
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

ElasticFog: Elastic Resource
Provisioning in Container-based Fog
Computing

NGUYEN DINH NGUYEN1, LINH-AN PHAN1, DAE-HEON PARK2, SEHAN KIM2, AND

TAEHONG KIM1

1
School of Information and Communication Engineering, Chungbuk National University, Cheongju, Republic of Korea

2
Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea

Corresponding author: Taehong Kim (e-mail: taehongkim@cbnu.ac.kr).

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)

(No. NRF-2019R1F1A1059408) and Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded

by the Korea government (MSIT) (No.2018-0-00387, Development of ICT based Intelligent Smart Welfare Housing System for the

Prevention and Control of Livestock Disease).

ABSTRACT The recent increase in the number of Internet of Things (IoT) devices has led to the generation

of a large amount of data. These data are generally processed by cloud servers because of their high

scalability and ability to provide resources on demand. However, processing large amounts of data in the

cloud is an impractical solution for the strict requirements of IoT services, such as low latency and high

bandwidth. Fog computing, which brings computational resources closer to the IoT devices, has emerged

as a suitable solution to mitigate these problems. Resource provisioning and application orchestration are

two of the key challenges when running IoT applications in a Fog computing environment. In this paper, we

present ElasticFog, which runs on top of the Kubernetes platform and enables real-time elastic resource

provisioning for containerized applications in Fog computing. Specifically, ElasticFog collects network

traffic information in real time and allocates computational resources proportionally to the distribution of

network traffic. The experimental results prove that ElasticFog achieves a significant improvement in terms

of throughput and network latency compared with the default mechanism in Kubernetes.

INDEX TERMS container, Fog computing, Internet of Things (IoT), Kubernetes, resource provisioning.

I. INTRODUCTION

The concept of the Internet of things (IoT), which connects

smart devices to each other through the Internet, has become

popular over the past few years. According to [1], the number

of smart devices will increase from 20 billion in 2019 to

approximately 30 billion in 2023. Because of several pow-

erful features of Cloud computing, such as scalability, on-

demand resource allocation, and a pay-as-you-go model [2],

the massive data generated from millions of distributed IoT

devices are transmitted to centralized servers through the

Internet for processing. This design consumes considerable

time, bandwidth, and money [3]. With the rapidly growing

number of connected devices, this traffic pattern creates

pressure on the network and leads to a poor experience for

end users, especially for time-sensitive IoT applications, such

as augmented reality applications, intelligent transportation

systems, and smart cities [4], [5]. Therefore, Cloud com-

puting faces several challenges in meeting the requirements

of IoT devices, including stringent latency requirements and

network bandwidth constraints [6]. These challenges hinder

the prospective benefits of IoT for everyday life.

Fog computing [7], [8] has emerged as a suitable solution

to overcome the limitations of the traditional cloud by ex-

ploiting computation, network, and storage resources that are

close to the end devices. Having the computational resources

close to the data generated by IoT devices has several ben-

efits, such as accelerated analysis, lower latency, and better

user experience. Although there have been several efforts

and discussions toward the development of Fog computing,

it is still in its infancy. Existing solutions focus on the basic

idea and theoretical analysis, and most of them lack practical

solutions for efficient management of IoT applications in Fog

computing.

Recently, the use of container [9], which is a lightweight

method for creating virtual environments, has been exploited

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

in both Cloud computing and Fog computing infrastructure.

This method is more suitable than the use of virtual machines

for Fog computing because it can be easily deployed and

has high performance [10]. Containers do not comprise an

entire operating system; only the relevant application and its

dependencies are bundled into a single package. This feature

enables containers to be more efficient and lightweight, and

allows for faster deployment [10]. Moreover, container-based

microservices for IoT applications are considered as one

of the best solutions for minimizing the resource limitation

problem in Fog computing [11]. Owing to these advantages,

containers have been widely adopted for IoT applications in

the Fog computing environment.

