}_{3} are straightforward; thus since the
inverse of $\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{-1}$ with respect to ξ_{1} and ξ_{2} is $-(2 \pi)^{-1} \log \left(y_{1}^{2}+y_{2}^{2}\right)^{\frac{1}{2}}$ and since $i \xi_{1} \bar{f}\left(\xi_{k}\right)=\frac{\overline{\partial f}}{\partial y_{1}}$, we have

$$
\begin{equation*}
p=\frac{W_{2}}{2 \pi} \frac{y_{2}}{y_{1}^{2}+y_{2}^{2}} \delta(t) \tag{4.7}
\end{equation*}
$$

\bar{u}_{3} can be inverted from first principles, or it may be observed that it is the transform of a fundamental solution of the two-dimensional wave equation. It is found that

$$
u_{3}= \begin{cases}\frac{w_{3}}{2 \pi a}\left(t^{2}-\frac{\rho}{a}\left(y_{1}^{2}+y_{2}^{2}\right)\right]^{-\frac{1}{2}} & , \quad t>\left[\frac{\rho\left(y_{1}^{2}+y_{2}^{2}\right)}{a}\right]^{\frac{1}{2}}, \tag{4.8}\\ 0 & , \quad t<\left[\frac{\rho\left(y_{1}^{2}+y_{2}^{2}\right)}{a}\right]^{\frac{1}{2}},\end{cases}
$$

The inverses of \bar{u}_{1} and \bar{u}_{2} have to be found from the inverse of

$$
\begin{equation*}
\bar{\psi}\left(\xi_{1}, \xi_{2}, \omega\right)=\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{-1}\left((a-b)\left(\xi_{1}^{2}+\xi_{2}^{2}\right)-\rho \omega^{2}\right)^{-1} \tag{4.9}
\end{equation*}
$$

Since the inverses of the two terms on the right-hand side of (4.9) are known, the inverse of $\bar{\psi}$ is just the convolution of these inverses:
(4.10) $\psi= \begin{cases}\begin{array}{ll}0 & t<0, \\ -\frac{1}{4 \pi^{2}} \frac{1}{(a-b)} \int_{\eta_{1}^{2}+\eta_{2}^{2}<\frac{(a-b) t^{2}}{\rho}}\left(t^{2}-\frac{\rho\left[\eta_{1}^{2}+\eta_{2}^{2}\right)}{a-b}\right)^{\frac{1}{2}} & \\ \log \left[\left(y_{1}-n_{1}\right)^{2}+\left(y_{2}-\eta_{2}\right)^{2}\right]^{\frac{1}{2}} d \eta_{1} d n_{2}, & t>0 .\end{array} \quad . \quad l\end{cases}$

The integral can be evaluated in terms of elementary functions by changing to polar coordinates; thus for $t>0$,
(4.11) $\psi=-\frac{1}{4 \pi^{2}(a-b)} \int_{\sigma_{0}^{2}<\frac{a-b}{\rho} t}\left(t^{2}-\frac{\rho \sigma_{0}^{2}}{a-b}\right)^{-\frac{1}{2}}$

$$
\log \left(\sigma^{2}+\sigma_{0}^{2}-2 \sigma \sigma_{0} \cos \left(\theta-\theta_{0}\right)\right)^{\frac{1}{2}} \sigma_{0} d \sigma_{0} d \theta_{0}
$$

(where (σ, θ) and $\left(\sigma_{0}, \theta_{0}\right)$ are the polar coordinates of $\left(y_{1}, y_{2}\right)$ and $\left(\eta_{1}, \eta_{2}\right)$ respectively). The integral with respect to θ_{0} can be carried out by expanding the logarithm in a power series in $\left(\frac{\sigma}{\sigma_{0}}\right)$ or $\left(\frac{\sigma_{0}}{\sigma}\right)$, whichever is smaller, and integrating term by term. We obtain
(4.12a) $\psi\left(y_{1}, y_{2}, t\right)=$

$$
\begin{array}{r}
-\frac{1}{4 \pi^{2}(a-b)} \int_{0}^{\left(\frac{a-b}{\rho}\right)^{\frac{1}{2}} t}\left(t^{2}-\frac{\rho \sigma_{0}^{2}}{a-b}\right)^{-\frac{1}{2}} 2 \pi\left\{\begin{array}{l}
\log \sigma_{0}, \sigma_{0}>\sigma \\
\log \sigma, \sigma>\sigma_{0}
\end{array} \sigma_{0} d \sigma_{0},\right. \\
\text { for } t>0
\end{array}
$$

