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Elastic waves in a prestressed
Mooney material

J.A. Belward

The dynamic response of a prestressed incompressible Mooney
material is studied by investigating plane wave propagation and
the response of the material to impulsive lines of force. The
choice of an initial deformation which is axially symmetric
gives a particularly simple form for the secular equation for
the plane wavefront velocities. The speeds of propagation and
the amplitudes of the two permissible transverse waves are found
and necessary and sufficient conditions for there to exist two
real wave speeds in all directions are established. The simple
form of the secular equation enables the response of the
material to concentrated disturbances to be readily solved using
Fourier transforms. The motions caused by a line of impulsive

forces is examined in some detail.

1. Introduction

In this paper an account will be given of some investigations into the

dynamic properties of a prestressed incompressible elastic material.

In previous work the propagation of finite amplitude waves in
incompressible materials has been investigated by Ericksen [1] and
Manacorda [6] (see also Truesdel!l and Noll [{7]) and Knowles [5]. Flavin
and Green [2] have examined the propagation of small amplitude

thermoelastic waves superposed on a finite deformation for both
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compressible and incompressible materials. The present work focusses on
the particular case of an incompressible Mooney material which is subjected
to an initial pure homogeneous deformation with equal extension ratios in
two perpendicular directions. The propagation of plane waves in the
material is discussed and the response of the material to impulsive line

forces is examined in detail.

Because the material is incompressible only two plane waves are
possible and these must both be transverse waves. The simple form of the
secular equation which deterwines the wave speeds in the present problem
enables the speeds of propagation to be expressed as simple functions of
the material constants in the problem. The amplitudes associated with each
wave are found and necessary and sufficient conditions for the propagation

of plane waves in every direction of the material are given.

Fundamental problems involving the response of the material to line
disturbances are examined using transform techniques. When the secular
equation has the simple form which it has in the current problem the
response of the material to impulsive disturbances or sustained harmonic

oscillations can be reduced to simple Fourier inversions?.

A detailed analysis is made of the disturbances caused by line
concentrations of forces, one acting along the axis of symmetry of the
initial deformation and the other perpendicular to and passing through the
axis of symmetry. In the former case the solutions are found in terms of
simple algebraic functions. In the second case certain of the solutions
can only be expressed as double integrals. However these solutions are
shown to have the same asymptotic behaviour as the first set for ¢ small
and for t large. In both cases for large times the displacements are

independent of position to first order. They are proportional to t_l and

the displacement in the <Zth direction is proportional to the component of
applied force in that direction only and independent of the other

components.

1 The author gratefully acknowledges the assistance of Dr M.A. Hayes
of the University of East Anglia for finding a physical problem in which
this analysis is possible.
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2. Basic equations

The equations of motion which form the basis of the investigations
will be derived first. Consider e body of homogeneous, isotropic,
incompressible, perfectly elastic material with strain energy W per unit
volume. Let the body be subjected to a finite static deformation, under

the action of surface tractions only, in which a particle at Xi in some
rectangular cartesian coordinate system moves to the point yi referred to

the same coordinate system. Call this state Al . For an incompressible

material the Cauchy stress %ij is given by2
0 oW oW _| ¢ BW
(2.1) t..=-p.8..+ [2 -+ 2I ———1 B,., -2 = B
iJ (O] BI 1 BI N 812 Lk kj °

0
where Bij is the left Cauchy-Green strain tensor defined by

0 dy . Yy
(2.2) Bij = 7K, 3%,

0
and }l and I2 are two invariants of the deformation defined by
0

0 0
(2.3) 1 =8, aa b, =30, JJ gwgw)

and po is a hydrostatic pressure defined up to an arbitrary constant.

Since the body is in equilibrium with no body forces applied,

i
(2.4) ayj 0.

Now consider a further time dependent deformation in which the
particle at ¥; moves to z . This second deformation will be assumed
small in the sense that if

(2.5) Tp- Yy = U

terms in 62 and higher powers may be neglected in comparison with terms

in € . Let the stress in this new configuration be denoted by

Kepeated suffixes imply summation over the values % =1, 2 and
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(2.6)
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0

tij + et.. .