However, having numerous IoT applications in Fog com-

puting requires an orchestration tool to deploy and manage

containers and their resources effectively. Kubernetes (K8S)

[12] is a well-known open-source orchestration platform for

container-based applications. It provides various powerful

and flexible functions for container orchestration, such as

deployment, self-healing, resource management, load bal-

ancing, and auto-scaling.

In Fog computing, because of the heterogeneous and

limited resource capabilities of the Fog nodes, several Fog

nodes communicate and share client requests to handle them

effectively [13]. This cluster of Fog nodes provides higher

resource capabilities to deploy and execute applications,

more convenience in management, and more cost savings.

In this study, we focus on solving two problems in the

Fog computing environment. First, Fog nodes are geograph-

ically distributed in several locations, which causes a de-

lay in communication among the Fog nodes in the cluster.

Hence, requests should be handled at the local location as

much as possible to minimize network delay. Second, the

network traffic accessing the application at each location

often fluctuates substantially according to demands on the

application. This implies that the resource provisioning for

the application on each Fog node requires frequent updates

to adapt to the changes in demands on the application. In

other words, if a large amount of network traffic accesses

the application from a certain location, the corresponding

resources at that location should be increased to handle the

requests quickly and effectively. Despite its several powerful

policies and features, Kubernetes only considers the software

and hardware status on each node for managing application

resources, which is insufficient to ensure the quality of ser-

vice in a Fog computing environment. Therefore, we propose

an elastic resource provisioning mechanism that exploits the

scheduling in Kubernetes and information regarding network

traffic in real time. The proposed mechanism aims to allocate

resources to each Fog node dynamically in proportion to the

amount of network traffic accessing the application at each

location. Thus, the mechanism is expected to minimize net-

work latency as well as avoid resource wastage in locations

with low workload demand. To enable this feature, Elastic-

Fog is deployed on top of the Kubernetes platform to collect

real-time information regarding network traffic at each Fog

node and attempt to allocate resources effectively. Through

experimental evaluations, we verified the effectiveness of

resource provisioning based on real-time network traffic in

a Fog computing environment.

The remainder of this paper is structured as follows.

Section II presents the related work, while Section III de-

scribes the fundamentals of Kubernetes. In Section IV, we

describe the proposed elastic resource provisioning method

in container-based Fog computing. The performance evalua-

tions are then presented in Section V. Finally, the conclusions

of the study are presented in Section VI.

II. RELATED WORK

Recently, there have been several studies regarding resource

provisioning and orchestration for IoT applications in the

Fog computing environment. For example, Skarlat et al.

[14] presented a model for resource provisioning in Fog

computing. The authors formalized an optimization problem

that analyzes resource usage to create a resource provisioning

plan and schedules task requests for the services running in

Fog nodes. The aim of the study is to minimize network

delay using the computational resources in the Fog nodes as

much as possible. In [15], task scheduling, task image place-

ment, and other issues are jointly considered to minimize

the task completion time in the Fog computing environment.

The authors focused on investigating the placement of task

images on the storage servers and balancing the workload

between end devices and computation servers. Aazam et

al. [16] presented a resource management method for the

services in Fog computing. It estimates the required resources

and predicts the resource allocation for services based on the

types of services and the user’s historical behavior. The goal

is to minimize resource wastage in Fog nodes and increase

profits for service providers. Paper [17] proposed a dynamic

resource allocation strategy for Fog computing based on

priced timed Petri nets. The resources in Fog nodes can be

classified into several groups. Users can select the satisfying

resources autonomously from the provided resources accord-

ing to the price and time cost of the task. Paper [18] presented

methods for efficient resource management and workload

allocation in Fog-Cloud computing. These methods are based

on learning classifier systems and consider four dimensions:

workload, delay, power consumption, and battery status. The

target is to optimize the allocation of workload between Fog

and Cloud to balance the power consumption and delays at

the edge.