Finally u_{1} and u_{2} equal $\frac{\partial^{2} \psi}{\partial y_{1} \partial y_{2}}$ and $\frac{\partial^{2} \psi}{\partial y_{1}^{2}}$ and thus
(4.12) $\quad u_{1}=\left\{\begin{array}{l}\frac{W_{2}}{\pi}\left[\frac{y_{1}^{y_{2}}}{\left(y_{1}^{2}+y_{2}^{2}\right)^{2}} \frac{1}{\rho}\left(t-\left(t^{2}-\frac{\rho\left(y_{1}^{2}+y_{2}^{2}\right)}{a-b}\right)^{\frac{1}{2}}\right]^{2\left(y_{1}^{2}+y_{2}^{2}\right)} \frac{1}{(a-b)}\left(t^{2}-\frac{\rho\left(y_{1}^{2}+y_{2}^{2}\right)}{a-b}\right)^{-\frac{1}{2}}\right], \text { for }\left(y_{1}^{2}+y_{2}^{2}\right)^{\frac{1}{2}}<\frac{a-b}{\rho} t, \\ \frac{W_{2}}{\pi \rho} \frac{y_{1} y_{2} t}{\left(y_{1}^{2}+y_{2}^{2}\right)^{2}}, \text { for } 0<\frac{(a-b)}{\rho} t<\left(y_{1}^{2}+y_{2}^{2}\right)^{\frac{1}{2}}, \\ 0 \quad, \text { for } t<0,\end{array}\right.$
and

For $t^{2} \gg\left(y_{1}^{2}+y_{2}^{2}\right)$ we have
(4.14)

$$
\left\{\begin{array}{l}
u_{1} \approx \frac{W_{2} \rho}{8 \pi(a-b)^{2}} \frac{y_{1} y_{2}}{t^{3}}, \\
u_{2} \sim \frac{W_{2}}{4(a-b)} \frac{1}{t}, \\
u_{3} \sim \frac{W_{3}}{2 \pi a t},
\end{array}\right.
$$

$$
(p=0 \text { for all } t \neq 0)
$$

These solutions show that there are two waves which travel
independently of one another, one carrying a displacement signal in the y_{3} direction, due only to the force in that direction, and one carrying displacement signals in the y_{1} and y_{2} directions. The former wave is the classical solution to the wave equation in two dimensions due to a point impulse. The second wave has a more complicated structure; there is an immediate response in the y_{1} and y_{2} directions, the displacements increase linearly in time until

$$
t=\rho^{\frac{1}{2}}(a-b)^{-\frac{1}{2}}\left(y_{1}^{2}+y_{2}^{2}\right)^{\frac{1}{2}}
$$

then they fall to zero again as t increases further. For large time both u_{2} and u_{3} fall off as $\frac{l}{t}$, but independent of position. The displacement u_{1} decays like $\frac{1}{t^{3}}$ at a rate depending on y_{1} and y_{2}.

The presence of an immediate change in the displacements can be attributed to the incompressibility of the material which can be regarded as causing a wave which travels with infinite velocity.

In the next problem the solutions are not all expressible in such simple terms as in the current problem. However we will show that the main results from the current problem are preserved.

5. An impulsive line of force along the y_{1} axis

When the line of force acts along an axis perpendicular to the y_{3}
axis there is no loss of generality in choosing the y_{1} axis since the initial deformation is axially symmetric with respect to the y_{3} axis. However none of the components of the applied force may be assumed to be zero. The problem becomes two-dimensional in the planes $y_{1}=$ a constant. The body force terms are
(5.1) $f_{1}=W_{1} \delta(t) \delta\left(y_{2}\right) \delta\left(y_{3}\right), f_{2}=W_{2} \delta(t) \delta\left(y_{2}\right) \delta\left(y_{3}\right)$,

$$
f_{3}=W_{3} \delta(t) \delta\left(y_{2}\right) \delta\left(y_{3}\right)
$$

From equations (3.20), (3.21) and (3.22) we read off

$$
\begin{equation*}
p=\frac{-W_{2} i \xi_{2}-W_{3} i \xi_{3}}{\left(\xi_{2}^{2}+\xi_{3}^{2}\right)} \delta\left(\xi_{1}\right) \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\bar{u}_{1}=\frac{w_{1} \delta\left(\xi_{1}\right)}{\left((a-b) \xi_{2}^{2}+c \xi_{3}^{2}-\sigma \omega^{2}\right]} \delta\left(\xi_{1}\right) \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\bar{u}_{2}=\frac{w_{2} \xi_{3}^{2}-w_{3} \xi_{2} \xi_{3}}{\left(a \xi_{2}^{2}+c \xi_{3}^{2}-o \omega^{2}\right)\left[\xi_{2}^{2}+\xi_{3}^{2}\right]} \delta\left(\xi_{1}\right) \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\bar{u}_{3}=\frac{\left(-W_{2} \xi_{2} \xi_{3}+W_{2} \xi_{2}^{2}\right) \delta\left(\xi_{1}\right)}{\left.a \xi_{2}^{2}+c \xi_{3}^{2}-\rho \omega^{2}\right)\left(\xi_{2}^{2}+\xi_{3}^{2}\right.}\right) \tag{5.5}
\end{equation*}
$$

