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Elastic waves in a prestressed

Mooney material

J.A. Belward

The dynamic response of a prestressed incompressible Mooney

material is studied by investigating plane wave propagation and

the response of the material to impulsive lines of force. The

choice of an initial deformation which is axially symmetric

gives a particularly simple form for the secular equation for

the plane wavefront velocities. The speeds of propagation and

the amplitudes of the two permissible transverse waves are found

and necessary and sufficient conditions for there to exist two

real wave speeds in all directions are established. The simple

form of the secular equation enables the response of the

material to concentrated disturbances to be readily solved using

Fourier transforms. The motions caused by a line of impulsive

forces is examined in some detail.

1. Introduction

In this paper an account will be given of some investigations into the

dynamic properties of a prestressed incompressible elastic material.

In previous work the propagation of finite amplitude waves in

incompressible materials has been investigated by Ericksen [/] and

Manacorda [6] (see also Truesdell and Noll [7]) and Knowles [5]. Flavin

and Green [2] have examined the propagation of small amplitude

thermoelastic waves superposed on a finite deformation for both
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compressible and incompressible materials. The present work focusses on

the particular case of an incompressible Mooney material which is subjected

to an ini t ia l pure homogeneous deformation with equal extension ratios in

two perpendicular directions. The propagation of plane waves in the

material is discussed and the response of the material to impulsive line

forces is examined in detail.

Because the material is incompressible only two plane waves are

possible and these must both be transverse waves. The simple form of the

secular equation which determines the wave speeds in the present problem

enables the speeds of propagation to be expressed as simple functions of

the material constants in the problem. The amplitudes associated with each

wave are found and necessary and sufficient conditions for the propagation

of plane waves in every direction of the material are given.

Fundamental problems involving the response of the material to line

disturbances are examined using transform techniques. When the secular

equation has the simple form which i t has in the current problem the

response of the material to impulsive disturbances or sustained harmonic

oscillations can be reduced to simple Fourier inversions1.

A detailed analysis is made of the disturbances caused by line

concentrations of forces, one acting along the axis of symmetry of the

in i t ia l deformation and the other perpendicular to and passing through the

axis of symmetry. In the former case the solutions are found in terms of

simple algebraic functions. In the second case certain of the solutions

can only be expressed as double integrals. However these solutions are

shown to have the same asymptotic behaviour as the first set for t small

and for t large. In both cases for large times the displacements are

independent of position to first order. They are proportional to t and

the displacement in the ith direction is proportional to the component of

applied force in that direction only and independent of the other

components.

1 The author gratefully acknowledges the assistance of Dr M.A. Hayes
of the University of East Anglia for finding a physical problem in which
this analysis is possible.
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2. Basic equations

The equations of motion which form the basis of the investigations

will be derived first. Consider s body of homogeneous, isotropic,

incompressible, perfectly elastic material with strain energy W per unit

volume. Let the body be subjected to a finite static deformation, under

the action of surface tractions only, in which a particle at X. in some

rectangular cartesian coordinate system moves to the point y • referred to

the same coordinate system. Call this state A . For an incompressible

o 2

material the Cauchy s t ress t • . i s given by
'•0

0 f riU r\W I 0 rlW 0 0

0

where B• • i s the lef t Cauchy-Green s t ra in tensor defined by

o o
and I- and Jp are two invariants of the deformation defined by

(2.3) KK VfcW^
and pQ is a hydrostatic pressure defined up to an arbitrary constant.

Since the body is in equilibrium with no body forces applied,

0

Now consider a further time dependent deformation in which the

particle at y • moves to x . . This second deformation will be assumed

small in the sense that if

(2.5) xi- Vi = €ui ,

2
terms in £ and higher powers may be neglected in comparison with terms

in e . Let the stress in this new configuration be denoted by

Repeated suffixes imply summation over the values i = 1, 2 and
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(2.6) I.. • eti;j .

then if the strain energy, pressure and strain tensor are expanded in

powers of £ about their values in the state A. , thus

W = W + tW + . .. ,

(2.7) p = p + ep + ... ,

it can be shown that

(2.8) ti;j--PS..

2

~ 2 ^
9 J2

where

and

du.

