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Abstract :  The theory of elasticity describes deformable ma- 
terials such as rubber, cloth, paper, and flexible metals. We 
employ elasticity theory to construct differential equations that 
model the behavior of non-rigid curves, surfaces, and solids as a 
function of time. Elastically deformable models are active: they 
respond in a natural way to applied forces, constraints, ambient 
media, and impenetrable obstacles. The models are fundamen- 
tally dynamic and realistic animation is created by numerically 
solving their underlying differential equations. Thus, the de- 
scription of shape and the description of motion are unified. 
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1. I n t r o d u c t i o n  

Methods to formulate and represent instantaneous shapes 

of objects are centralto computer graphics modeling. These 

methods have been particularly successful for modeling 

rigid objects whose shapes do not change over time. This 

paper develops an approach to modeling which incorpo- 

rates the physically-based dynamics of flexible materials 

into the purely geometric models which have been used 

traditionally. We propose models based on elasticity the- 

ory which conveniently represent the shape and motion of 

deformable materials, especially when these materials in- 

teract with other physically-based computer graphics ob- 

jects. 

1.1. Phys ica l  Mode ls  versus  K i n e m a t i c  Mode l s  

Most traditional methods for computer graphics modeling 

are kinematic; that is, the shapes are compositions of ge- 

ometrically or algebraically defined primitives. Kinematic 

models are passive because they do not interact with each 

other or with external forces. The models are either sta- 

tionary or are subjected to motion according to prescribed 
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trajectories. Expertise is required to create natural and 

pleasing dynamics with passive models. 

As an alternative, we advocate the use of active mod- 

els in computer graphics. Active models are based on prin- 

ciples of mathematical physics [5]. They react to applied 

forces (such as gravity), to constraints (such as linkages), 

to ambient media (such as viscous fluids), or to impene- 

trable obstacles (such as supporting surfaces) as one would 

expect real, physical objects to react. 

This paper develops models of deformable curves, sur- 

faces, and solids which are based on simplifications of elas- 

ticity theory. By simulating physical properties such as 

tension and rigidity, we can model static shapes exhibited 

by a wide range of deformable objects, including string, 

rubber, cloth, paper, and flexible metals. Furthermore, by 

including physical properties such as mass and damping, 

we can simulate the dynamics of these objects. The simu- 

lation involves numericaily solving the partial differential 

equations that govern the evolving shape of the deformable 

object and its motion through space. 

The dynamic behavior inherent to our deformable mod- 

els significantly simplifies the animation of complex ob- 

jects. Consider the graphical representation of a coiled 

telephone cord. The traditional approach has been to rep- 

resent the instantaneous shape of the cord as a mesh as- 

sembly of bicubic spline patches or polygons. Making the 

cord move plausibly is a nontrivial task. In contrast, our 

deformable models can provide a physical representation of 

the cord which exhibits natural dynamics as it is subjected 

to external forces and constraints. 

1.2. O u t l i ne  

The remainder of the paper develops as follows: Section 

2 discusses the connections of our work to other physical 

models in computer graphics. Section 3 gives differential 

equations of motion describing the dynamic behavior of 

deformable models under the influence of external forces. 

Section 4 contains an analysis of deformation and defines 

deformation energies for curve, surface, and solid models. 

Section 5 lists various external forces that can be applied 

to deformable models to produce animation. Section 6 de- 

scribes our implementation of deformable models. Section 

7 presents simulations illustrating the application of de- 

formable models. Section 8 discusses our work in progress. 
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2.  R e l a t e d  G r a p h i c s  M o d e l s  

Interestingly, the classical spline representations of shape 
have characterizations based in elasticity theory [7]. How- 

ever, in adopting splines as a representation of curve and 

surface shape, the graphics literature has deemphaslzed the 

physical basis of splines. The cubic interpolating spline, for 
instance, is an abstraction of the shape exhibited by a thin 

elastic beam (the elastica used in boat construction) whose 

minimal bending energy configuration may be character- 
ized by a fourth-order differential equation. The elasticity 

theory perspective leads to generalized spline representa- 

tions of curves, surfaces, and solids. Our work in this paper 
can be viewed as an extension, including physically-based 

dynamics, of the mixed-order generalized splines employed 

in computer vision by Terzopoulos [24]. 