Immediately we have

$$
\begin{equation*}
p=\frac{\delta(t)}{2 \pi} \frac{w_{2} y_{2}+w_{3} y_{3}}{\left(y_{2}^{2}+y_{3}^{2}\right)} \tag{5.6}
\end{equation*}
$$

and
(5.7) $u_{1}= \begin{cases}\frac{W_{1}}{2 \pi(a-b)^{\frac{1}{2}} c^{\frac{1}{2}}}\left(t^{2}-\frac{\rho y_{2}^{2}}{(a-b)}-\frac{\rho y_{3}^{2}}{c}\right)^{-\frac{1}{2}}, & t>\left(\frac{\rho y_{2}^{2}}{(a-b)}+\frac{\rho y_{3}^{2}}{c}\right)^{\frac{1}{2}}, \\ 0 & , \quad t<\left(\frac{\rho y_{2}^{2}}{(a-b)}+\frac{\rho y_{3}^{2}}{c}\right)^{\frac{1}{2}},\end{cases}$

To invert \bar{u}_{2} and \bar{u}_{3} we require $\frac{\partial^{2} x}{\partial y_{2}^{2}}, \frac{\partial^{2} x}{\partial y_{3}^{2}}$, and $\frac{\partial^{2} x}{\partial y_{2} \partial y_{3}}$, where

$$
\begin{equation*}
\bar{x}=\left(a \xi_{2}^{2}+c \xi_{3}^{2}-\rho \omega^{2}\right)^{-1}\left(\xi_{2}^{2}+\xi_{3}^{2}\right)^{-1} \tag{5.8}
\end{equation*}
$$

We may use the convolution theorem as in the previous problem; then

Although this integral only differs slightly from that for ψ, it appears that it cannot be evaluated in terms of elementary functions. The properties of the displacements u_{2} and u_{3} thus have to be established less directly, and because they are linear combinations of second order derivatives of X the deduction of their properties is non-trivial. [Both differentiations cannot be carried under the integral sign since this gives rise to divergent integrals. Similarly, methods based on integration by parts also give divergent integrals.]

We shall find the asymptotic forms of u_{2} and u_{3} for $t \ll\left(y_{1}^{2}+y_{2}^{2}\right)^{\frac{1}{2}}$ and $t \gg\left(y_{1}^{2}+y_{2}^{2}\right)^{\frac{1}{2}}$, that is, at large distances in front of and behind the wavefront $t^{2}=\frac{\rho y_{2}^{2}}{a}+\frac{\rho y_{3}^{2}}{c}$. First we may note that since the integral in (5.9) can be evaluated when $c=a$, we can expand x in a power series in $\frac{c-a}{a}, \frac{c-a}{c}$, according to whether $c<a$ or $c>a$. In principle X and its derivatives can then be found to any accuracy for all the integrals in the series can be evaluated. However, while the first one or two terms can be calculated without much difficulty, later manipulations involve enormous calculations.

The expansion of X, and thus u_{2} and u_{3}, for small values of t is straightforward. When $t^{2} \ll \frac{\rho}{a} y_{2}^{2}+\frac{\rho}{c} y_{3}^{2}$, the expression $\left(y_{2}-\eta_{2}\right)^{2}+\left(y_{3}-\eta_{3}\right)^{2}$ is never zero inside the ellipse $t^{2}=\frac{\rho}{a} y_{2}^{2}+\frac{\rho}{c} y_{3}^{2}$ and so the differentiations can be taken under the integral sign. For example
(5.10) $\frac{\partial^{2} x}{\partial y_{2} \partial y_{3}}=\frac{1}{4 \pi^{2}(a c)^{\frac{1}{2}}} \int\left(\frac{\rho_{n}}{a} \frac{2}{2}+\frac{\rho_{n}}{c} n_{3}^{2}\right)<t^{2}\left(t^{2}-\frac{\rho n_{2}^{2}}{a}-\frac{\rho n_{1}^{2}}{c}\right)^{-\frac{1}{2}}$

$$
\frac{2\left(y_{2}-n_{2}\right)\left(y_{3}-n_{3}\right)}{\left(\left(y_{2}-n_{2}\right)^{2}+\left(y_{3}-n_{3}\right)^{2}\right)^{2}} d n_{2} d n_{3}
$$