In the state A- the equations of motion of the body are

(2.10) -^-[t.u
j "d "J " 3 ^

The body forces which are applied to disturb the body from the state

A are assumed to be of the form cf. . Thus if equations (2.1*), (2.5)
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and (2.6) are applied to equation (2.10), then to order E we have

3£. . 3w, 3£. . 32w .

Applying equation (2.It) reduces this equation to

3t. . 32w .

In the problems to be investigated in this paper the material of the

body is assumed to be a Mooney material, and the init ial deformation has

principal axes of strain parallel to the coordinate axes with equal

extensions in two directions. Thus we have

(2.13) 2W = 0(^-3] + B(i"2-3) ,

and

(2.lit) yx = vX1 , y2 = vX2 , and y^= XX^ ,

2
with y X = 1 , since the material is incompressible. When these

expressions are used to calculate the explicit form of the perturbed stress

given by (2.8) we find

tix = -p + {2a+dW1 x + (2b+d)u2 2
 + ^"3 3 '

*12 = *21 = {a'b) ^2,1^1,2^ ' S i = *13 = ""l.S + " 3 , 1 '

and t = -p + d (w +u J H

where

(2.16) a = u2(a+Bu2) , b = 3y2(u2-A2) , o = A2(a+6y2) and i = 2Bu2A2

Finally, since the material is incompressible we have

(2.17) M1JJL + « 2 > 2 + " 3 j 3 = 0 ,

and the final form of the equations of motion (2.12) is
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(2 .18) -p, 1 + 2ow + (a-Z>)w + au + (a+2>)w

(2 .19) - p , 2 + (a+fc)u o n + {a-b)uo . . + 2OM. o o •

2 > 2 1

~ Pf2

(2.20) -p, 3

2CU3,33 = ^ 3 , * * ' P / 3

These are the equations of motion which will "be solved in the next three
sections.

3. Elementary properties of the basic equations

In this section we shall discuss three problems whose solutions
provide important information about the fundamental dynamic properties of
the material. These are the problems of propagation of plane waves, the
response of the material to forced vibrations and the response to an
impulsive excitation. The main results of the work concern the last of
these problems which is dealt with in detail in the next two sections.

We seek plane wave solutions of equations (2.17)-(2.20) by
substituting

(3.1) uk = Ak[yj)e

(3.2) p = P(^Oe

into these equations and we set

(3.3) /fc = 0

to obtain free vibrations.

If

then the displacements and pressure given by equations (3.1) and (3-2)

represent plane waves with amplitudes A, and P which propagate in the
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direction Z, with velocity (u)/S) . On substituting (3.l)-(3.>») into

equations (2.17)-(2.20) and rearranging the equations we see that u. and

p are solutions if and only if

(3-5) i-^

(3.6) i-t 1 2 1 •'?-

= o ,

= 0

and

(3.8) UXAX +

These equations are of the form

(3.9) MU = 0 ,

where M i s a k *• k matrix and IT = [P, A , A , /!_) . There exist

non-tr ivial solutions for U i f and only i f

(3.10) dettf = 0 .

Equation (3-10) is the classical secular equation. Tt is the equation for

the permissible squared speeds of propagation in the direction I, . In

the current problem the secular equation is explicitly

2

There are thus at the most two real wave speeds in any direction in the

(3.11) HS
material and since this is an equation for

= 0 .

— we require positive roots

for real wave speeds. It will be stipulated that there be two real wave

speeds in every direction in the material; thus from equation (3-ll) we

require each of a, c , and (a-b) to be strictly positive. Recalling

(2.16) we see that this implies
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(3.12) u2(a+Bu2) > 0 , X2(a+Sy2] > 0 and \i2[a+&\2) > 0 .

2
Now u X = 1 , so that 0 < y, X ; thus these conditions can be sa t i s f ied
i f and only i f

(3.13) a, 6 > 0 .