13 ?

then if the strain energy, pressure and strain tensor are expanded in

Kri™i B

powers of € about their values in the state Al , thus
0 1
W=W+ ey + R
(2.7) P=p+cep+ ,
By = %ij +eB + .
it can be shown that
_ [
(2.8) tij = -p(S_L.J huk 1B 0 Big‘
2
1
o[t Bl b b
8} 1 a7 2,175 ,y,Z it
1 2
W
-2 ) (“i,ngkgkj*“k,zﬁz gkg k, Zgz
2
eadylo vt (. 2
BIl BI BIl 3I2
2 2
0 0 "W W
- 4B.. B, .|J, —/—— + —
K kg( 1,0 .0 2 2] ’
31,31, 332
where
(2.9) J B J, = 5,5 -B B )
2.9 1= %%,150 0 72 = %k, 1 BB B 1P e
and
u .
U. . = 3—7'
R .
J yJ
In the state A2 the equations of motion of the body are
3 0 o,
(2.10) E'c;(tij)'e%j) + Dbi = N

The body forces which are applied to disturb the body from the state

A are assumed to be of

1

the form Efi .
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and (2.6) are applied to equation (2.10), then to order € we have

3t Buy At Beui
(2.11) —hl . K _H , or =) .
ayJ. ayj ayk 7 a152

Applying equation (2.4) reduces this equation to

) at, azui
(2.12 —4 4+ pf. = p .
ayJ. 1 3#2

In the problems to be investigated in this paper the material of the
body is assumed to be a Mooney material, and the initial deformation has
principal axes of strain parallel to the coordinate axes with equal

extensions in two directions. Thus we have

(2.13) 2W = a(r,-3) + B(Z,~3) .
and
(2.1}) y, = W, Y, = WX, , and Y3 = AX3 .

with u2A =1 , since the material is incompressible. When these
expressions are used to calculate the explicit form of the perturbed stress

given by (2.8) we find

tyy =P+ (arduy |+ (2bwddu, o+ dug o,
b=ty = (a-b)@42’1+“1’2) . t31 = t13 Teu) gt @y s
(2.15) top = <P+ (2brduy § + (avdhuy o+ dug o,
tap = o3 = @y, * Uy 4
and toy = -p + d(ul’lmg’e) + (2c+d)u3’3

where

2, 2,2 2 2
(2.16) a = ue(a+8u2] , b=Bu(-A7) , e = A(a*By") ana d = 28)°2° |
Finally, since the material is incompressible we have

(2.17) U a1t pt¥3 30,

and the final form of the equations of motion (2.12) is
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(2.18) -p, 1 + 2“”11,1 + (a'b)u1,22 + cu 3 + (a+b)u2’21

1,3
MR T T PP A
(2.19) -p, 2 + (a+b)ul’21 + (a_b)u2,11 + 2au2’22 + cu2’33
Yy g = By - P
(2.20) -p, 3+ QUp 3 ¥ Uy 3ot By ) Y B,

Y AUG 33T Uy g Py

These are the equations of motion which will be solved in the next three

sections.

3. Elementary properties of the basic equations

In this section we shall discuss three problems whose solutions
provide important information about the fundamental dynamic properties of
the material. These are the problems of propagation of plane waves, the
response of the material to forced vibrations and the response to an
impulsive excitation. The main results of the work concern the last of

these problems which is dealt with in detail in the next two sections.

We seek plane wave solutions of equations (2.17)~(2.20) by

substituting
(3.1) u = Ak[yj)exp{i (cpyp—wt)] ,
(3.2) p = P(yj)exp[i(cpyp—wt)]

into these equations and we set

(3.3) fr=0

to obtain free vibrations.
Ir

(3.4) Cp=SZp,a.nd 1;l,=1,

then the displacements and pressure given by equations (3.1) and (3.2)
represent plane waves with amplitudes Ak and P which propagate in the
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direction Zk with velocity (w/S) . On substituting (3.1)-(3.4) into
equations (2.17)-(2.20) and rearranging the equations we see that u, end

p are solutions if and only if

l 2
.1 2 2 2 w”
(3.5) % 5 P+ 2all + (a-b)z2 + cZ3 -p 2 Al
+ (a+b)ZlZQA2 + aZlZBA3 =0,
L 2 2 2 2
(3.6} 12 S P+ (a+b)ZlZZAl + (a+b)ll+ 2a12 + cZ3— p[:—2] A2 + al2Z3A3 =0
Ly 2 2 2 w®
(3.7) 2 Ti-P + chZ3Al + 0121342 + aZl + a12 + 2013 - OL;E} A3 =0,
and
(3.8) 'LZlAl + 122,42 + 1,23;13 =0 .
These equations are of the form
(3.9) MU =0 ,

wvhere M is a 4 x4 matrix and UT

(P, Al, A2, A3) . There exist
non-trivial solutions for U if and only if
(3.10) detM = O .