Special purpose physical models have begun to cap- 

ture the attention of the computer graphics community. 
Fluid mechanics was used by Peachey [20] and Fournier 

and Reeves [11] to model water waves, as well as Kajiya 

and yon Herzen [17] and Yaeger et aL [28] for cloud sim- 

ulation. Also, the physics of imaging has been applied to 
rendering [16, 15]. Well [26] used catenaries to approxi- 

mate cloth, while Feynman [10] used a more sophisticated 
thin plate flexure model for the same purpose. 

Terzopoulos [23] employed deformable models based 
on variational principles to reconstruct surfaces from scat- 

tered visual constraints. To create deformable models, 
Barr [3] subjected solid primitives to prescribed deforma- 
tions using Jaeobian matrices. Sederberg and Parry [21] 

imposed similar deformations to solids modeled as free- 

form surfaces. We extend these approaches by adding 

equations governing the eycolution of deformations. 

Our models are compatible with and complementary 
to the constraint-based modeling approach for rigid prim- 
itives proposed by Barzel and Barr [4], as well as with 

the dynamics-based approaches of Wilhelms and Barsky 
[27] and Armstrong and Green [1] to animating articulated 

rigid bodies. Finally, since computer vision is the inverse 

problem of computer graphics, the models presented in this 
paper are of value for reconstructing mathematical repre- 

sentations of non-rigid objects from their images [25]. 

3.  D y n a m i c s  o f  D e f o r m a b l e  M o d e l s  

We begin the mathematical development by giving the 

equations of motion governing the dynamics of our de- 
formable models under the influence of applied forces. The 
equations of motion are obtained from Newtonian mechan- 

ics and balance the externally applied forces with the forces 

due to the deformable model. 
Let a be the intrinsic or material coordinates of a 

point in a body ~. For a solid body, a has three com- 

ponents: [az, a2, as]. Similarly, for a surface a = [az, a2], 
and a curve a = [az]. The Euclidean 3-space positions 

of points in the body are given by a time-varying vec- 
tor valued function of the material coordinates r(a, t) = 
[rz (a, t), r2(a, t), r3(a, t)]. The body in its natural rest state 

7,0 a , I  "0 a , r  0 a (see Figure 1) is specified by r°(a) = [ 1( ) 2( ) s( )1. 

deforming body 

undeform~body 

^ 

Figure 1. Coordinate systems. 

The equations governing a deiormable model's motion 

can be written in Lagrange's form [14] as follows: 

0 ( O r )  Or ~E(r) = f ( r , t )  ' (1) 

where r(a , t )  is the position of the particle a at time t, 

kt(a) is the mass density of the body at a, "7(a) is the 

damping density, and f(r, t) represents the net externally 
applied forces, g(r) is a functional which measures the net 

instantaneous potential energy of the elastic deformation 

of the body. 
The external forces are balanced against the force 

terms on the left hand side of (1) due to the deformable 

model. The first term is the inertial force due to the 

model's distributed mass. The second term is the damping 
force due to dissipation. The third term is the elastic force 

due to the deformation of the model away from its natural 

shape. 
The elastic force is conveniently expressed as gE(r)/6r,  

a variational derivative of the potential energy of deforma- 

tion £(r) (as approximated in equation 14). More informa- 
tion on variational derivatives can be found in textbooks 

on the calculus of variations [5, 13]. 

4 .  E n e r g i e s  o f  D e f o r m a t i o n  

This section develops potential energies of deformation £(r) 
associated with the elastically deformable models. These 

energies are employed to define the internal elastic forces 

of the models (see Section 6). 
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4.1. Ana lys i s  of  D e f o r m a t i o n  

Elasticity theory involves the analysis of deformation [18, 

12]. We will define measures of deformation using con- 

cepts from the differential geometry of curves, surfaces, 

and solids [8]. One requirement of our present approach 

is that the measures should be insensitive to rigid body 

motion since it imparts no deformation. 

The shape of a body is determined by the Euclidean 

distances between nearby points. As the body deforms, 

these distances change. Let a and a + da be the material 

coordinates of two nearby points in the body. The distance 

between these points in the deformed body in Euclidean 

3-space is given by 

dl = E Gijdaidaj, (2) 
i,j 

where the symmetric matrix 

Or Or 
Gij ( r ( a ) ) =  Oa"-~'Oaj (3) 

is known as the metric tensor or first fundamental form [9] 

(the dot indicates the scalar product of two vectors). 

Two 3-dimensional solids have the same shape (differ 

only by a rigid body motion) if their 3 x 3 metric tensors 

are identical functions of a = lax, a2, a3]. However, this no 

longer need be true when the body becomes infinitesimally 

thin in one or more of its dimensions. 