The condition (3.13) is thus the necessary and sufficient condition on the

strain energy function of a Mooney material for there to be 2 waves

propagated in all directions for all possible initial finite deformations

of an incompressible material of the class characterised by equations

The wave speeds given by equation (3.11) can be substituted into

equations (3.5)-(3.8) to find the amplitudes. For

- O : l 1 : l 2

( 3 .

t h e

( 3 .

and

Ik)

solutions are

15) P

for

: Ax

p{s

: A2

(3.16)

bl
(3.17) P : 11A± + 12A2 : A^ =

where A^ and /!„ are arbi t rary within the ra t ios (3.17).

The problem of the response of the material to impulsive or

harmonically osc i l l a t ing forces can be investigated using Fourier

transforms. In the i n i t i a l stages no dist inct ion need be made between the

two sets of problems. We take a four-fold Fourier transform in space and

time, thus:

(3.18). i?Un, w) = expU(j/.£,+<o*) 0(2/ t)dy dt ,

where Q is the whole [y , t) space. Equations (2.17)-(2.20) transform

to the equation
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(3.19)

that is

p

"2

" 3

~72

" ? 3

0

where we have used the following abbreviations:

Thus

(3-20)

,,-1The matrix N i s given by

detW,-1

U =

11 12 13 lh

21 22 23 2k

31 32 33 31*

Ul U2 1+3 i*1*

where
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(3.21)

detff

21 = -

2 2 = 31 =

23 _ 33 _ Ul _ 1*2 _ -U

and

Also

(3.22)

I?The l a s t column of N """ is irrelevent because the l as t element in F is

always zero. The problem i s completed by finding the inverse transform of

U .

We distinguish between the quasi-steady problems in which

(3.23) "fe = "£0/p)eiW* > P=P*0/p)e i W t and ffc = /*<>* ,

and the genuinely time dependent problems, by regarding u as a constant

in the former cases. For when equations (3.23) are introduced into

equations (2.17)-(2.20) and Fourier transforms taken in y , then

equations (3-19) r e s u l t . In the case of the problems of the response to an

impulse the forcing functions / , have the form

(3.2U) fk = fk[yp)6(t) ,

and since the Fourier transform of 8(t) is unity it can be seen that the

function F which appears in equation (3.20) does not involve 0) . From
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the form of the elements of N~ it follows that the solutions of these

two groups of problems reduce to the problems of inverting functions of the

form

•UJ

Because we shall consider the response to point or line forces the function

4> will always be a polynomial in the £'s . The factorisation of the

denominator is essential if the inverses of these functions are to be

reduced to manageable expressions. In turn this factorisation is only

possible if the secular equation has some particularly simple form as i t

does in this problem.

In the next sections the response of the body to an impulsive line of

force will be examined in detail when the line of force is aligned along

the 2/- axis and when the line of force is aligned along the y axis,

that i s , when

(i) / , = 6{t)6[y1)6[yo) [O, W , w) , and

( i i ) fk = 6(t)6[yz)&[v3)[f/v f/2, w3) ,

(each of W . is constant).3

4. An impulsive line of force along the y^ axis

If a line of force acts on the material with constant force per unit

length and fixed orientation along the entire i/_ axis then the problem

becomes two-dimensional in the :/ y plane. Since the ini t ia l deformation

is axially symmetric with respect to the y. axis there is no loss of

generality in assuming that the component of the force perpendicular to the

y- axis acts in the y~ direction. When the applied force is an

impulsive force the body force terms are:

(l».l) fx = 0 , f2 =

These transform to give
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C*.2) f1 = 0 , f2 = f/26(C3] , / 3 = W36(C3) .

From the inverse iV given by equations (3.21) and (3.22) and
equation (3-20) we deduce that

,(U.5) "2
 =

a n d

(k.6) R-IPJ'
The property of the delta function

&(a)f(a) = 6(a)/(0)

has been used repeatedly here.