Equation (3.10) is the classical secular equation. Tt is the equation for

the permissible squared speeds of propagation in the direction Zk . In

the current problem the secular equation is explicitly

2 2
2,,2 2 (w 2 .,2 2 _|w _
(3.11) a(21+12]+cl3-p[52] (a—b)(ll+12]+cl3-p(;§] =0 .

There are thus at the most two real wave speeds in any direction in the

S
for real wave speeds. It will be stipulated that there be two real wave

2
w . s
material and since this is an equation for [—] we require positive roots

speeds in every direction in the material; thus from equation (3.11) we
require each of a, ¢ , and ({(a-b) to be strictly positive. Recalling

(2.16) we see that this implies
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2 2
(3.12) v (atBr®) > 0, A%(wBu®) > 0 ena u2(a+BA%) > 0 .
Now uzk =1, so that 0 < u, A ; thus these conditions can be satisfied
if and only if
(3.13) a, B>0 .

The condition (3.13) is thus the necessary and sufficient condition on the
strain energy function of a Mooney material for there to be 2 waves
propagated in all directions for all possible initial finite deformations
of an incompressible material of the class characterised by equations

(2.14).

The wave speeds given by equation (3.11) can be substituted into

equations (3.5)-(3.8) to find the amplitudes. For

2
wl 2,.2 2
(3.1%4) p[:s:] = a[ll+12] + cZ3 .

the solutions are

. . c 4 =0 . ., _ -1
(3.15) Pidy i Ayt Ag=0:1, 31,3 13-10",
and for
w 2 2,.,2 2
(3.16) p[g} = (a-b){ll+12] + cZ3 .
bl3 2%
(3.17) P : ZlAl + 12A2 : A3 = —Z—[(a—b)+(0+b—a)l3] : -13 : 1,

where A, and A, are arbitrary within the ratios (3.17).

1 2

The problem of the response of the material to impulsive or
harmonically oscillating forces can be investigated using Fourier
transforms. In the initial stages no distinction need be made between the
two sets of problems. We take a four-fold Fourier transform in space and

time, thus:
(3.18). g(g,s ) = JQ exp(i(ykekmt)]g(yp, t)dy dt ,

vhere § is the whole (yp, t) space. Equations (2.17)-(2.20) transform

to the equation
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g5 -(a)gg,
~iE, -(ab)eE, 5,
339 b bots
0 i€, it,
that is
NU=F ,

-ag &y
g,

3
23

3

where we have used the following abbreviations:

[t}

=1

n
|

t1)
1

Thus
(3.20) T=u1F .
. -1 . .

The matrix N is given by
11 12 13
-1 21 22 23
detV "i3 32 33
b1 k2 43

where

(pw2—2a5§-<a-b)£§—e£§] :
2 : 2 2
= [pw —(a—b)Ei-2a£2-cE3] 2

2 2 .2 2
3 [pw -a[£l+52]-2c£3] .

1k
2y

Ly
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11 _ 12 _13 _ __ detWN
1§ i€ g 2 .2 2
1 2 3 El+£2+ 3
o2, _ 2, .2
21 = - g2, 53(21 bgl] ,

%:31=%%Pfxﬂ,

(3.21) :
_ 2 2 2
32 =- &2, - 53[Zl'b52] ’
23 _ .33 _ W1 _ k2 _ -3
€& 5253 £, 52€3 €§+€2
_ 2,,2
| zZ, - b[gl-fgg] ,
and
2, = a[€i+€§J + c£§ - pw
Also

(3.22) GetV = - [Ei*gg*'ﬁg} [(a-b) [Ei+g§] +c£§-pw2] [a [554{2] +c£§—p{u2]

The last column of IV"1 is irrelevent because the last element in F 1is
always zero. The problem is completed by finding the inverse transform of

U .
We distinguish between the quasi-steady problems in which
twt

(3.23) uk = ui[yp)e , P = p*(yp]e‘l«wt and fk = fieuﬂt ,

and the genuinely time dependent problems, by regarding w as a constant
in the former cases. For when equations (3.23) are introduced into

equations (2.17)-(2.20) and Fourier transforms teken in yp , then

equations (3.19) result. In the case of the problems of the response to an

impulse the forcing functions fk have the form
(3.24) i = frly,)8(8)

and sinece the Fourier transform of 6(¢) is unity it can be seen that the

function F which appears in equation (3.20) does not involve w . From
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the form of the elements of N-l it follows that the solutions of these
two groups of problems reduce to the problems of inverting functions of the

form

¢(£;)

]l g lenlaeda]

Because we shall consider the response to point or line forces the function
¢ will always be a polynomisl in the £&'s . The factorisation of the
denominator is essential if the inverses of these functions are to be
reduced to manageable expressions. In turn this factorisation is only
possible if the secular equation has some particularly simple form as it

does in this problem.