Thus, the lengths between nearby points do not deter- 

mine the shape of a surface, since curvature can be altered 

without affecting lengths. The fundamental theorem of 

surfaces [8] states that two surfaces have the same shape if 

their metric tensors G as well as their curvature tensors B 

are identical functions of a = [aa,a2]. The 2 x 2 matrices 

G and B are the first and second fundamental forms of the 

surface [9]. The components of the curvature tensor are 

02r 
Bij (r(a)) = n .  OaiOaj ' (4) 

where n = [nz, n2,n3] is the unit surface normal. 

For the case of space curves, the metric and curvature 

tensors are scalars called the arc length s (r(a)) and the 

curvature ~ (r(a)). Again, arc length and curvature do not 

entirely determine the shape of a space curve; the curve 

can twist. Thus, the fundamental theorem of curves [8] 

states that two curves have the same shape if their arc 

length, curvature, and torsion r ( r )  are identical functions 
of a = a [9]. 

4.2. Energ ies  for Curves ,  Surfaces,  and  Solids 

Using the above differential quantities, we now define po- 

tential energies of deformation for elastic curves~ surfaces, 

and solids. These energies restore deformed bodies to their 

natural shapes, while being neutral with respect to rigid 

body motion (see Figure 2). Thus, the potential energy 

should be zero when the model is in its natural state, and 

the energy should grow larger as the model gets increas- 

ingiy deformed away from its natural state. 

natural shape rigid body motion 
zero energy 

small deformation large deformation 
low energy high energy 

Figure 2. Energy of deformation. 

A reasonable strain energy for elastic bodies is a norm 

of the difference between the fundamental forms of the de- 

formed body and the fundamental forms of the natural, 

undeformed body. This norm measures the amount of de- 

formation away from the natural state. 

In the rest of the paper, the fundamental forms asso- 

ciated with the natural shapes of deformable bodies will 

be denoted by the superscript O. For example, 

Or ° Or 0 
G , ° j  = - -  (5) 

Oa i Oh j" 

Thus, for a curve, we use the strain energy 

E(r) = f .  ~(s - ,°)~ + ~(~ - ~0)~ +.r(, .  - r° )  ~da (6) 

where a,/3, and 7 are the amount of resistance of the curve 

to stretching, bending, and twisting, respectively. An anal- 

ogous strain energy for a deformable surface in space is 

E(r) = fn  IIG - G°ll~ + lIB - solID daida2, (7) 

where I1" I1,~ and I1" 118 are weighted matrix norms. Similarly, 

a strain energy for a deformable solid is 

E(r) -- fo IIG - G°ll~ daldazda3. (8) 

The deformation energies (6), (7), and (8) are zero for 

rigid motions, and they include the fewest partial deriva- 

tives necessary to restore the natural shapes of non-rigid 

curves, surfaces, and solids, respectively. However, higher- 

order derivatives can be included to further constrain the 

smoothness of'the admissible deformations of these bodies 

[24]. 

5 .  A p p l i e d  F o r c e s  

Applying external forces to elastic models yields realis- 

tic dynamics. This section lists representative examples 
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of external forces, including the effects of gravity, fluids, 

and collisions with impenetrable objects. The net exter- 

nal force f(r, t) in (1) is the sum of the individual external 
forces. Various types of external forces, each a vector func- 

tion of r,  are presented below. 

A gravitational force acting on the deformable body 

is given by 

fgravity = #(a)g ,  (9) 

where #(a)  is the mass density and g is the gravitational 

field. 

A force that  connects a material point a0 to a point 

in world coordinates r0 -- [x0, Y0, z0] by an ideal Hookean 

spring is 

f.prlng = k(r0 - r(a0)),  (10) 

where k is the spring constant. 

The force on the surface of a body due to a viscous 

fluid is 

f~i . . . . .  = c (n .  v)n ,  (11) 

where c is the strength of the fluid force, n(a)  is the unit 

normal on the surface, and 

a r ( a , t )  (12) 
v(a,  t) = u - Ot 

is the velocity of the surface relative to some constant 

stream velocity u. The force is a flow field projected onto 

the normal of the surface, is linear in the velocity, and 

models a viscous medium [2]. 