The inversions of p and u are straightforward; thus since the

inverse of Un+Cp with respect to £ and £2
 i s "(27T) l o e y \ ^ \

and since i^/(£fe) = g^- , we have

W2

(U.T) P - F

M" can be inverted from first principles, or i t may be observed that i t is

the transform of a fundamental solution of the two-dimensional wave

equation. It is found that
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"3 =

2ira a/l+4 , * >

t <
.2. 2h

The inverses of u and u have to be found from the inverse of

(k.9) , C 2 ,
- 1 - 1

Since the inverses of the two terms on the right-hand side of (U.9) are

known, the inverse of ty is just the convolution of these inverses:

(U.10) 4> =

0 , t < 0 ,

t2 -
a-b

l o g n )2+{y n )2}% dn t > 0

The integral can be evaluated in terms of elementary functions by changing

to polar coordinates; thus for t > 0 ,

(it.11)
UTT

l o g

(where (a, 6) and (a., 6.) are the polar coordinates of [y^, yS\ and

(i-i > r|p) respectively). The integral with respect to EL can be carried

out by expanding the logarithm in a power series in I —

whichever is smaller, and integrating term by term. We obtain
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(U.iia) tiv^ y2, t) =

kifia-b)

a-b

t2 -
a-b 2TT-

loga0, aQ >o

logo , o > c

for t > 0 .

Finally M, and w equal
1 ^

and

2 p
t -

and —r and thus

1

a-b

(a-b) a-b . f o r

, for t < 0 ,

(U.13) u 2 =

2 2

2 P
t - 2 P y\*y\

a-b

1
2

'1 1
2 2

a-fc , f o r

, for t < 0 .

2
For * » w e h a v e
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W2P

8v(a-b)2 t3

w
2vat

(p = 0 for aai t * 0 ).

These solutions show that there are two waves which travel

independently of one another, one carrying a displacement signal in the

j/^ direction, due only to the force in that direction, and one carrying

displacement signals in the y and #„ directions. The former wave is

the classical solution to the wave equation in two dimensions due to a

point impulse. The second wave has a more complicated structure; there is

an immediate response in the y~ and y~ directions, the displacements
l d

increase linearly in time until

1
~i

then they fall to zero again as t increases further. For large time both

u and u- fall off as -r , but independent of position. The
d 5 V

displacement " , decays like — at a rate depending on
i

and

The presence of an immediate change in the displacements can

be attributed to the incompressibility of the material which can be

regarded as causing a wave which travels with infinite velocity.

In the next problem the solutions are not all expressible in such

simple terms as in the current problem. However we will show that the main

results from the current problem are preserved.

5. An impulsive line of force along the y, axis

When the line of force acts along an axis perpendicular to the £/,
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axis there is no loss of generality in choosing the y. axis since the

in i t i a l deformation is axially symmetric with respect to the #_ axis.

However none of the components of the applied force may be assumed to be

zero. The problem becomes two-dimensional in the planes y = a constant

The body force terms are

(5.1) f± = W16(t)6{

From equations (3.20), (3.2l) and (3-22) we read off

(5-2) P =

(5.3)

( 5 .

and

M2 =

(5 5)

Immediately we

(5 6)

have

M 3 "

and

(5-7) « ! = '

6(t)
22IT 2 '

2
t ~

, t >

, t < (a-b) a
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To invert u and u we require

(5.8) X =

if* fx
o » p

3*2 9^3

- l

'2 "3J '

We may use the convolution theorem as in the previous problem; then

-_2 _2 ~

(5.9) X = '

UTT2 lr,n)i 1hit* (aa) 2 2 -
p py-,}2

- r + — <t

pn,

'2 '3 for t

t < 0

Although this integral only differs slightly from that for ^ , i t appears

that i t cannot be evaluated in terms of elementary functions. The

properties of the displacements u and u thus have to be established

less directly, and because they are linear combinations of second order

derivatives of x the deduction of their properties is non-trivial. [Both

differentiations cannot be carried under the integral sign since this gives

rise to divergent integrals. Similarly, methods based on integration by

parts also give divergent integrals. ]

We shall find the asymptotic forms of u and u for

* « +^ a n d r i + i / 21 ' t h a t i S > a t l a r g e d i s t a n c e s front of

and behind the wavefront t = + —•* . First we may note that since

the integral in (5-9) can be evaluated when a = a , we can expand X in a

Q—CL C—CL

power series in — — , — — , according to whether a < a or a > a . In

principle x and its derivatives can then be found to any accuracy for all

the integrals in the series can be evaluated. However, while the first one

or two terms can be calculated without much difficulty, later manipulations

involve enormous calculations.
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The expansion of x > and thvs u^ and u_ , for small values of t

is straightforward. When t « &- y + ^ y , the expression

{bo-^n)2 + (i/o-iJ2 is never zero inside the ellipse i 2 = ^ y2 + £• J/|

and so the differentiations can be taken under the integral sign. For

example

(5.10)
PI 2 pn
a a

Now with and ?_ = T) t in the integral we obtain

2TT

2 ^2 ^3

We may legitimately write

thus

(5.11)
_t y2y3

TTP f 2 2 ] 2
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The expansions of the other second order derivatives of X follow in like

manner and thus i t follows that:

(5.12)

and

(5.13)

M 2 =

2irp

2 2
'2~y 3

o[t2) ,

+ 0(*2) .

There i s obviously no great diff iculty in finding higher order

approximations. Exact upper and lower bounds on u and u can also be

2 2
py2 pyy2 py3 2

calculated when + ——~ > t . These can be found from simple estimates

a c

of the integral on the right-hand side of equation (5.10) and i t s two'

counterparts.
When t » y? + yr> problem is more complicated. One

differentiation can be taken under the integral sign and this proves to be

sufficient to enable the asymptotic forms of ŵ  an<^ uo *° ^ e

determined. First we change the variables in X • Let

then

(5.15) X
lnr2r> J 2 9 o \

t2 72 Z2t -Z2-ZJ

We denote the region Z^ + Z < t 2 by D± , and the region

Z2 + Z 3 < Y2 + Yl b y °2 •

I t will be shown that
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(5.16)

then the asymptotic form of •=*»- follows immediately. The proof of this
2

assertion is given in Section 7.

The asymptotic form of TTS— is easily found because the domain 0
3*2 2

( 2 2 2l~2
£ _z -Z in

inverse powers of t . Then

(5.17)

On changing the origin of integration to the point

to polar coordinates the integral becomes

-acos6_

'0<E <Rcos (6 - acos28-+£sin 9

which equals

Thus

I

27TO?/?COS9

a2+c?2

3 y *

Similarly we can prove that

3J and changing

The asymptotic forms of « 2 and « , follow from (5-18) and (5-19) and

the above r e s u l t s , they are

https://doi.org/10.1017/S0004972700044907 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044907


A prestressed material 155

(/a+/e )}/a

and

(5.21) "o ^ ~ 7 -
3 2 ¥ MJfi) t

Thus to the first order of approximation the displacements are independent

of position at large times and the displacement in the y • direction is

proportional only to the force in that direction.

6. Energy flux

Finally the energy flux vector E. can be calculated for the problems

of this section. This is defined to be -i. .V. where £.. is the total

T-J 3 13

stress and V. is the particle velocity. It should be noted that t. .V.

is in fact the flux per unit area in the state A^ • Since the

displacements corresponding to the change from the state A to the state

i42 are of order E , to first order the energy flux per unit area can be

regarded as measured in either state.

Also since

*..= &.. + £*..,

ij «̂7 V '

we have

(6.1) s. = -t..v. = -l.v. + 0(e) .
*• *-t7 J ud 3

Lastly, since the displacements calculated in Sections 4 and 5 are particle

displacements, the particle velocities are simply the time derivatives of

the displacements. Thus we have

(6.2) *i-\-j£*+°i*2) •
o

How the matrix of t . . i s diagonal with positive elements, namely,
?7
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0 O X 2 (a+2ey2)

It is then a simple matter to determine E. , from which the following

properties are easily noted:

(i) for t small the energy flux is perpendicular to the axis of

the line of force;

(ii) at all times the energy flux vector has a positive component

along the velocity vector when the material is relaxing and in

the opposite direction to the velocity vector when the material

is undergoing increasing strain;

( i i i ) for large times the energy flux vector has a positive component

along the direction of the applied impulsive force.

7. Differentiation of the function x of equation (5.9)
under the integral sign

The assertion of equation (5-16) is that if

x • '

i i 2 2 2

where D i s the set of points [Z2, Z J with Zp + Z < £ , then

where Z?2 is the set Z2 + Z2 < I 2 + Y2 .

To prove the assertion the function x i s first expanded in a series

of powers of —^- or -=^- , which may then be integrated term by term.