An orchestration framework for containerized applications

in Fog computing infrastructures is presented in [19]. The

framework is developed based on the OpenIoTFog toolkit

and Docker Swarm Services. The proposed method can re-

solve orchestration problems in the Fog environment, such

as cluster joining and leaving, application scheduling, and

device mapping from Fog nodes to containerized applica-

tions. A platform for workload orchestration and resource

negotiation in the Fog computing environment is presented

in [20]. The platform is based on open-source technolo-

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

gies (Openstack, Kubernetes, and Foggy), and it considers

multiple parameters such as traditional requirements (e.g.,

RAM and CPU) and non-traditional ones (e.g., bandwidth,

location), to select a location for application deployment. In

[21], a QoS-aware network resource management framework

for containers in Fog computing is proposed. The framework

is lightweight and can be used to control the bandwidth of

containers on Fog nodes. It provides three scheduling poli-

cies for containers: proportional share scheduling, minimum

bandwidth allocation, and maximum bandwidth limitation.

Paper [22] presented a model that improves the scheduler

of containerized services - Diego. It abstracts the dilemma

between load balance and application performance by for-

mulating it as an optimization problem and using statistical

methods to solve it efficiently. To minimize the network

contention in Fog computing, dependent applications, which

need to communicate with each other, are deployed near each

other on a prioritized basis (e.g., in the same zone because

the latency between nodes is small). Paper [23] proposed

a container-based task scheduling algorithm to ensure that

tasks are completed in time. The scheduling can decide to

handle the task in either a Fog node or the Cloud, based on

the estimated task execution time. If the tasks are executed

in a Fog node, the resource manager reallocates resources to

them to complete the tasks within a delay constraint.

Fogernetes [24], which is implemented based on Kuber-

netes, is a platform for the deployment and management

of applications in Fog computing. This platform uses a

labeling system to describe the application requirements

and the capabilities of Fog nodes. It enables the manage-

ment and deployment of applications by considering the

specific application requirements and different capabilities

of heterogeneous Fog nodes. A network-aware scheduling

approach is presented in [25], [26] for deploying container-

based applications in Fog computing. The authors extended

the Kubernetes scheduler to consider network infrastructure

status for taking resource provisioning decisions. However,

this approach only considers these parameters at the time of

initialization when the application is deployed; there is no

dynamic adjustment during runtime. Paper [27] presented a

scheduling approach to place containerized service chains

in Fog-Cloud environments efficiently. The scheduling is

implemented as an extension to the default scheduler in

Kubernetes. When the application is deployed, the best-fit

node for placing the pod is selected based on two policies:

latency-aware and location-aware. For latency-aware, the

pods that belong to the same service function chain can be

deployed near each other based on Dijkstra’s shortest path

algorithm. If location-aware is selected, the selection of node

is based on minimizing the latency with the target location of

the pod. Paper [28] proposed an orchestration tool (ge-kube)

for container-based applications in the geo-distribution of the

Fog computing environment. Ge-kube relies on Kubernetes

and provides two logical components: elasticity manager

and placement manager. For elasticity manager, a model-

based reinforcement learning approach dynamically scales

the number of replicas of the application in real time. The

placement manager exploits an optimization problem for-

mulation and a network-aware heuristic, which consider the

network delays among computing resources. This policy can

allocate a pod to the node whose network delay with other

pods is below a critical value.

Although the aforementioned studies resolve some chal-

lenges in resource provisioning and application orchestration

in Fog computing, they have not yet provided a complete

solution for the real-time management of application re-

sources based on network traffic information. In this paper,

the powerful Kubernetes platform is exploited to deploy and

manage the containerized applications in Fog computing.

By leveraging powerful and flexible features of Kubernetes

and real-time network traffic from clients accessing the Fog

nodes, our proposed approach can effectively allocate and

reallocate IoT application resources to adapt to the changes

in demands on the application in the Fog computing environ-

ment.

III. FUNDAMENTALS OF KUBERNETES

To better understand our proposal, this section details basic

Kubernetes architecture and its scheduling mechanism.