Now with $\zeta_{2}=\eta_{2} t$ and $\zeta_{3}=\eta_{3} t$ in the integral we obtain

$$
\begin{aligned}
& \frac{\partial^{2} x}{\partial y_{2} \partial y_{3}}=\frac{t}{2 \pi^{2}(a c)^{\frac{1}{2}}} \int_{\frac{\rho}{a} \zeta_{2}^{2}+\frac{\rho}{c} \zeta_{3}^{2}<1}\left(1-\frac{\rho}{a} \zeta_{2}^{2}-\frac{\rho}{c} \zeta_{3}^{2}\right)^{-\frac{1}{2}} \\
& \frac{\left(y_{2}-\zeta_{2}\right)\left(y_{3}-\zeta_{3}\right)}{\left|\left(y_{2}-\zeta_{2}\right)^{2}+\left(y_{3}-\zeta_{3}\right)^{2}\right|^{2}} d \zeta_{2} d \zeta_{3}
\end{aligned}
$$

We may legitimately write

$$
\frac{\left(y_{2}-t \zeta_{2}\right)\left(y_{3}-t \zeta_{3}\right)}{\left(\left(y_{2}-t \tau_{2}\right)^{2}+\left(y_{3}-t \zeta_{3}\right)^{2}\right)^{2}}=\frac{y_{2} y_{3}}{\left(y_{2}^{2}+y_{3}^{2}\right)^{2}}+o(t)
$$

thus
(5.11) $\frac{\partial^{2} x}{\partial y_{2} \partial y_{3}}=\frac{t}{2 \pi^{2}(a c)^{\frac{1}{2}}} \frac{y_{2} y_{3}}{\left(y_{2}^{2}+y_{3}^{2}\right)^{2}} \int_{\frac{\rho}{a} \zeta_{2}^{2}+\frac{\rho}{c} \zeta_{3}^{2}<1}$

$$
\left(1-\frac{\rho}{a} \zeta_{2}^{2}-\frac{\rho}{c} \zeta_{3}^{2}\right)^{-\frac{1}{2}} d \zeta_{2} d \zeta_{3}+o\left(t^{2}\right)
$$

$=\frac{t}{\pi \rho} \frac{y_{2} y_{3}}{\left(y_{2}^{2}+y_{3}^{2}\right)^{2}}+o\left(t^{2}\right)$.

The expansions of the other second order derivatives of X follow in like manner and thus it follows that:

$$
\begin{equation*}
u_{2}=\frac{t}{2 \pi \rho\left(y_{2}^{2}+y_{3}^{2}\right)^{2}}\left(W_{3} 2 y_{2} y_{3}+w_{2}\left(y_{2}^{2}-y_{3}^{2}\right)\right)+o\left(t^{2}\right) \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{3}=\frac{t}{2 \pi \rho\left(y_{2}^{2}+y_{3}^{2}\right)^{2}}\left(w_{2}^{2 y_{2}} y_{3}-w_{3}\left(y_{2}^{2}-y_{3}^{2}\right)\right)+o\left(t^{2}\right) \tag{5.13}
\end{equation*}
$$

There is obviously no great difficulty in finding higher order approximations. Exact upper and lower bounds on u_{2} and u_{3} can also be calculated when $\frac{\rho y_{2}^{2}}{a}+\frac{\rho y^{2}}{c}>t^{2}$. These can be found from simple estimates of the integral on the right-hand side of equation (5.10) and its two counterparts.

When $t^{2} \gg \frac{\rho}{a} y_{2}^{2}+\frac{\rho}{c} y_{3}^{2}$ the problem is more complicated. One differentiation can be taken under the integral sign and this proves to be sufficient to enable the asymptotic forms of u_{2} and u_{3} to be determined. First we change the variables in X. Let (5.14) $\quad Y_{2}=\left(\frac{\rho}{a}\right)^{\frac{1}{2}} y_{2}, \quad Y_{3}=\left(\frac{\rho}{c}\right)^{\frac{1}{2}} y_{3}, \quad z_{2}=\left(\frac{\rho}{a}\right)^{\frac{1}{2}} \eta_{2} \quad$ and $\quad z_{3}=\left(\frac{\rho}{a}\right)^{\frac{1}{2}} \eta_{3}$; then

$$
\begin{align*}
& x=-\frac{1}{4 \pi^{2} \rho} \int_{z_{2}^{2}+z_{3}^{2}<t^{2}}\left(t^{2}-z_{2}^{2}-z_{3}^{2}\right)^{-\frac{1}{2}} \tag{5.15}\\
& \log \left(\frac{a}{\rho}\left(y_{2}-z_{2}\right)^{2}+\frac{c}{\rho}\left(y_{3}-z_{3}\right)^{2}\right)^{\frac{1}{2}} d z_{2} d z_{3}
\end{align*}
$$

We denote the region $z_{2}^{2}+z_{3}^{2}<t^{2}$ by D_{1}, and the region $z_{2}^{2}+z_{3}^{2}<Y_{2}^{2}+Y_{3}^{3}$ by $\quad D_{2}$.

