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Abstract. Plane harmonic waves in a rotating elastic medium are considered.
The inclusion of centripetal and Coriolis accelerations in the equations of motion with
respect to a rotating frame of reference leads to the result that the medium behaves
as if it were dispersive and anisotropic. The general techniques of treating anistropic
media are used with some necessary modifications. Results concerning slowness surfaces,
energy flux and mode shapes are derived. These concepts are applied in a discussion of
the behavior of harmonic waves at a free surface.

Introduction. In this paper plane wave propagation in a linear, homogeneous,
isotropic elastic medium will be considered, with the assumption that the entire elastic
medium is rotating with a uniform angular velocity. If the coordinate system is taken
as fixed in the rotating medium, this introduces additional terms in the equations of
motion: a centripetal and a Coriolis acceleration. We consider small-amplitude waves
propagating in the medium and exclude any discussion of the time-independent stresses
and displacements that are caused by centrifugal forces and other possible body forces.

In the following section the equations governing plane-wave solutions in an infinite
rotating medium are formulated and it is shown that there are three real slowness
surfaces, each corresponding to the root of a cubic characteristic equation. It is shown
that the phase speed in all cases depends on the ratio of the wave frequency to the
rotational frequency, thus making it clear that the rotation causes the material to be
dispersive. The actual slowness surfaces are given for various values of Poisson's ratio
and the frequency ratio.

In the next section the energy flux for plane waves is discussed and it is proved,
for any admissible plane wave, to be perpendicular to the slowness surface at the point
indicated by the slowness vector (essentially the wave number vector) of the wave.

Actual displacements that occur are discussed qualitatively in the subsequent section.
It is seen that, in general, the various modes are neither shear nor compressional, but
combinations of both. All exceptional cases of pure shear or pure compressional modes
are discussed.

In the last section free surface phenomena are discussed. To describe the reflection
of plane waves from a plane free surface, use is made of the slowness surfaces. Much
qualitative information on types of reflected waves can be brought out even without
the use of the explicit expressions for the slowness vector, such as under what circum-
stances one or two of the reflected waves will be surface waves, i.e. have a complex
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slowness vector. As an extension of this, a solution which consists only of surface waves
is discussed. This can be thought of as a generalized Rayleigh wave.

The analysis involved in the derivations is roughly similar to that used for wave
propagation in anisotropic media by Synge [1], [2] and Musgrave [3], among others.
A rotating medium can be thought of as a type of transverse isotropic medium; i.e., all
directions orthogonal to some direction, in this case the axis of rotation, are equivalent.
However, there are basic differences between rotational and material anisotropy. For
a rotating medium, substitution of a plane wave solution into the equations of motion
leads to a homogeneous set of linear equations for which the matrix of the coefficients
is Hermitian, instead of symmetric, as is the case for non-rotating media. Hence the
eigenvectors, i.e. the displacement vectors, even for real slowness vectors, are complex
instead of real, implying that the particle trajectories are elliptical. Further, as mentioned
above, the solutions for a rotating medium are frequency-dependent. In addition, there
is no easily perceived eigenvector that can be used to find one root of the cubic charac-
teristic equation, thus leaving only a quadratic equation to be solved, as for a non-
rotating transverse isotropic medium (see [1, p. 331]).

The standard index notation is used throughout, e.g. for the position vector

x = Xi&i = x1e1 + x2e2 + x3es .

The cap will always denote unit vectors. Use is made both of vector and indicial notation.
The rotating elastic medium. Consider an infinite homogeneous, isotropic, linear

elastic medium characterized by a density p, a shear modulus and a bulk modulus.
These quantities determine, in the usual fashion, a shear wave speed C, and a pressure
wave speed Cv . The medium is rotating uniformly with respect to an inertial frame, and
the constant rotation vector in an Xi , x2 , rectangular Cartesian frame rotating with
the medium is ii = S!w. The unit vector w will denote the direction of the axis of rotation
(according to the right-hand rule) throughout.