We simulate collision dynamics between elastic models 

and immobile impenetrable objects by creating a potential  

energy c e x p ( - f ( r ) / e )  around each object, where f is the 

object 's  inside/outside function. The constants c and e 

determine the shape of the potential and are chosen such 

that  the energy becomes prohibitive if the model a t tempts  

to penetrate the object. The resulting force of collision is 

fcollision = -  ( V f ( r ) e x p  (--'~-----~)" n ) n ,  (13) 

where n(a)  is the unit normal vector of the deformable 

body's  surface. This force ignores frictional effects at con- 

tact points, but it is a straightforward matter  to define 

friction forces which impede sliding motions along the ob- 

ject 's  surface. 

Elastic bodies should not self-intersect as they deform. 

Self-intersection can be avoided by surrounding the surface 

of the object with a self-repulsive collision force. The re- 

pulsive force requires an implicit description of the surface 

of the object, which is only available locally in our mod- 

els. Thus, each object decomposes into many small patches 

and the repulsive force computation can become expensive. 

However, greater efficiency may be obtained by placing the 

patches into hierarchical bounding boxes. 

6 .  I m p l e m e n t a t i o n  o f  D e f o r m a b l e  M o d e l s  

To create animation with deformable models, the differ- 

ential equations of motion are simulated numerically. We 

concentrate on the case of surfaces in order to illustrate 

the implementation of deformable models. Curves (solids) 

represent a straightforward restriction (extension) of the 

discrete two-parameter equations developed in this sec- 

tion. Discrete equations of motion are sought that  are 

tractable and stable. We first propose a simplification of 

the elastic forces ~E(r)/~r.  The partial  differential equa- 

tion (1) is then discretized in space. Finally, the resulting 

system of coupled ordinary differential equations is inte- 

grated through time using standard techniques. 

6.1. A S imp l i f i ed  E l a s t i c  Fo rce  

We will use a weighted matrix norm in (7) to obtain the 

following simplified deformation energy for a surface: 

2 

g(r)  = ~ ~ (7/ij(Gij - Oi°j) 2 + ( i j (B i j  - B~j) 2) dalda2,  
i , j=l 

(14) 
where ~/ij(a) and ( i / (a)  are weighting functions. 

The first variational derivative 6E(r) /6r  of (14) can 

be approximated by the vector expression: 

( O r )  0 2 ( ~  0~r \ 2 0 a iJ~aJ  
e ( r ) =  ~ - P a l  + ~ , / J i J 0 a ~ ' )  ' 

i,j=l 

(15) 
where a i j ( a ,  r) and f~ij(a, r) are constitutive functions de- 

scribing the elastic properties of the material. 

Now, 

a i j ( a ,  r) = ~/ij(a) (Gij  -- Gi°j). (16) 

When a i j  is positive the surface wants to shrink in extent,  

and when a i j  is negative, it wants to grow. Thus, the al j  
are controlling surface tensions which minimize the devia- 

tion of the surface's actual metric from its natural  metric 

Gi°j. As rlij(a0 ) is increased, the material 's  resistance to 

such deformation increases at material point a0. yl l  and 

~2~ determine the resistance to length deformation along 

the coordinate directions, while UI~ = r/21 determine the 

resistance to shear deformation. 

Unfortunately, the calculus of variations applied to 

the second term in (14) yields unwieldy expressions. One 

alternative which follows by analogy to (16) is to use 

~, j ( , ,  r) = ~,~(~) (B,j  - B~j).  (17) 

When flij is positive, the surface wants to be flatter, and 

when flij is negative, the surface wants to be n~ore curved. 

Thus, /3ij are controlling surface rigidities which act to 

minimize the deviation of the surface's actual curvature 

from it 's  natural  curvature Bi°j. As ~ij(a0) is increased, 
the material becomes more resistant to such deformation at 

material  point a0. ~al and ~22 determine the resistance to 
bending deformation along the coordinate directions, while 

~a2 = ~21 determines the resistance to twist deformation. 

To simulate a stretchy rubber sheet, for example, we 

make yij relatively small and set ~ij = 0. To simulate rel- 
atively stretch resistant cloth, we increase the value of T/ij. 

To simulate paper, we make Yij relatively large and we in- 

troduce a modest value for ~ij. Springy metal  is simulated 

by increasing the value of ~ij. The ability to set y and 

independently at each material point a allows the intro- 
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duction of local singularities such as fractures and creases 

[24]. 