It will be shown that
(5.16) $\frac{\partial X}{\partial Y_{2}}=$

$$
\frac{-1}{4 \pi^{2} \rho} \int_{D_{2}}\left(t^{2}-2_{2}^{2}-z_{3}^{2}\right)^{-\frac{1}{2}} \frac{\partial}{\partial Y_{2}}\left(\log \left|\frac{a}{\rho}\left(Y_{2}-z_{2}\right)^{2}+\frac{c}{\rho}\left(Y_{3}-Z_{3}\right)^{2}\right|\right) d z_{2} d z_{3}
$$

then the asymptotic form of $\frac{\partial X}{\partial Y_{2}}$ follows immediately. The proof of this assertion is given in Section 7 .

The asymptotic form of $\frac{\partial X}{\partial Y_{2}}$ is easily found because the domain D_{2}, unlike D_{1}, is independent of t. Thus we can expand $\left(t^{2}-z_{2}^{2}-z_{3}^{2}\right)^{-\frac{1}{2}}$ in inverse powers of t. Then

$$
\begin{equation*}
\frac{\partial X_{2}}{\partial Y_{2}} \sim-\frac{1}{4 \pi^{2} \rho} \frac{1}{t} \int_{D_{2}} \frac{\left(Y_{2}-Z_{2}\right)}{a\left(Y_{2}-Z_{2}\right)^{2}+c\left(Y_{3}-Z_{3}\right)^{2}} d z_{2} d Z_{3}+o\left(\frac{1}{t^{2}}\right) \tag{5.17}
\end{equation*}
$$

On changing the origin of integration to the point $\left(Y_{2}, Y_{3}\right)$ and changing to polar coordinates the integral becomes

$$
\int_{0<R_{0}<R \cos \left(\theta_{0}-\theta+\pi\right)}\left(\frac{-a \cos \theta_{0}}{a \cos ^{2} \theta_{0}+b \sin ^{2} \theta_{0}}\right) d R_{0} d \theta_{0}
$$

which equals

$$
\frac{2 \pi a^{\frac{1}{2}} R \cos \theta}{a^{\frac{1}{2}}+c^{\frac{1}{2}}}
$$

Thus

$$
\begin{equation*}
\frac{\partial X_{2}}{\partial Y_{2}} \sim-\frac{1}{2 \pi \rho} \frac{\sqrt{a}}{\sqrt{a}+\sqrt{a}} \frac{Y_{2}}{t} \tag{5.18}
\end{equation*}
$$

Similarly we can prove that

$$
\begin{equation*}
\frac{\partial X^{2}}{\partial Y_{3}} \sim-\frac{1}{2 \pi \rho} \frac{\sqrt{a}}{\sqrt{a}+\sqrt{c}} \frac{Y_{3}}{t} \tag{5.19}
\end{equation*}
$$

The asymptotic forms of u_{2} and u_{3} follow from (5.18) and (5.19) and the above results, they are

$$
\begin{equation*}
u_{2} \sim \frac{1}{2 \pi} \frac{W_{2}}{(\sqrt{a}+\sqrt{c}) \sqrt{a}} \frac{1}{t} \tag{5.20}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{3} \sim \frac{1}{2 \pi} \frac{W_{3}}{\sqrt{c}(\sqrt{a}+\sqrt{c})} \frac{1}{t} \tag{5.21}
\end{equation*}
$$

Thus to the first order of approximation the displacements are independent of position at large times and the displacement in the y_{i} direction is proportional only to the force in that direction.

6. Energy flux

Finally the energy flux vector E_{i} can be calculated for the problems of this section. This is defined to be $-\tilde{t}_{i, j} V_{j}$ where $\tilde{t}_{i j}$ is the total stress and V_{j} is the particle velocity. It should be noted that $\tilde{t}_{i, j} V_{j}$ is in fact the flux per unit area in the state A_{2}. Since the displacements corresponding to the change from the state A_{1} to the state A_{2} are of order ε, to first order the energy flux per unit area can be regarded as measured in either state.