The displacement equation of motion in such a rotating frame has two terms that
do not appear in the non-rotating situation. As we are looking for time-varying dynamic
solutions, the time-independent part of the centripetal acceleration X (£} X x), as
well as all body forces, will be neglected. Thus our dynamic displacement u is actually
measured from a steady-state deformed position, the deformation of which, however,
is assumed small. The equation which governs the dynamic displacement u is

(iCl - Cl)V(V-u) + C2,V2u = u + a X (n X u) + 2£2 X u, (1)

where the dot denotes time differentiation. The term Q X (H X u) is the additional
centripetal acceleration due to the time-varying motion only, and the term 2£i X u is
the Coriolis acceleration. All other terms are as usual for a linear elastic medium under
the assumptions of smajl strains and displacements.

We look for plane wave solutions of the form

u = (R U exp iw
^ -')"

= (R U exp ~ 1 (2)

where (R denotes the real part, U is a constant vector, in general complex, a; is the angular
frequency, C is the phase speed, n is a unit vector in the direction of propagation, and
S is the non-dimensional slowness vector with amplitude S = CJC in the direction of fi.
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Substitution of (2) into (1) gives

(1 - 0)(S-U)S + /3S2U = U - (1/oj2)£1 X (Q X U) + (2i/u)Q X U, /3 = (C./C,,)2,

or, by making use of Si = S2w and the vector identity w X (w X U) = (w- U)w — U

(i - /s)(s-u)s + /3S2u = (i + r2)u - r2w-Uw + 2irw x u, r = a/«. (4)
This vector equation stands for three scalar equations on the three components U, ,

and they can be written as

Mull, = [(1 + T2) 5,,- — T3wtu— 2iTeiikwk — (1 - JS)sis/ — fisksk 8u]Ui = 0, (5)

where Sif is the Kronecker delta and eijk is the permutation tensor. Note that, because of
the Coriolis term, the matrix Mu is no longer symmetric but Hermitian. The necessary
and sufficient condition for the existence of non-trivial eigenvectors, [/,•, is det Mu = 0.
In general, there may be real and complex vectors, , which satisfy the condition
det M a = 0. However, complex <St- substituted in (2) give waves of exponentially varying
amplitude along the real plane of constant phase and hence cannot exist in an infinite
medium. Thus for now we shall confine ourselves to slowness vectors given by Sn,
where n is the real direction of propagation and S is the magnitude. To that end, substi-
tute S = Sn into (5), giving

AijUj = S'BijUj , A a = (1 + T2) <5,-, — T2WiW,- — 2iYeiikwk ,

Bu = (1 — fynitij + $5a . (6)

Note that Bu is symmetric, a special case of Hermitian, and that Au is Hermitian.
The condition for non-zero Uj is that det (/I^, — S2Ba) = 0. This is the equation for
the eigenvalues of Eq. (6). If S2 = X is a particular eigenvalue for an arbitrary propaga-
tion direction n, and V is its associated eigenvector, then from (6) we can write

V*AtjVj = \V*tBtiV, , (7)
where the asterisk denotes the complex conjugate. As the value of a Hermitian form
is always real (see, for example, [4]), and V*BijVi are both real and hence X
is real. In addition, both A and B are positive definite (the eigenvalues of A are 1,
(1 + r)2, (1 — T)2 and those of B are 1, /3, (i) for all w and n except when r == 1, in
which case one of the eigenvalues of A is zero. Hence, from (7) X must be positive except
when F = 1 and zero is one eigenvalue of (6). Further, it is easy to show that two eigen-
vectors corresponding to distinct eigenvalues are orthogonal in the Hermitian sense
relative to the matrix B and to the matrix A.

The condition det (A,,■ — S2Bij) = 0 is a bicubic equation, given by

—/32S6 + /3[2 + 0 + r2(i + /)]S4

- [(i + 2/3)(i + r2) - /r2(3 - r2)]S2 + (l - r2)2 = o, (8)

/ = /3 + (1 — 0) cos2 6, cos 6 = n w.