In the next sections the response of the body to an impulsive line of
force will be examined in detail when the line of force is aligned along

the y3 axis and when the line of force is aligned along the ¥, axis,

that is, when

(1) fp = 8(£)8(y )8 (y,) (0, Wy, W) , end

(11) f = 8(2)6(y,)8(y5) Wy W,y Wi

(each of Wj is constant].

4. An impulsive line of force along the Y3 axis
If a line of force acts on the material with constant force per unit
length and fixed orientation along the entire y3 axis then the proolem
becomes two~dimensional in the Y5 plane. Since the initial deformation
is axially symmetric with respect to the Yq axis there is no loss of

generality in assuming that the component of the force perpendicular to the

y3 axis acts in the ¥, direction. When the applied force is an
impulsive force the body force terms are:

(k1) fy =0, f,= Wy8(t)8(y,)8(y,) o Fy= W36(t)6(y1)6(y2] .

These transform to give

https://doi.org/10.1017/50004972700044907 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044907

146 J.A. Belward
(4.2) F1=0, Fp=08(E) . Fy=ws(ey) .

From the inverse N_l given by equations (3.21) and (3.22) and
equation (3.20) we deduce that

- Wi
(k.3) p =550 .
%6
-W,E, 66 (&
(1) “ = T2z o (23?2 2] °
|&5+5) | (a-D) 5+ -ou
2
_ W8 8 (€,)
(4.5) U, = 2221(322 2]
BEICREES
and
w8 (&)

N

(4.6) u = 3 )
3 l l 2 l zl
a €l+E§ -pw

The property of the delta function
8(a)f(a) = &(a)f(0)

has been used repeatedly here.

The inversions of ; and u3 are straightforward; thus since the

2,2t -1 2, 2
. ” . fe L +
inverse of (El £2] with respect to El and 52 is -(2m) log(yl y2}

and since iEl-fT(gk] = %ytl » we have

Wy ¥y
(4.7) p= 52 2= 8(2) .
¥,%;

u can be inverted from first principles, or it may be observed that it is

3
the transform of a fundamental solution of the two-dimensional wave

equation. It is found that
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l 3\
-3 - ( 2. 2
W 2 Py +y
3 2 pl,2,.2 172]
£ - a(yl+y2] > | @

- 2-
p y§+y2
0 , t< o

a

)
Nl

Nl

The inverses of ;1 and u2 have to be found from the inverse of

_ -1 -1
(4.9) ¢(£1, £ w) = [£§+g§] [(a-b)(g§+g§]-pm2]

Since the inverses of the two terms on the right-hand side of (4.9) are

known, the inverse of $ is just the convolution of these inverses:

0 L t<o
2, 2\
1 f 2 °[”1+”2| :
2 (a-b) a-b
(4.20) =4 Lm 2
n24n2cla=b)E
1 2 o)
3
2 2]z
1og[(yl-ﬂl) +(y2-n2J } dndn, , t>0

The integral can be evaluated in terms of elementary functions by changing

to polar coordinates; thus for ¢ > 0 ,

oy-1
po .| 2
(4.11) ID=-—2L'——[ tz—at%
bn®(a-b) / 2 a-b
ot <
0 p

1

2,2 2
1og[c +00-2000cos(6-60)] 0,d9,49,

(where (o, 8) and (00, 60) are the polar coordinates of [yl, y2] and

[nl, n2) respectively). The integral with respect to 60 can be carried

o
. R g 0
out by expanding the logarithm in a power series in [0 ] or [0 ],
0

whichever is smaller, and integrating term by term. We obtain
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(h.222) ¥{y,, v, t) =

2 2
Finally u, and u, equal ——— and > and thus
1 2 oy ., Y 2
192 W
1
2. 204
2
Yo | M¥2 1|, le_ plyfyel
m 2p a-b
2,2
[#33)
Y44 p[y2+y2l 2]
193 1 ftz 172 for
_ 2, 2| (a-b) a-b >
(5.12) u, = | 2[y1+y2J | _
W, y.y.t 1
2 7192 (a=b) , . [,2.,,2]2
P 222’f°r°< R AL
23]
0 , for t<o0,
and
W 22 oy 242 3
2 | %1% 1) |2 1" N
kil 2 p a-
2 y2+y2
192
2 2. 2]y-1]
Y1 I (yfyz“ o
21 2+,2] @B) a-b J » tor
(5.13) u, = ¥,1%, ]
2 2
yo-y
2 172 a-b 2 2|2
2m 222t’f°r°<pt<y1+y2]’
[yl%l
0 , for t <0 .