Also since

$$
\tilde{t}_{i j}=q_{i, j}+\varepsilon t_{i j},
$$

we have

$$
\begin{equation*}
E_{i}=-\tilde{t}_{i, j} v_{j}=-t_{i j} v_{j}+O(\varepsilon) \tag{6.1}
\end{equation*}
$$

Lastly, since the displacements calculated in Sections 4 and 5 are particle displacements, the particle velocities are simply the time derivatives of the displacements. Thus we have

$$
\begin{equation*}
E_{i}=-\stackrel{o}{i j} \frac{\partial u_{i}}{\partial t} \varepsilon+O\left(\varepsilon^{2}\right) \tag{6.2}
\end{equation*}
$$

Now the matrix of $\stackrel{0}{t}_{i j}$ is diagonal with positive elements, namely,

$$
\left(\begin{array}{ccc}
\mu^{2}\left(\alpha+\beta\left(\lambda^{2}+\mu^{2}\right)\right) & 0 & 0 \\
0 & \mu^{2}\left(\alpha+\beta\left(\lambda^{2}+\mu^{2}\right)\right) & 0 \\
0 & 0 & \lambda^{2}\left(\alpha+2 \beta \mu^{2}\right)
\end{array}\right)
$$

It is then a simple matter to determine E_{i}, from which the following properties are easily noted:
(i) for t small the energy flux is perpendicular to the axis of the line of force;
(ii) at all times the energy flux vector has a positive component along the velocity vector when the material is relaxing and in the opposite direction to the velocity vector when the material is undergoing increasing strain;
(iii) for large times the energy flux vector has a positive component along the direction of the applied impulsive force.
7. Differentiation of the function x of equation (5.9) under the integral sign

The assertion of equation (5.16) is that if
(7.1) $\quad x=-\frac{1}{4 \pi^{2} \rho} \int_{D_{1}}\left(t^{2}-z_{2}^{2}-z_{3}^{2}\right)^{-\frac{1}{2}} \log \left(\frac{a}{\rho}\left(y_{2}-z_{2}\right)^{2}+\frac{c}{\rho}\left(y_{3}-z_{3}\right)^{2}\right)^{\frac{1}{2}} d z_{2} d z_{3}$,
where D_{1} is the set of points $\left(z_{2}, Z_{3}\right)$ with $z_{2}^{2}+z_{3}^{2}<t^{2}$, then
(7.2) $\frac{\partial X}{\partial Y_{2}}=-\frac{1}{4 \pi^{2} \rho} \int_{D_{2}}\left(t^{2}-z_{2}^{2}-z_{3}^{2}\right)^{-\frac{1}{2}} \frac{\partial}{\partial Y_{2}}\left(\log \left(\frac{a}{\rho}\left(Y_{2}-Z_{2}\right)^{2}+\frac{c}{\rho}\left(Y_{3}-Z_{3}\right)^{2}\right)\right) d Z_{2} d Z_{3}$,
where D_{2} is the set $Z_{2}^{2}+Z_{3}^{2}<Y_{2}^{2}+Y_{3}^{2}$.
To prove the assertion the function X is first expanded in a series of powers of $\frac{c-a}{a}$ or $\frac{c-a}{c}$, which may then be integrated term by term.

For definiteness assume $a>c$. Now a and c are necessarily positive so that $a>c>0$ implies $-1<\frac{c-a}{a}<0$. Also

$$
\left.\frac{a}{\rho}\left(Y_{2}-Z_{2}\right)^{2}+\frac{c}{\rho}\left(Y_{3}-Z_{3}\right)^{2} \equiv \frac{a}{\rho}\left[\left(Y_{2}-Z_{2}\right)^{2}+Y_{3}-Z_{3}\right)^{2}\right]\left[1+\frac{c-a}{a} \frac{\left(Y_{3}-Z_{3}\right)^{2}}{\left(Y_{2}-Z_{2}\right)^{2}+\left(Y_{3}-Z_{3}\right)^{2}}\right]
$$

and since

$$
\left|\frac{c-a}{a} \frac{\left(Y_{3}-z_{3}\right)^{2}}{\left(y_{2}-Z_{2}\right)^{2}+\left(Y_{3}-Z_{3}\right)^{2}}\right|<1
$$

the logarithm term in (7.1) can be expanded to give

$$
\begin{align*}
& x=-\frac{1}{4 \pi^{2} \rho} \int_{D_{1}}\left(t^{2}-z_{2}^{2}-z_{3}^{2}\right)^{-\frac{1}{2}}\left[\log \left(\frac{a}{\rho}\left[\left(y_{2}-Z_{2}\right)^{2}+\left(y_{3}-Z_{3}\right)^{2}\right]\right)\right. \tag{7.3}\\
&+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{c-a}{a}\right)^{n} \frac{\left(y_{3}-Z_{3}\right)^{2 n}}{\left.\left[\left(y_{2}-Z_{2}\right)^{2}+\left(y_{3}-z_{3}\right)^{2}\right]^{n}\right]} d z_{2} d z_{3} .
\end{align*}
$$

Consider the integral involved in a typical term of the series in (7.3). The integral of the first term was dealt with in Section 4 in equation (4.10-4.11a). The remaining terms are of the form
(7.4) $G_{n}\left(Y_{2}, Y_{3}\right)=\int_{D_{1}}\left(t^{2}-z_{2}^{2}-z_{3}^{2}\right)^{-\frac{1}{2}} \frac{\left(Y_{3}-z_{3}\right)^{2 n}}{\left|\left(y_{2}-z_{2}\right)^{2}+\left(y_{3}-z_{3}\right)^{2}\right|^{n}} d z_{2} d z_{3}$.