We have seen above that the roots S2 of (8) must always be positive except for r = 1
in which case there is one zero root. Note that this zero root with its associated eigen-
vector found from (5) represents a rigid body motion which is a circular translational
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motion of the entire medium about the axis of rotation in the opposite direction as the
rotation and of course at the same frequency. In a laboratory system, it is easy to show
that this is only a rigid-body time-independent displacement of the entire medium and
henceforth this mode will be ignored.

In the special case n w = 1 the three roots of (8) are S2 = 1, (1 ± T)2/0 and in the
special case n-w = 0, one of the three roots of (8) is 1//3. These cases will be discussed
in more detail below.

In the general case obtaining the roots of (8) involves solving a cubic equation.
We see that all the coefficients and thus the roots of (8) depend on three parameters,
i.e. r, the frequency ratio which must be positive, 0, limited to values between 0 and f
(/3 depends only on Poisson's ratio and for positive Poisson's ratio, 0 is further restricted
to be less than .]) and cos2 9, where 9 is the angle between the axis of rotation and the
direction of propagation.

We now consider the possibility of repeated roots of (8). Clearly a triple root is
impossible. For r = 0, i.e. no rotation, we have a double root, <S'2 = 1//3, corresponding
to the two independent shear waves that can propagate in any direction. If, for non-zero
r, there is a root S'2 = X which is a double root, then, as A and B are Hermitian, there
are two linearly independent eigenvectors associated with X and hence the matrix
A — \B must be of rank 1. This means that all 2 X 2 minors of A — \B must have
determinants equal to zero, and setting all these minor determinants to zero implies
that, for r > 0, either 1) sin 9 = 0, X = 1, and r = 1 ± /31/2 or 2) cos 9 = 0, X = 1/0
and r = (3 + 0~1)1/2. Under no other circumstances can there be a multiple root.

Thus, we have found that in a given rotating elastic medium, for any direction n,
there are three distinct slowness vectors (except as noted above) S(W) = S(N) (cos2 9)ii,
N = 1, 2, 3. Each of these vector functions of direction defines a real slowness surface
that is axisymmetric about the axis of rotation and symmetric about the plane specified
by 9 — 7r/2 (see Fig. 1). These non-intersecting surfaces are such that the inner surface
surrounds the origin, the next surface surrounds the inner one, and the outer one surrounds
this second surface. Contact is possible only along the axis of rotation under condition 1
above and at 9 = tt/2 under condition 2 above. Fig. 2 shows quadrants of the actual
slowness surfaces for 0 — (Poisson's ratio = J) for several different values of T.

With the three real slowness surfaces we have a very powerful tool. It will be proved
in the next section that the energy flux vector associated with a given wave is normal
to the slowness surface, as is the case with anisotropic non-rotating elastic solids. Further,
the slowness surfaces provide a means of visualizing the application of Snell's law in the
case of reflection from a plane surface. This will be discussed at length in the last section.

The energy flux. The energy flux at any time, at any point, is the vector

Fl = —(TijUj , (9)
where <j<# is the stress tensor. Expressing the stress in terms of the displacement gradients,
and recalling the expressions for the T.ame constants in terms of p, C, , and Cv , and
that /3 = C2 /C2 , gives

F\ = — pCl[0(uj,i + Ui,i) + (1 - 20)uk,k 5,■;]«> • (10)
To find the energy flux associated with a given plane wave, substitute (2) into (10),
noting that since we no longer have a linear expression in u we must keep track of
the real part. This gives an expression that oscillates in time with a frequency 2«. We
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G < 0
Fig. 1. An example of the three slowness surfaces in the infinite medium,

are interested in the time-averaged value of the energy flux and thus letting

F< = lim 7~TT r F'dt=~ f " FI dt (H)
Ii-U-»oo 'l 'o Jt9 TT Jq

gives

F = po?Cv /3(U*-U)S + (SUTJ* + SU*U)J , (12)

where S is one of the three real slowness vectors, for a given direction n, of (5), and U
is its corresponding eigenvector. U* is the complex conjugate of U.