For t2 >> [yi+y2] we have
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Ve ¥y
u 2 12

1 gn(a-b)® &3

(L.1k)

{(p =0 forall t#0 ).

These solutions show that there are two waves which travel
independently of one another, one carrying a displacement signal in the

y3 direction, due only to the force in that direction, and one carrying
displacement signals in the yl and y2 directions. The former wave is

the classical solution to the wave equation in two dimensions due to a
point impulse. The second wave has a more complicated structure; there is

an immediate response in the ¥y and Yy directions, the displacements

increase linearly in time until

ol

1 1
= 0Z2(a b)"2 |22
t = p?(a-b) [y1+y2] ,
then they fall to zero again as ¢ increases further. For large time both

U, and u3 fall off as % , but independent of position. The

decays like <+ at a rate depending on ¥ and ¥y -

displacement
t3

1

The presence of -an immediate change in the displacements can
be attributed to the incompressibility of the material which can be

regarded as causing a wave which travels with infinite velocity.

In the next problem the solutions are not all expressible in such
simple terms as in the current problem. However we will show that the main

results from the current problem are preserved.

5. An impulsive line of force along the ¥y axis

When the line of force acts along an axis perpendicular to the y3
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axis there is no loss of generality in choosing the yl axis since the
initial deformation is axially symmetric with respect to the y3 axis.

However none of the components of the applied force may be assumed to be

zero. The problem becomes two-dimensional in the planes yl = a constant .
The body force terms are
(5.1) £y = W 8(e)8(y,)8(y5) » f, = W,8(£)8(y,)8 () »

Fq= Wy8()8(y,)8 ()
From equations (3.20), (3.21) and (3.22) we read off

-W21£2-W3z£

(5.2) p= 8(g,)
(4] .

w.S(g.)
- 1\
(5.3) u, = §(e))
1 (a-b)£§+c£§-ow2J .
2
(5.4) - _ WabyWEots

2 aé;gws‘z-ouﬁl “’?%J 5(8)
and

2
—W2£2£3+W2£2 8

(
(5.5) =
3 2 .2 2lf.2,,2
La£2+c£3—pw J L£2+€3J

1

Immediately we have

OB ELAE L

(5.6) P="2r Te, 2 °*
lye+y3i

and
-3 2 1
Wy 2 Py, ¥ ‘s Py, +%2
2ﬂ(a-b)Zc% (a-b) c i (a-b) P s
(5.7) uy = 1
02 o2
2 3
° » S [(a—b) TS
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_ _ 2 2 2
To invert u and u we require X N X , and X , Where
2 3 2 2 3y 3y
oy oy 273
2 3
-1 -1
- _ 2 2 2 2 .2

(5.8) X = [a€2+c£3-ow J [E2+€3} .

We may use the convolution theorem as in the previous problem; then

2 2y-14
R 2 e Py
L 2 f 1 a c
7 (ae) pyg pyi >
(7*7] <t
(5.9) x =1 1
2
103[[y2_n2)2+(y3—n3)2 dn2dn3 N for £ >0 N
0 . t <0

Although this integral only differs slightly from that for ¥ , it appears
that it cannot be evaluated in terms of elementary functions. The

properties of the displacements u2 and u3 thus have to be established

less directly, and because they are linear combinations of second order
derivatives of X the deduction of their properties is non-trivial. [Both
differentiations cannot be carried under the integral sign since this gives
rise to divergent integrals. Similarly, methods based on integration by

parts also give divergent integrals. ]

We shall find the asymptotic forms of u2 and u3 for
1

1
2, 2|2 2,.2]2 . i .
t << yl+y2 and t >> yl+y2 , that is, at large distances in front of

2 2
2 Dy2 Py
and behind the wavefront ¢t = = + —23 . First we may note that since

the integral in (5.9) can be evaluated when ¢ = a , we can expand X in a

. - e-a e-a .
power series in ==, 5, according to whether ¢ <a or ¢ >a . In

principle X and its derivatives can then be found to any accuracy for all
the integrals in the series can be evaluated. However, while the first one
or two terms can be calculated without much difficulty, later manipulations

involve enormous calculations.
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The expansion of X , and thus u« and u3 , for small values of ¢