Note that for the special case where cq2 = a21 = 0 

and where a n ,  a22, and the ~ij a r e  linearized so as to be 

independent of r, we obtain the "thin plate surface under 

tension" [24]. The thin plate surface under tension further 

reduces to the traditional "spline under tension" in the 

case of curves. 

6.2. D i sc re t i za t ion  

Expression (15) for the elastic force is continuous in the 

material coordinates of the deformable surface. For simu- 

lating the dynamics of the model, (15) can be discretized 

by applying finite element or finite difference approxima- 
tion methods [19]. Discretization transforms the partial 

differential equation of motion (1) into a system of linked 

ordinary differential equations. We illustrate the discretiza- 

tion step using standard finite difference approximations. 

The discrete representation of the unit square domain 

0 < al ,az  < 1 on which the surface is defined is a regular 

M x N discrete mesh of nodes with horizontal and vertical 

inter-node spacings hi and h2. The nodes are indexed 

by integers [m,n] where 1 <_ m <_ M and 1 <_ n <_ N. 

We approximate an arbitrary continuous vector function 

u(al ,a2)  by the grid function u[m,n] = u(mhl,nh2) of 

nodal variables. 

The elastic force requires approximations to the first 

and second derivatives of the nodal variables. Given a grid 

function u[m, n], we first define the forward first difference 

operators 

D+(u)[m, n] =(u[m + 1, n] - u[m,n])/hl 
(18) 

D + (t0[m , n] =(u[rn, n + 11 - u[m, n])/h2 

and the backward first difference operators 

D~-(u)[m, n] =(u[m, n] - u[m - 1, n])/hl 
(19) 

D ;  (u)[.~, ~] =(u[.~,~]  - u i .~ ,n  - ~])/h~. 

Using (18) and (19), we can define the forward and back- 

ward cross difference operators 

D + ( u )  [m, n] =D+l(u)[m, n] = D+(D+(u))[m,n], 
(20) 

DS(u)[m,n ] =D;x(u)[m,n] = D;(D;(u))[m,n], 

and the central second difference operators 

Dn(u)[m,n] =D~(D+(u))[m,n], 
(21) 

D22( u)[m,n] =D2 ( D+ ( u) )[m,n]. 

Using the above difference operators, we can discretize 

the constitutive functions (16) and (17) as follows: 

aijtm, n] =r/ij [m,n](D+(r)[m, n]. D+(r)[m, n] -- G,°.j [m, n]), 

fllj [m, n] = ~ij [m, n]( n [m, n].  D~ +) (r)[m, n] - B°j [m, n] ), 

(22) 
where n[m, n] is the surface normal grid function and the 

(+) superscript indicates that the forward cross difference 

operator is used when i # j.  
The elastic force (15) can then be approximated by 

2 

e[m,n] = ~ -D:(p)[rn,nl + D~f)(q)[m,n], (23) 

i , j=l  

where 

p = ,~,j Ira, n lD+(r) [~ ,  =1 and q = ~,~ Ira, nlD~ +~(r)@, % 
(24) 

3ump discontinuities will generally occur in the sur- 

face: for example, at its external boundaries. However, 

a free (natural) boundary condition can be simulated by 

setting to zero the value of any difference operator D + 

D (+) in (24) involving r[m,n] on opposite sides of a or ij 
boundary. 

If the nodal variables comprising the grid functions 

r[m, n] and e[m, n] are collected into the M N  dimensional 

vectors g and e, (23) may be written in the vector form 

~ = g(~)~ (25), 

where K(E) is an M N  x M N  matrix known as the stiffness 
matriz. Due to the local nature of the finite difference dis- 

cretization, K has the desirable computational properties 

of sparseness and bandedness. 

Consider, for simplicity, the case of time invariant 

mass density/1(a, t) = kt[a~, a2 ] and damping density 7(a, t) = 

3'[al, a2] in (1). The resulting discrete densities are g[m, n] 

and 7[m,n]. Let M be the mass matriz, a diagonal M N  x 
M N  matrix with the #[m, n] variables as diagonal compo- 

nents, and let C be the damping matriz constructed slm- 

ilarly from 7[m, hi. The discrete form of the equations of 

motion (1) can be expressed in grid vector form using (25) 

by the following coupled system of second-order ordinary 

differential equations: 

0Zr__ ~r 
M~-/-~ + C ~  + K(r_)r__ = _fi (26) 

where f is the grid vector representing the discrete net 

external force. 