Now we wish to prove that the energy flux for a particular wave is parallel to the
normal of the slowness surface at the particular point S in <Si , S2 , S3 space. We shall
adapt the proof of Synge [2] for anisotropic elastic media to our present situation, the
difference being that our determining matrix for the slowness and the eigenvectors is
Hermitian instead of symmetric.

The condition for non-zero U, from (5), gives the real slowness surfaces

GOS.) = det Ma = 0. (13)
For any real vector S = , G has some value, in general not equal to zero. In partic-
ular, when S = 0, G = (1 — T2)2 > 0 and for |S| larger than some sufficiently large
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Fig. 2. Slowness surface quadrants for various values of I1 with 0 = §. The dashed line denotes the
unit circle and 8 is measured from the vertical axis.

number, G is negative. In Fig. 1 the regions of positive and negative G are shown. They
are separated by the slowness surfaces. The gradient of G at any point is

VG = (dG/dS,)et = N^idMJdS^e, = Nit[~( 1 - /3)(Ske, + S,ek) - 2pS8it], (14)
where Nik is the cofactor of Mik . At any point on a slowness surface, i.e., a point where
(7=0,

MijNkj = bik G = 0, (15)

NikMu = hi G = 0. (16)
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But Eq. (5), at a point where G — 0, is

MnUj = 0, (17)
and this defines the eigenvector £/,■ uniquely to within a constant. Thus, comparing
with (15), we see that

Nki = AkUi . (18)
The complex conjugate of (17), due to the fact that Mu is Hermitian, is

U*M,i = 0, (19)
and comparison with (16) implies that

Nik = U*Ak . (20)
Eqs. (18) and (20) can both be valid if and only if

Nik = AU*Uk . (21)
Substitution of (21) into (14) gives

VG = —2A[/3U*-US + ((1 - j3)/2)(S- UU* + S-U*U)], (22)
which, by comparing with (12), proves the result.

As each slowness surface is a closed surface about the origin with only one value
of S for any n, the outward normal from any point on the slowness surface must form
an angle less than x/2 with S, i.e. S • e„ > 0. From (12)

S'F = [|8(U*-U)jS2 + (1 - |6)(S-U)(S-U*)] > 0; (23)£
thus F is directed along the outward normal of the slowness surface. From Fig. 1 we can
see that on the inner and outer surfaces VG is directed inwards, i.e. opposite to F,
and on the middle surface V(7 is directed outwards, i.e. in the direction of F. At the
singular points where two of the slowness surfaces are in contact, G = VG = 0 and
these points are saddle points. At such points the slowness surfaces are kinked; however
the energy flux for each of the two modes is parallel to the slowness vector.

The displacement vectors. In order to simplify the expressions and increase our
understanding of the actual types of displacements that occur for these various waves,
we select an x[ coordinate system in which w is equal to e[ and n lies in the x[x'2-p\ane,
and is expressed by cos 0e' + sin 0e' . In this coordinate system, (6) becomes

C,

1 — (cos2 0 + 0 sin2 d)S2 —(1 — /?) sin 9 cos dS2 0

-(1 - |S) sin 9 cos 9S2 1 + T2 - (sin2 9 + /3 cos2 9)S2 -2iT

0 +2iT 1 + T2 - 0S2

t/i

U2

u3 Ji
(24)

which yields three eigenvectors, one for each of the eigenvalues <S(JV) , N — 1, 2, 3,
given to within an arbitrary constant by

U(A0 = (1 - 0) sin 9 cos 6^,(1 + r2 - /3S2w)el

+ (1 + T2 — /3(S2jv,)[1 — (cos2 9 + P sin2 0)/S2jv>]e2 (25)

— 2iT[l — (cos2 9 + 13 sin2
for M 0, t/2.
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We see that for all modes, the component of the displacement normal to the n,
w-plane is out of phase with the component of the displacement that lies in the n,
w-plane. Thus the particle trajectory is an ellipse with one of its axes in the x'3 direction
and the other in the direction of <R[U(JV>]. In general, U<v> is not perpendicular to n
and not parallel to n; thus none of the three modes are pure shear or pure dilational
modes. Exceptions occur for 6 = 0 and 6 = t/2. For 6 — 7r/2, there is one pure shear
mode with S = /3~1/2, which from (24) has a displacement parallel to w. This shear mode
does not 'see' the rotation of the medium as there is no displacement or velocity perpen-
dicular to the axis of rotation. The other two modes that occur at 0 = ir/2 are both
combined shear and dilational modes. The reflection and scattering of these combined
waves that propagate perpendicular to the axis of rotation will be discussed in detail
in a subsequent paper.