2

is straightforward. When t2 << % yg + % yg , the expression
(yz-n2]2 + (y3—n3)2 is never zero inside the ellipse t2 = gyg + gyg

and so the differentiations can be taken under the integral sign. For

example
2 2y-3
¥y 1 2 Py Pyt
(5.10) % 0y hz( ) t - -
2v3 ac )2 2,02 2
(8024202 <
oy - -
(#,-n,) (¥ 4ny i dn
5 2 2 37
[(yz—ne) +ly gy
Now with C2 = n2t and C3 = n3t in the integral we obtain
2 -1
"X - t 1[ [l_Q.CZ_ECz]Z
8y23y3 27r2(ac)2 %2&2<l a2 e °3
a2 e¢’3
(ye CQ) (y3 C3) dg dt
2 > 2 2 73
i(ye‘ 2) +lys- 25)
We may legitimately write
lop-tep) hymty) b . 0(8)
2 22 (2. 2)2 ’
[(ye'tcz) +lygtey) ] [y2+y3]
thus
2yt Yo¥3
(5.11) WL, 5. 2 4 2
2773  2n%(ae)?2 2,2 p,2.p2,
LA I
1
B2 _p .27 o(t?
[1 g% ~ ¢ty dedey o
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The expansions of the other second order derivatives of X follow in like

manner and thus it follows that:

- _____1;_____ 2 2
(5.12) u, = _— W2y b S+ [yz 3] +0(t°) ,
ol 4
and
= t 2_2 2
(5.13) Uy = , 5 W22y2y3-W3[y2 y3] + 0(t%)
2ﬂo(yg+y3] ’

There is obviously no great difficulty in finding higher order

approximations. Exact upper and lower bounds on u2 and u3 can also be

Dy Dy3

calculated when ~E—-+ -;;— . These can be found from simple estimates

of the integral on the right-hand side of equation (5.10) and i%s two"
counterparts.

When t >> 2‘ 2 3 the problem is more complicated. One
differentiation can be taken under the integral sign and this proves to be

sufficient to enable the asymptotic forms of U, and u3 to be

determined. First we change the variables in X . Let

1 1 1 1
. [2]? - [2]? - [2]? - (27, .
(5.1L) Y2 = [ ] Y, » Y3 = (c] Y3 > 22 = [ ] n, and Z3 [ ] n3,

a a a
then
-1
1 2 2
(5.15) x=-—3 . [t -22-23]
TP 722,722
3
1
2 212
log[ (r,-2,) p(y3-z3) ] dzdz, .
. 2 2 2 .
We denote the region 22 + 23 < t° by Dl , and the region
2 2 2 3
By + 23 <Y+ Y5 by D, .

It will be shown that
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X _
(5.16) o =

1

-1 J (tz 52 Ze] 2 L[l a
_z°- og
hnzp D, 23 ay2 P

2,¢ 2 )
(¥,-2,)° + Q(Y3-Z3) ”alzedz3 f

then the asymptotic form of %— follows immediately. The proof of this
2

assertion is given in Section 7.

X

The asymptotic form of
3Y2

is easily found because the domain 02 s

1

2)72
unlike D) , is independent of ¢ . Thus we can expand {te—zg—za] in

inverse powers of ¢ . Then

(r,2,)
2 "2 1
dZ2d23 + Ol_tZ]

X .21 1
227 ar, " ynlp © jD alY -2,)%e(r ~2,)?
p aliydy 3773

On changing the origin of integration to the point (Y2’ Y3] and changing
to polar coordinates the integral becomes

J —acose0
2 .
0<R,<Rcos [eo-e+n) acos 60+bs1n

e dr de, ,
0

which equals

1
2ma2Rcosd
R
Thus
J Y
(5.18) %—’V—% = “f’
2 0 Ja+/e

Similarly we can prove that

Y

X 1 va 3

(5.19) o= — .
3Y3 21p Voo t

The asymptotic forms of u, and u; follovw from (5.18) and (5.19) and

the above results, they are
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W
1 2 1
(5.20) Uy Vo ———— 2,
2 em (Ya+ve Wa ¢
and
W
(5.21) i ___3 1

U, v — = .
N A

Thus to the first order of approximation the displacements are independent

of position at large times and the displacement in the ¥ direction is

proportional only to the force in that direction.