By changing to polar coordinates:

$$
Y_{2}=R \cos \theta, \quad Y_{3}=R \sin \theta, \quad Z_{2}=R_{0} \cos \theta_{0}, \quad Z_{3}=R_{0} \sin \theta_{0},
$$

and integrating first with respect to θ_{0}, we obtain the integral
(7.5) $F_{n}\left(R, \theta ; R_{0}\right)=\int_{0}^{2 \pi} \frac{\left(R \sin \theta-R_{0} \sin \theta_{0}\right)^{2 n}}{\left|\left(R \cos \theta-R_{0} \cos \theta_{0}\right)^{2}+\left(R \sin \theta-R_{0} \sin \theta_{0}\right)^{2}\right|^{n}} d \theta_{0}$.

Now we observe that
(i) $\quad\left(F_{n}\left(R, \theta ; R_{0}\right)\right.$ is continuous at $R=R_{0}$, since the integrand is bounded in a neighbourhood of $\theta_{0}=\theta$ and continuous for all other values of R, θ, and $R_{0} ;$ and
(ii) that for $R_{0}>R, F_{n}\left(R, \theta ; R_{0}\right)$ is a constant independent of R, θ and R_{0}.

The second property is proved as follows: By substituting $\theta_{0}=\theta_{0}^{\prime}+\theta$ and observing the periodicity of the integrand we have

$$
F_{n}\left(R, \theta ; R_{0}\right)=\int_{0}^{2 \pi} \frac{\left[R \sin \theta-R_{0} \sin \left(\theta_{0}+\theta\right)\right]^{2 n}}{\left(F^{2}+R_{0}^{2}-2 R R_{0} \cos \theta_{0}\right)^{n}} d \theta_{0}
$$

and with $\mu=\frac{R}{R_{0}}$,

$$
F_{n}\left(R, \theta ; R_{0}\right)=\int_{0}^{2 \pi} \frac{\left(\mu \sin \theta-\sin \left(\theta_{0}+\theta\right)\right)^{2 n}}{\left(1-2 \mu \cos \theta_{0}+\mu^{2}\right)^{n}} d \theta_{0}
$$

Now the numerator can be expanded to give terms of the form $K_{p}(\theta) \mu^{2 n-2 p} \sin ^{2 P}\left(\theta+\theta_{0}\right)$, and these in turn can be expressed as sums of cosines of even multiples of θ_{0}, thus:
$b_{p}(\theta) \cos 2 p \theta_{0}+b_{p-1} \cos (2 p-2) \theta_{0}+\ldots+b_{0}$. From Gradshteyn and Ryzhik ([4], §3.616, (7)) for $\mu<1$, (that is, $R_{0}>R$), we have $\int_{0}^{2 \pi} \frac{\cos 2 p \theta_{0} d \theta_{0}}{\left(1-2 \mu \cos \theta_{0}+\mu^{2}\right)^{n}}=\left(1-\mu^{2}\right)^{1-2 n}\left(\right.$ a polynomial of degree $n+p-1$ in $\left.\mu^{2}\right)$. Thus for $R>R_{0}$,

$$
\begin{equation*}
F_{n}\left(R, \theta ; R_{0}\right)=\frac{\left(\text { a polynomial of degree } 2 n-1 \text { in } \mu^{2}\right)}{\left(1-\mu^{2}\right)^{2 n-1}} \tag{7.7}
\end{equation*}
$$

Now $\left(1-\mu^{2}\right)^{2 n-1}$ must divide the numerator exactly in the above equation, for otherwise it implies that F_{n} involves a term $\left(R^{2}-R_{0}^{2}\right)^{-1}$ which is not integrable with respect to R_{0}. But since the integral of F_{n}, with respect to R_{0}, gives G_{n}, the existence of the integral on the right-hand side of equation (7.4) guarantees the existence of the
iterated integrals. Thus from (7.7), when $R>R_{0}, F_{n}$ can only be a function of θ. Putting $\mu=0$ will determine its value. It equals

$$
\int_{0}^{2 \pi} \sin ^{2 n}\left(\theta_{0}+\theta\right) d \theta
$$

and this integral equals $\frac{(2 n-1)!!}{2 n!!} 2 \pi$, which is independent of X also as asserted. Explicitly, for $R>R_{0}$,

$$
\begin{equation*}
F_{n}\left(R, \theta ; R_{0}\right)=\frac{(2 n-1)!!}{2 n!!} 2 \pi \tag{7.8}
\end{equation*}
$$