6.3. N u m e r i c a l  I n t e g r a t i o n  T h r o u g h  T i m e  

To simulate the dynamics of an elastic model, the system 

of ordinary differential equations (26) is integrated through 

time. We integrate these equations using a numerical step- 

by-step procedure, which converts the system of nonlinear 

ordinary differential equations into a sequence of linear al- 

gebraic systems. 

A time interval from t = 0 to t = T is subdivided 

into equal time steps At, and the integration procedure 

computes a sequence of approximate solutions at times At, 

2 A t , . . . ,  t, t + A t , . . . ,  T. Evaluating e at t + At and f at t, 

and substituting the (second-order accurate) discrete time 

approximations 

02£ 
0t z =( r t+a ,  - 2r__t + r__t_t,,)/At z 

(27) 
br 
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in to  (26), we ob ta in  the  semi-implici t  in tegra t ion  proce- 

d ure 

Atrt+A~ = g--t' (28) 

where the  ma t r ix  

= 1 C A t  K(r_~)+ (~--~FM + ~ -  ~ ) (29) 

and  the effective force vector  

1 C r t 1 C Y-t, 

(30) 
with 

X, = (~_, - ~-~-,)/A~. (31) 

This  impl ic i t  procedure  therefore evolves the  dynamic  

solut ion from given ini t ia l  condi t ions r_.0 and v_ 0 by solving 

a t ime  sequence of s ta t ic  equi l ibr ium problems for the  in- 

s t an taneous  configurat ions _r~+At. Thus,  the  original  non- 

l inear  pa r t i a l  differential  equat ion (1) has been reduced  to  

a sequence of sparse  l inear  a lgebraic  systems (28), each of 

size p ropor t iona l  to  M N ,  the  number  of nodes compris ing 

the  discrete  deformable  model.  

We have used bo th  direct  methods ,  such as Choleski 

decomposi t ion ,  and  re laxa t ion  methods ,  such as the  Gauss-  

Seidel me thod ,  to solve the  sparse l inear  sys tems (28) (see 

[6]). Note tha t  in the  special case of l inear  elast ici ty,  where 

crij and  flij are cons tants  independen t  of r ,  then  A t  = A is 

t ime- invar iant ,  so a ma t r i x  decomposi t ion  solver need only 

per form a single in i t ia l  decomposi t ion  of A ,  which signifi- 

cant ly  reduces the  to ta l  amount  of computa t ion  required.  

A de ta i led  descr ip t ion  of our  l inear  equat ion  solvers is be-  

yond  the  scope of this  paper .  

7. S i m u l a t i o n  E x a m p l e s  

The  following s imulat ions  have been selected to  convey the  

b road  scope of e las t ical ly  deformable  models .  

F igure  3 shows two different s ta t ic  behaviors  of an 

elast ic  surface. The  surface is l if ted by a spr ing a t t ached  

to the  r igh tmos t  corner  and  cons t ra ined  at the  remain-  

ing corners.  Figure  3a s imulates  a th in  p la te ,  whose rest 

s ta te  is flat (r/q = 0, flij = posi t ive cons tant ) .  F igure  

3b s imula tes  a membrane  res is tant  to s t re tch  away from 

the prescr ibed  metr ic  G O (a prescr ibed-met r ic  membrane )  

whose curvature  is not  regula ted  (~?;j > 0, ~ij = 0). 
F igure  4 i l lus t ra tes  a ball  res t ing on a suppor t ing  elas- 

t ic solid. The  solid has a prescr ibed  metr ic  tensor.  The  

in te rna l  elast ic  force in terac ts  wi th  the  collision force to 

deform the solid. 

F igure  5 shows a shrink wrap  effect. F igure  5a shows 

a model  of a r igid jack.  In Figure  5b, a spherical  m e m b r a n e  

is s t re tched  to sur round  the jack.  The  membrane  shrinks 

and  the j ack  exerts  an a t t r ac t ive  force on the m e m b r a n e  

unt i l  a balance  is achieved with  the  collision force. The  

remaining  figures are ex t r ac t ed  from a mot ion  sequence 

which s imula tes  the  shrinking membrane .  

Figure  6 i l lus t ra tes  a s imula t ion  of a flag waving in 

the  wind. The  flag mate r ia l  is modeled  as a fixed metr ic  

membrane .  The  wind is cons tan t  and  i ts  effect on the  flag 

is modeled  by  the viscous force (11). The  flag is fixed to 

Figure 3. 

Figure 4. 

Lifting elastic surfaces. 