6. Energy flux

Finally the energy flux vector Ei can be calculated for the problems

of this section. This is defined to be -Z,.V. where Eij is the total
stress and Vﬁ is the particle velocity. It should be noted that %ijvﬁ

is in fact the flux per unit area in the state A2 . Since the
displacements corresponding to the change from the state Al to the state
A2 are of order € , to first order the energy flux per unit area can be
regarded as measured in either state.

Also since

we have

~ 0
. .= ~tL,W.=~t.v. + 0(€g) .
(6.1) By = -ty 05 =<t 2. +0(e)

Lastly, since the displacements calculated in Sections 4 and 5 are particle
displacements, the particle velocities are simply the time derivatives of

the displacements. Thus we have

Ju .

I A § 2
(6.2) E;= -t gz €+ 0(e%)

0
Now the matrix of tij is diagonal with positive elements, namely,
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ug[a+8(k2+u2]] 0 0
0 W2 [a+8 (24 } 0 .
0 0 22 (a+28u?)

It is then a simple matter to determine Ei , from which the following
properties are easily noted:

(i) for t small the energy flux is perpendicular to the axis of

the line of force;

(ii) at all times the energy flux vector has a positive component
along the velocity vector when the material is relaxing and in
the opposite direction to the velocity vector when the material

is undergoing increasing strain;

(iii) for large times the energy flux vector has a positive component

along the direction of the applied impulsive force.

7. Differentiation of the function yx of equation (5.9)
under the integral sign

The assertion of equation (5.16) is that if
1

1 2,2 .2
(11 x= - o J [t -z2-z3l 1°g( (tp-2)® + Glr23) ]

™

dz dZ s

where D, is the set of points (22, Z3) with ZS + Z§ < 2 , then

1
1
X _ 1 2,2 272 3 _ e
(1.2) 33 —_—h‘nep JD (t z; z3] 3, log (y2 z2) + (y3 3) dzdz.,

. 2 ZZ 2 2
+ < + .
wbere D2 is the set Z2 3 Y2 Y3

To prove the assertion the function X is first expanded in a series

of powers of 922, or ggg_’ which may then be integrated term by term.

For definiteness assume a >¢ . Now a eand ¢ are necessarily

positive so that a > ¢ > 0 implies -1 < gig <0 . Also
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a( )2 0( )2 a ( ]2 ]2 c-a (Y3_Z3)2 —I
=(Y -2 + =y -2 = =i (v ,-2,)°+Y -2 1+ =
2 72 373 [ 2 "2 3 } 2 2
e P e 3 “ (YQ_ZQ) +(Y3'Z3) J
and since
2
e-a (Y3_Z3) ' <1
2 2 ?
? (r,z,) +(rz,) |

the logarithm term in (7.1) can be expanded to give

(1.3) x=-— fz) [te-Zg-Zg]_é[103(%[(Y2—22)2+(Y3—Z3)2]]
1

hn2p

)271

‘ (f ()™ [_c—_a" (524

dz.dz

n a rJ 2773
n=1 2 2
[(Ye'ze) + (y3—z3)

Consider the integral involved in a typical term of the series in (7.3).
The integral of the first term was dealt with in Section 4 in equation

(4.10-4.11a). The remaining terms are of the form

> D é-'i (‘Y3_Z3)2n
(7.4) Gn(.Yz, Y3) = JD (t —22—23] . AT dzzdz}.
1 ,(yg-ze) +(Y3-z3) \
By changing to polar coordinates:
Y2 = Rcosf , Y3 = Rsinb , Z2 = Rocoseo s Z3 = Hosineo ,

and integrating first with respect to 60 , we obtain the integral

on (Rsin6-R s1ng )"

" deo .

(1.5) F, (R, 85 Ry) = J
2 . 2
(Rcose—RocosBo) +LRsin6-R031n60)

0

Now we observe that
(i) [Fn[R, 9; RO) is continuous at R = R, , since the integrand
is bounded in a neighbourhood of 90 = 6 eand continuous for

all other values of R, 6 , and RO ; and
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(ii) that for Ry >R, Fn(R’ 0; ROJ is a constant independent of

R, 6 and RO .