A. KUBERNETES ARCHITECTURE

Kubernetes is a well-known open-source orchestration plat-

form for container-based applications. A pod is the most

fundamental unit in Kubernetes, and each pod contains one

or more containers. The containers in a pod are tightly

coupled, share storage, and use a unique IP. The Kubernetes

architecture is shown in Fig. 1. There are two kinds of

nodes in Kubernetes: master and worker nodes. The master

node is responsible for managing and controlling the cluster.

There is a single master node by default, but several master

nodes can be implemented for high availability. The master

node contains four main components: etcd, kube-apiserver,

kube-controller, and kube-scheduler [12]. Here, etcd is a

distributed key-value store that Kubernetes uses for the per-

sistent storage of cluster data, including configuration data

and the state of the cluster. The kube-apiserver handles all re-

quests that interact with the control plane of the cluster. This

component authenticates the requests and updates the cor-

responding information in etcd. Finally, the kube-controller

runs control loops that continuously watch the current state

of the cluster to ensure that the current state matches the

desired state. For example, the kube-controller ensures that

the number of running replicas of an application always

matches the number of replicas defined in the configuration.

The kube-scheduler watches unscheduled pods and selects

the best fit node for them to run on. To find the best fit node,

it considers multiple factors, such as resource requirements,

available resources, affinity, and anti-affinity rules.

In the Kubernetes cluster, worker nodes are used to run

containerized applications, which are deployed in the form

of pods. A worker node consists of three main components,

namely container runtime (e.g., Docker [29]), kubelet, and

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

Worker Node 1 

Master Node

kubectl (user commands)

etcd

kube-

scheduler
kube-apiserver

kube-proxy kubelet kube-proxy kubelet

30040

Container

Pod

Service

kube-

controller

watch

Worker Node 2

Clients

ClusterIP

Label: App A

ClusterIP

Label: App A

IPNode1 IPNode2

docker

App A App A App A App A App A

docker

30040

watch

FIGURE 1. Kubernetes architecture.

kube-proxy. Container runtime is responsible for pulling the

container image from a public or private registry and running

the container based on the image. Kubelet communicates

with the master node to receive commands and report pod

and node statuses. This component executes the pods on the

node and ensures the health of the pods (e.g., by restarting

failed pods). Finally, kube-proxy maintains the network rules

and handles network communications inside and outside of

the cluster.

In Kubernetes, it is difficult to access a pod using the pod’s

IP address because the IP address always changes after a

restart. To expose an application to external cluster access,

Kubernetes provides a Service that is an abstract layer for a

group of pods in the cluster. The Service is bound to a Clus-

terIP, which is a virtual IP address that never changes. A list

of backend pods belonging to the same Service is determined

using a LabelSelector. The traffic entering ClusterIP is routed

to a backend pod on this list. The selection of the pod to

load-balance the traffic among pods depends on the proxy

mode configured in the kube-proxy. By default, the user-

space proxy chooses a pod using a round-robin algorithm,

and the iptable proxy selects a pod at random. The IP

Virtual Server (IPVS) provides more options (e.g., destination

hashing, source hashing, and round-robin) to select the pod.

However, ClusterIP makes the Service reachable only from

inside the cluster. To make the Service reachable from outside

the cluster, two types of Service are typically used: NodePort

and LoadBalancer. With regard to NodePort Service, a static

port is opened on each node. Clients can access the Service

from outside the cluster using the IP address of the node

and the static port. For example, in Fig. 1, a NodePort is

created (the static port is 30040) for a set of pods that has

the label App A. Clients can access the Service using the

address IPNode1:30040. The traffic is then redirected to the

ClusterIP of the Service and routed to a backend pod that

is selected by the kube-proxy. The LoadBalancer Service is

supported if a cloud provider for the Kubernetes cluster is

used. The cloud provider provides a public IP address for the

Service to make it reachable from outside the cluster. The

selection of the backend pod for load balancing depends on

the implementation of the cloud provider.