(At this stage no approximations have been made for finding X. The exact forms of F_{n} can be evaluated and the integration with respect to θ completed; all the integrals are elementary, if not concise. Thus the expansion of θ, and hence of u_{2} and u_{3}, in powers of $\frac{c-a}{a}$ can be found. In practice the calculations became overwhelmingly complicated after the term in $\left(\frac{c-a}{a}\right)^{2}$. $)$ By summing the series expansion to recapture (7.1) again and using the property of F_{n} just proved, it follows that

$$
\begin{equation*}
X=-\frac{1}{4 \pi^{2} \rho} \int_{D_{1}}\left(t^{2}-R_{0}^{2}\right)^{-\frac{1}{2}} R_{0}\left(k H\left(R_{0}-R+H\left(R-R_{0}\right) F\left(R, \theta ; R_{0}\right)\right) d R_{0}\right. \tag{7.9}
\end{equation*}
$$

where H is Heaviside's step function and F is a function whose only important property is that $\lim _{F_{0} \rightarrow R^{-}} F\left(R, \theta ; R_{0}\right)=k$ (the last remark follows from the continuity of each $F_{n}\left(R, \theta ; R_{0}\right)$ and the continuity of the integrand of equation (4.1la)). This property of F is crucial, for

$$
\begin{aligned}
& \frac{\partial}{\partial Y_{2}}\left(k H\left(R-R_{0}\right)+H\left(R_{0}-R\right) F\left(R, R_{0} ; \theta\right)\right) \\
& \\
& =\frac{Y_{2}}{R}\left(-k \delta\left(R-R_{0}\right)+\delta\left(R_{0}-R\right) F\left(R, R_{0} ; \theta\right)\right)+H\left(R-R_{0}\right) \frac{\partial}{\partial Y_{2}}\left(F\left(R, R_{0} ; \theta\right)\right)
\end{aligned}
$$

But since $\delta(u)=\delta(-u)$ and $\delta(u) \phi(u)=\delta(u) \phi(0)$ at a point of continuity of ϕ, it follows that
(7.10)

$$
\frac{\partial}{\partial Y_{2}}\left(k H\left(R-R_{0}\right)+H\left(R-R_{0}\right) F\left(R, R_{0} ; \theta\right)\right)=H\left(R-R_{0}\right) \frac{\partial}{\partial Y_{2}} F\left(R, R_{0} ; \theta\right)
$$

Finally, from equation (5.24) we obtain

$$
\frac{\partial X}{\partial Y_{2}}=-\frac{1}{4 \pi^{2} \rho_{\rho}} \int_{D_{2}}\left(t^{2}-Z_{2}^{2}-Z_{3}^{2}\right)^{-\frac{1}{2}} \frac{\partial}{\partial Y_{2}}\left(\log \left|\frac{a}{\rho}\left(Y_{2}-Z_{2}\right)^{2}+\frac{c}{\rho}\left(Y_{3}-Z_{3}\right)^{2}\right|^{\frac{1}{2}}\right) d Z_{2} d Z_{3}
$$

the assertion of equation (7.2).

References

[1] J.L. Ericksen, "On the propagation of waves in isotropic incompressible perfectly elastic materials", J. Rational Mech. Anat. 2 (1953), 329-337.
[2] J.N..Flavin, A.E. Green, "Plane thermo-elastic waves in an initially stressed medium", J. Mech. Phys. SoLids 9 (1961), 179-190.
[3] I.M. Gelfand and G.E. Shilov, Generalized functions, Vol. 1 (translated by Eugene Saletan. Academic Press, New York, London, 1964).
[4] I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, 4 th ed. (translated by Scripta Technica, Inc. Academic Press, New York, London, 1965).
[5] James K. Knowles, "Large amplitude oscillations of a tube of incompressible elastic material", Quart. Appl. Math. 18 (1960), 71-77.
[6] T. Manacorda, "Sulla propagazione di onde ordinarie di discontinuità nella elasticità di secondo grado per solidi incomprimibili", Riv. Mat. Univ. Parma 10 (1959), 19-33.
[7] C. Truesdell, W. Noll, "The non-linear field theories of mechanics", Handbuch der Physik, Band III/3 (Springer-Verlag, Berlin, Heidelberg, New York, 1965).

University of Queensland,
St Lucia,
Queens Iand.

[^0]: 1 The author gratefully acknowledges the assistance of Dr M.A. Hayes of the University of East Anglia for finding a physical problem in which this analysis is possible.

[^1]: 2 K̈epeated suffixes. imply summation over the values $i=1,2$ and 3.