The second property is proved as follows: By substituting
eo = 9(') + 6 and observing the periodicity of the integrand we have
2m [RsinG—Rosin [60+6)]2n
Fn(R, 8; RO) = f de, ,

n
0 [F’2+Rg-2RROcos eO]
and with uy = Ri s
0
27 (usinB—sin (60+6)]2n
F, (R, 8; R)) = j de, .

n
0 (1—2ucos 60+u2}

Now the numerator can be expanded to give terms of the form

Kp(e)u2n—2psin2p (6+90] , and these in turn can be expressed as sums of
cosines of even multiples of 80 , thus:

bp(e)cos2p60 + bp_lcos(2p—2)60 + ...+ bo . From Gradshteyn and Ryzhik
([4], §3.616, (7)) for u< 1 , {(that is, R, > R) , we have

0]

27 cos2pb,.do
[ 0 0 [l—-u2)l-2n[a polynomial of degree n+p-1 in u2] .

n
0 {1—2ueos 60+u2]

Thus for R>Ro,

= La polynomial of degree 2n-1 in pzl
2y2n-1
(1-1%)

(7.7) F (R, 85 R)

Now (l-ug)zn-l must divide the numerator exactly in the above equation,
2 2) -1

for otherwise it implies that F = involves a term (2 -Ro which is

not integrable with respect to RO . But since the integral of Fn , with
respect to RO , &glives Gn , the existence of the integral .on the

right-hand side of equation (7.4) guarantees the existence of the
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iterated integrals. Thus from (7.7), when R > RO . Fn can only be a

function of © . Putting U = 0 will determine its value. It equals

2% on
f sin (60+6)d6 s
0

-1)1
and this integral equals i%‘g—! 2m , which is independent of X also as

asserted. Explicitly, for R > Ro N

2n-1)11!
(7.8) Fn[R, 0, RO) = LW'L on

(
At this stage no approximations have been made for finding X . The exact
§

forms of Fn can be evaluated and the integration with respect to ©

completed; all the integrals are elementary, if not concise. Thus the

expansion of © , and hence of u, and Ug s in powers of gég_ can be

found. In practice the calculations became overwhelmingly complicated

2
after the term in ['OT'] } By summing the series expansion to recapture
(7.1) again and using the property of F_ just proved, it follows that

1

1 2 2172
(71.9) x=- J {t -R ] R [kH(R -r+H(R-R JF(R, 6; R )|dR . ,
lmzp D]_ 0 0 0 0 0 0'

where H is Heaviside's step function and F 1is a function whose only
important property is that lim F(R, 0, RO) =k (the last remark follows
F_~+R-
0

from the continuity of each F, (R, 8; Ry)) and the continuity of the

integrand of equation (4.1l1a) ). This property of F 1is crucial, for

3%2 {kH.(R-RO)+H[RO—R)F(R, Ry e)]
! {
= -Rg[_kd (R-r)+8 (R,-R)F (R, Ry e)] + H(R"Ro)'a—gglp(’?’ Ry e]]

But since 6&(u) = 8(—u) and S(u)d(u) = §(u)¢$(0) at a point of

continuity of ¢ , it follows that
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(7.10) 8—123;(@(}?—1?0)-&[1(}?-1?0)5’(}?, Ry3 e)] = H(R-ROJ% F(R, Ry; 6)

Finally, from equation (5.24) we obtain

1 1
X _ 1 f (t222z2]2 d (10 a 2 e 2|2)4, 4
.. 22 o|2lr,-2,)? + Llrga)?|Flazge,
SY2 sz D 2“3 ayz pyv2 ‘2 pPY 373 2
the assertion of equation (7.2).
References

L7] J.L. Ericksen, "On the propagation of waves in isotropic
incompressible perfectly elastic materials", J. Rational Mech.
Anal. 2 (1953), 329-337.

(2] J.N..Flavin, A.E. Green, "Plane thermo-elastic waves in an initially

stressed medium", J. Mech. Phye. Solids 9 (1961), 179-190.

[3] 1.M. Gelfand and G.E. Shilov, Generalized functions, Vol. 1
{translated by Eugene Saletan. Academic Press, New York, London,

1964).

[4] 1.S. Gradshteyn, |.M. Ryzhik, Table of integrals, series, and
products, hth ed. (translated by Scripta Technica, Inc. Academic
Press, New York, London, 1965).
[5] James K. Knowles, "Large amplitude oscillations of a tube of
incompressible elastic material”, Quart. Appl. Math. 18 (1960),
T1-77.
[6]1 T. Manacorda, "Sulla propagazione di onde ordinarie di discontinuita
nella elasticita di secondo grado per solidi incomprimibili',
Riv. Mat. Univ. Parma 10 (1959), 19-33.
[7] C. Truesdell, W. Noll, "The non-linear field theories of mechanics",
Handbuch der Physik, Band III/3 (Springer-Verlag, Berlin,
Heidelberg, New York, 1965).

University of Queensland,
St Lucia,

Queensland.

https://doi.org/10.1017/50004972700044907 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044907