Ball on a deformable solid. 
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Figure  5. Membrane shrinking around a jack. 

a rigid flagpole along one of its edges by imposing a fixed- 

position (Dirichlet) boundary  condition [19]. 

Figure 7 illustrates a simulation of a carpet falling 

onto two rigid bodies in a gravitational field. The carpet  

material is modeled as a prescribed-metric membrane  with 

a small amount  of plate rigidity (~Tij > 0, fllj > 0). The 

carpet slides off the bodies due to the interaction between 

gravity and the repulsive collision force. The frictional 

component  is due to the damping term in (1). 

8 .  W o r k  i n  P r o g r e s s  

We are currently experimenting with alternative formula- 

tions of deformable models. The elastic forces developed 

in this paper  are nonlinear expressions involving 3-space 

position functions r. In principle, we can use such expres- 

sions to simulate nonlinear elastic phenomena such as the 

bending of shells [22]. Unfortunately,  the discrete nonlin- 

ear approximations,  especially the 191i terms in (17), tend 

to be poorly conditioned numerically. One way to improve 

conditioning is to hnearize the second term of (15) by mak- 

ing fllj a function of a, not of r, resulting in the less genera/ 

"thin plate" expression. 

As an alternative, we have implemented linear elastic 

forces expressed in terms of the displacement d = r - r e 

away from a reference 3-space configuration r e .  The refer- 

ence configuration r ° must,  however, be allowed to undergo 

explicit rigid body motion,  which amounts  to solving the 

dynamical  equations for rigid bodies [14]. The displace- 

ment  formulation has allowed us to easily implement in- 

teresting viseo-elasticity effects. 

Another  focus of our current work is on the topic 

of discretization and numerical solution of the deformable 
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Figure 6. Flag waving in a wind. 

model equations. In the present paper we have employed 

finite difference discretization techniques. We are presently 

implementing more sophisticated discretizations using the 

finite element method [29]. We have also experimented 

with higher-order time integration procedures such as a 

fourth-order Runge-Kutta method [6]. Our results indi- 

cate that adaptive time-step control can be beneficial in 

increasing stability, especially during collisions with im- 

penetrable objects. We are also developing a multigrid 

relaxation solver that promises to accelerate the solution 

of the very large discrete equations arising from detailed 

approximations I23]. 

9. C o n c l u s i o n  

This paper has proposed a class of elastically deformable 

models for use in computer graphics. Our goal has been 

to create models for non-rigid curves, surfaces, and solids 

that inherit the essential features of elastic materials, while 

still maintaining computational tractability. Because our 

models are physically-based, they are active: they respond 

to external forces and interact with other objects in a nat- 

ural way. Our models yield realistic dynamics in addition 

to realistic statics; they unify the description of shape and 

motion. We therefore believe that physically-based model- 

ing will prove to be an increasingly powerful technique for 

computer graphics animation. 
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Figure 7. Persian carpet falling over immobile obstacles. 

A c k n o w l e d g e m e n t s  

The figures in ~his paper were rendered by Kurt Fleiseher 

using his modeling testbed system implemented on a LISP 

Machine. We wish to thank Andy Witkin for valuable dis- 

cussions and goop. This research was funded, in part, by 

Schlumberger Palo Alto Researeh~ Hewlett-Packard~ Sym- 

bolics Inc., and by an AT&T Bell Labs Fellowship (JCP). 

213 



~ SIGGRAPH '87, Anaheim, July 27-31, 1987 

R e f e r e n c e s  

1. Armst rong ,  W.W. ,  and Green,  M.,  "The dynam- 
ics of articulated rigid bodies for purposes of anima- 
tion," Proc. Graphics Interface '85, Montreal, Canada, 
1985, 407-415. 

2. Barr ,  A.H.,  Geometric Modeling and Fluid Dynamic 
Analysis of Swimming Spermatozoa, PhD thesis, De- 

partment of Mathematical Sciences, Rensselaer Poly- 
technic Institute, Troy, NY, 1983. 

3. Barr ,  A.H.,  "Global and local deformations of solid 
primitives," Computer Graphics, 18, 3, 1984, (Proc. SIC- 
GRAPH) 21-29. 

4. Barzel ,  l:t.~ Dynamic Constraints, MSc thesis, De- 
partment of Computer Science, California Institute of 
Technology, Pasadena, CA, 1987. 