For 0 = 0, there is a pure dilational wave with S~ = 1 for which the displacement is
in the direction of propagation. As this is parallel to the axis of rotation, this mode too
does not 'see' the rotation of the medium. The other two modes are pure shear modes
with slownesses given by S, ,2 = P~1/2 |1 ± r| . From (24), we find that

U(U = + ie'3 , U<2) = e2' - ie'3 (26)

and hence the particle trajectories for both of these waves are circles about the vector w,
the motion for the first (slower) wave being right-handed about w, and the motion of the
second (faster) being left-handed. If we take a wave made up of U (1> and U<2) with
equal amplitudes, the total displacement, from (2), noting that /31/2C„ = C, , is

u = 2 cos  t

u = 2 cosi r.r[
C,

o)Tx[ . u>Yx[cos — e^ sm ——
^8 ^ S

a. . COX, a » • £*^1e'2 cos — eg sin —

r < i,

r > l.
(27)

Therefore the combined wave is linearly polarized, i.e. at fixed x[ the tip of the displace-
ment vector moves along a fixed line perpendicular to w. However, as x[ varies, the
orientation line of this changes. In particular, the orientation rotates in a right-handed
fashion as x[ increases. This is analogous to the Faraday rotation of electromagnetic
waves in a magnetized plasma; however, for electromagnetic waves propagating in the
direction of an externally applied magnetic vector, Bn , the rotation of the orientation
is opposite to that in our case. This is due to the fact that the Lorentz force is given
by u X Bn while the Coriolis force is given by 2Li X u.

For propagation in the —x[ (6 = ir) direction, the same arguments apply and it is
easy to see that the Faraday rotation will be in the same sense relative to w, i.e. in the
opposite sense relative to the new direction of propagation.

One other case of pure shear wave occurs. For T = 2, one root of (9) is S2 = 1//3
for all 0; thus this slowness surface is a sphere. From (25), the displacement vector
associated with this mode is

U = —sin 6e[ + cos de'2 — i cos de'3 , (28)

and clearly this displacement vector is perpendicular to the direction of propagation,
so this is a pure shear mode.

Free surface phenomena. Consider the case of a rotating elastic half-space. This
is the most elementary geometry that can be introduced into the problem but it enables
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us to consider reflection phenomena and surface waves. Let the medium occupy the
region x2 < 0. The vector w is specified by iv{, i = 1, 2, 3, and the three slowness surfaces
are figures of revolution about the direction given by w. Consider a body wave in the
medium, of any of the three modes, incident to the surface (incident meaning a wave
for which e2- F is positive i.e. the energy flux is towards the surface. A reflected wave,
similarly, is one for which e2 • F is negative.) Thus, we can divide each slowness surface
into two regions, the top containing all incident slowness vectors, and the bottom con-
taining all reflected slowness vectors.

Let the incident wave on the surface x2 = 0, have a phase given by

««[()$! (,,£! + S3(I)x3)/Cp — <] (29)

The reflected waves must have the same phase on the surface x2 = 0. Using the
slowness surfaces, we can visualize where the real slowness vectors of the reflected
waves must lie. To do this, drop a perpendicular to the surface through the tip of S(I) .
The points of intersection with the reflecting regions of the slowness surfaces are the
endpoints of the real slowness vectors of the reflected waves. There is no loss of generality
in selecting our axes so that S(n lies in the x,x2-plane and S3(J) = 0 and it is clear that
all the reflected waves lie in the a^ajj-plane. Fig. 3 shows the intersection of the three
slowness surfaces with the x1x2-plane and depicts the graphical representation of the
slowness vectors of the reflected waves for the cases a) of three real reflected waves,
b) of two real reflected waves, and c) of one real reflected wave. To do this analytically,
the condition for the existence of non-zero eigenvectors, Eq. (13) must be used. For
the case where we picked a real fi and wanted to find S, this became the bicubic Eq. (8).
Here is given (equal to <S1(I)) and we have set S3 = 0. Eq. (13) becomes