For definiteness assume a > o . Now a and a are necessarily

positive so that a > a > 0 implies -1 < ~^- < 0 . Also
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1 +

a n d s i n c e

-a

the logarithm term in (7-1) can be expanded to give

1

(7-3) X = - — y - f

\2n
e-a

n=l

Consider the integral involved in a typical term of the series in (7-3).

The integral of the first term was dealt with in Section 4 in equation

{k. 10-1*.Ua). The remaining terms are of the form

,2 n2 n2

By c h a n g i n g t o p o l a r c o o r d i n a t e s :

Y2 = i ?cos6 , ^ 3 = flsinG , Z 2 = i Q o ^ 0 0

and integrating first with respect to BQ , we obtain the integral

f2TT

(7-5) Fn[S, 9; SQ) = j
[FtsinQ-RQsin6 ) 2n

-/? cos6 )
n 0

Now we observe that

( i ) [F [R, 6; R ] i s continuous at R = i?0 , since the integrand

is bounded in a neighbourhood of 8_ = 8 and continuous for

a l l other values of R, 6 , and RQ ; and
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( i i ) that for RQ > R , ^n(#, 8; RQ) is a constant independent of

R, 9 and RQ .

The second property is proved as follows: By substituting

6Q = 9^ + 9 and observing the periodicity of the integrand we have

' sin(6-+9]]2"

and with ]i = "r— ,

27T (Msin9-sin(8 +

21*
l-2ucos90+p '

Now the numerator can be expanded to give terms of the form

K (&)u sin ^(0+9Q) , and these in turn can be expressed as sums of

cosines of even multiples of 6. , thus:

b (9)cos2p90 + b cos(2p-2)eQ + . . . + b . From Gradshteyn and Ryzhik

([4] , §3.6l6, (7)) for u < 1 , (that i s , RQ > R) , we have

/•2TT cos2p9.de
(l-y ) (a polynomial of degree n+p-1 in u J .

'l-2ycos90+y

Thus for R > RQ ,

._ . _, ir, a _ i fa polynomial of degree 2n-l in y )
(7.7) n*- ' ' CK

Now (l-p ) n~ must divide the numerator exactly in the above equation,

for otherwise i t implies that F involves a term (i? -#0]~ which is

not integrable with respect to R. . But since the integral of FR , with

respect to RQ , gives G , the existence of the integral on the

right-hand side of equation (7.^0 guarantees the existence of the
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iterated integrals. Thus from (7-7), when R > R , F can only be a

function of 6 . Putting p = 0 will determine its value. It equals

and this integral equals -^—-—j~— 2IT , which is independent of X also as

asserted. Explicitly, for R > RQ ,

(7.8)

At this stage no approximations have been made for finding X • The exact

forms of F can be evaluated and the integration with respect to 8

completed; all the integrals are elementary, if not concise. Thus the

expansion of 8 , and hence of u^ and u , in powers of — — can be

found. In practice the calculations became overwhelmingly complicated

2
after the term in a-a By summing the series expansion to recapture

(7-1) again and using the property of F just proved, i t follows that

(7.9) X = - ~ ^ ~ * -*0 * \*H[R -R+H[R-R )F[R, 8; R

where ff is Heaviside's step function and F is a function whose only

important property is that lim F[R, 8; R ) = k (the last remark follows

v*-
from the continuity of each F [R, 8; i?_) and the continuity of the

integrand of equation (i4.Ha) ) . This property of P is crucial, for

3§- [kHJLR-RQ)+B[R0-R)F[Rt RQ; 6)]

= -f\-k6[R-R0)+6[RQ-R)F[R, RQ; 8)) + H{R-RQ)-£-'\F[R, RQ; 6)] .

But since &(u) = 6(-w) and &(u)<t>(u) = &(u)${0) at a point of

continuity of (f> , i t follows that
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( 1 ~\C\\ I leU (j? 7? "\ -t-JJ (R J? } J? (Z? J? • A M — 11 (I? J? 1 V (D D

Finally, from equation (5-2U) we obtain

2 3 l,__ &(„ „ i2 , Of,, „ i2

the assertion of equation (.1.2).
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