5. Courant ,  R., and Hi lber t ,  D., Methods of Mathe- 
matical Physics, Vol. I, Interscienee, London, 1953. 

6. Dahlquis t ,  G., and Bjorek,  A., Numerical Meth- 
ods, Prentice-HM1, Englewood Cliffs, N J, 1974. 

7. de Boor,  C., A Practical Guide to Splines, Springer- 
Vedag, New York, NY, 1978. 

8. do Carmo,  M.P. ,  Differential Geometry of Curves 
and Surfaces, Prentice-Hall, Englewood Cliffs, N J, 
1974. 

9. Faux, ,I.D., and Pratt~ M.J . ,  Computational Ge- 
ometry for Design and Manufacture, Halstead Press, 
Horwood, NY, 1981. 

10. Feynman,  C.R. ,  Modeling the Appearance of Cloth, 
MSc thesis, Department of Electrical Engineering and 
Computer Science, MIT, Cambridge, MA, 1986. 

11. Fournier ,  A ,  and Reeves,  W.T. ,  "A simple model 
for ocean waves," Computer Graphics, 20, 4, 1986, 
(Proc. SIGGRAPH), 75-84. 

12. Fung, Y.C.,  Foundations of Solid Mechanics, Prentice- 
Hall, Englewood Cliffs, N J, 1965. 

13. Gelfand~ I.M.~ and Fomin,  S.V., Calculus of Vari- 

ations, Prentice-Hall, Englewood Cliffs, N J, 1963. 
14. Goldsteln~ H.,  ClassicalMechanics, Addison-Wesley, 

Reading, MA, 1950. 
15. Immel,  D.S., Cohen,  M . F ,  and Greenberg ,  D . P ,  

"A radiosity method for non-diffuse environments," 
Computer Graphics, 20, 4, 1986, (Proc. SIGGRAPH), 
133-142. 

16. Kajiya~ J .T. ,  "The rendering equation," Computer 
Graphics, 20, 4, 1986, (Proe. SIGGRAPI-I), 143-150. 

17. Kaj iya ,  J .T . ,  and yon Herzen,  B.~ "Ray tracing 
volume densities," Computer Graphics, 18, 3, 1984, 
(Proc. SIGGRAPH), 165-174. 

18. Landau,  L.D., and Lifshitz, E.M.,  Theory of Elas- 

ticity, Pergamon Press, London, UK, 1959. 
19. Lapidus,  L., and Pinder ,  G.F. ,  Numerical Solu- 

tion of Partial Differential Equations in Science and 
Engineering, Wiley, New York, NY, 1982. 

20. Peachey,  D.R.,  "Modeling waves and surf," Com- 
puter Graphics, 20, 4, 1986, (Proc. SIGGRAPH), 65- 
74. 

21. Sederberg ,  T .W. ,  and Parry,  S.R., "Free-form 
deformation of solid geometric models," Computer Graph. 
ics, 20, 4, 1986, (Proc. SIGGRAPH), 151-160. 

22. Stoker,  J . J . ,  Nonlinear Elasticity, New York, NY, 
1968. 

23. Terzopoulos,  D., "Multilevel computational processes 
for visual surface reconstruction," Computer Vision, 

Graphics, and Image Processing, 24, 1983, 52-96. 
24. Terzopoulos,  D., "Regularization of inverse visual 

problems involving discontinuities," IEEE Trans. Pat- 
tern Analysis and Machine Intelligence, PAMI-g ,  1986, 
413-424. 

25. Terzopoulos,  D.~ "On matching deformable mod- 
els to images: Direct and iterative solutions," Topical 
Meeting on Machine Vision, Technical Digest Series, 

Vol. 1~., Optical Society of America, Washington, DC, 
1987, 160-167. 

26. Well, J . ,  "The synthesis of cloth objects," Computer 
Graphics, 20, 4, 1986, (Proc. SIGGRAPH), 49-54. 

27. Wilhelms,  J ,  and Barsky,  B.A.,  "Using dynamic 
analysis to animate articulated bodies such as humans 
and robots," Proe. Graphics Interface '85, Montreal, 
Canada, 1985, 97-104. 

28. Yaeger,  L., Upson,  C., and Myers ,  It., "Combin- 
ing physical and visual simulation - -  creation of the 
planet Jupiter for the film "2010"," Computer Graph- 
ics, 20, 4, 1986, (Proe. SIGGRAPH), 85-94. 

29. Zienkiewicz, O.C.,  The Finite Element Method; Third 
edition, McGraw-Hill, London, 1977. 

214 