-ff(sy + 0{[2 + fi + r2(i + /3)]S2 + r2(i - /3)(w-s)2j>s2

- {[(i + 2/3)(i + r2) - /3r2(3 - r2)],s2 - (1 - /3)r2(3 - r2)(w-s)2}

+ (1 - r2)2 =0, iS2 = <S'2 + ,S22 , w-S = WlS, + w2S2 (30)

Eq. (30) has been kept in the same form as (8) but this equation is in general a full
sextic equation for <S2 . Note, however, that one root is known to be S2W , as can be
seen from Fig. 3, leaving a quintic equation. Case a) corresponds to the situation in
which there are no complex roots and the desired three values of S2 are the three smallest
roots of Eq. (27). Case b) corresponds to (27) having four real roots, the smallest two
being the real values of S2 , and a complex conjugate pair of roots, the one with the
negative imaginary part being the complex value of S2 so as to have attenuation into
the medium in the — x2 direction. This cannot occur for the incident slowness vector
S(n on the inner slowness surface. Fig. 3 shows the limits of Sliu for this case to apply.
Case c) corresponds to two real roots, the smaller of which is the real value of S2 ■ The
other two values are the complex roots with negative imaginary parts. This case can
occur only when S(I) is on the outer slowness surface. Fig. 3 also shows the limits of *Sia)
for this case to occur. The case of repeated real roots corresponds to the normal to the
free surface through S(I) being tangent to one of the slowness surfaces. In such a case,
the energy flux for this wave is parallel to the free surface.

In the special case that uh or w2 is zero, (30) becomes a bicubic equation on S2 .
This is seen graphically as in this case the intersections of the slowness surfaces with
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Fig. 3. Section of the three real slowness surfaces by the xlt a^-plane. The dashed lines refer to incident
waves, the solid lines to reflected waves. Region a) contains those incident slowness vectors associated
with three real reflected waves; region b), two real reflected waves; and region c) one real reflected

wave.

the .CiXa-pIane are symmetric about the 2,-axis. Then in case b) the one complex value
of S2 must be pure imaginary.

Knowing the three slowness vectors of the reflected waves enables us to compute
each of the displacement vectors to within an arbitrary constant, according to (5) or
by transformation of Eq. (25) from the primed to the unprimed coordinate system.
Assuming the displacement vectors are normalized, i.e. U*-U = 1, and the incident
wave is of normal amplitude, the full displacement field can be written

U(n exp - /) + g CrU<0 exp ~ ')• (31)

There are three boundary conditions to satisfy on the surface which determine the
constants Cr , and the reflection problem is complete. A check on the solution is that
the total energy flux across the free surface must be zero.

We are now led to consider a solution which consists only of surface waves, a general-
ized Rayleigh wave. This would consist of displacements of the form

TT   • (S2X2 S3X 3 /rir>NU exp  — i j (32)

where S2 is complex with a negative real part. Thus we must have S, and S3 such that
a line perpendicular to the free surface through Si and S3 does not touch any of the
real slowness surfaces. Then S2 assumes the values of the three roots of (13) with negative
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real parts. The procedure for determining possible combinations of Si and S3 for Rayleigh
waves to exist is outlined by Synge [1] for an anisotropic material. To summarize, a
linear combination of the three waves is formed and the three boundary conditions are
applied. This leads to three homogeneous equations on the three amplitudes. For a
non-trivial solution, the complex determinant must be zero, yielding two real equations
on »Si and S3 . If these equations can be satisfied simultaneously then a solution Si , S3
represents a possible direction and speed of Rayleigh wave propagation on the rotating
half-space at the given frequency.
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