B. SCHEDULING IN KUBERNETES

In Kubernetes, scheduling refers to selecting the most ap-

propriate node for the pod to run on. Kube-scheduler is the

default scheduler in Kubernetes, and it watches unscheduled

pods and selects an optimal node for them to run on. The

scheduling process in Kubernetes is illustrated in Fig. 2. The

unscheduled pods are added to a waiting queue. The kube-

scheduler picks a pod in the queue and selects the best node

for the pod from the list of running nodes based on filtering

and scoring steps [12]. The filtering step finds a set of nodes,

which are called feasible nodes. These nodes meet certain

scheduling requirements of the pod based on a list of policies.

In the scoring step, the feasible nodes are ranked to find the

most suitable node for the pod according to different priority

functions.

The following are some policies that are supported in the

filtering step in Kubernetes [12]:

• PodFitsHostPorts: checks if any port requested by the

pod is free in the node.

• PodFitsResources: checks if the free resources (e.g.,

CPU and memory) of the node meet the requirements

of the pod. For example, if the pod requests 512 MiB

of RAM, the nodes that have less than 512 MiB of free

RAM are removed from the list.

• PodFitsHost: checks if a pod requires to be deployed in

a specific node using the node name.

• CheckNodeCondition: checks whether a node is healthy.

For example, whether the network is available or the

kubelet is ready to deploy the pod.

Other policies in the filtering step include PodMatchN-

odeSelector, NoDiskConflict, and so on. After filtering step,

there is often more than one node remaining. The scoring

step is then performed by a set of priority functions to find

the best fit node from the feasible nodes. The Kubernetes

scheduler calculates a priority score for every node in the list

of remaining nodes. The priority score is given by the priority

functions. Each priority function has a different weight, and

the final priority score of each node is the sum of all weighted

score given by the priority functions. After calculating the

priority score for all feasible nodes, the node with the highest

score is selected as the best fit node. Kubernetes implements

several priority functions in the scoring step, including [12]:

• SelectorSpreadPriority: spreads the pods belonging to

the same service across nodes in the cluster.

• BalancedResourceAllocation: prioritizes the nodes hav-

ing a balanced resource allocation (CPU and memory

utilization) after the pod is deployed.

• NodeAffinityPriority: prioritizes nodes based on node

affinity scheduling preferences. For example, the pod

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

PodFitsHostPorts

PodFitsResources

PodFitsHost

CheckNodeCondition

...

SelectorSpreadPriority

BalancedResourceAllocation

NodeAffinityPriority

ImageLocalityPriority

...

pick a pod 

Filtering Scoring

feasible 
nodes best 

node

running nodes

P

FIGURE 2. Scheduling in Kubernetes.

can be configured for deployment in a specific set of

nodes (e.g., in the same location).

• ImageLocalityPriority: prioritizes nodes that already

contain the requested container images for that pod in

local.

Other priority functions provided by Kubernetes include

LeastRequestedPriority, ServiceSpreadingPriority, and so

on. The scheduling in Kubernetes is a powerful feature based

on two steps that are compliant with a set of different policies.

The scheduling decision is based on not only the “hard” re-

quirements (e.g., CPU and RAM) in the pod’s configuration

but also diverse “soft” requirements (e.g., spreading the pods

and balanced resource allocation) to find the best fit node for

the pod to run on.

IV. ELASTICFOG

In this section, we discuss the Fog computing architecture

based on Kubernetes. Then, we describe the proposed Elas-

ticFog, which dynamically allocates resources for container-

ized applications in a Fog computing environment in real

time.

A. KUBERNETES-BASED FOG COMPUTING

ARCHITECTURE

The high-level Fog computing architecture is depicted in Fig.

3. The bottom tier includes several IoT devices that send

requests to the upper tiers mainly through wireless gateways

that are linked directly with the Fog nodes. The middle tier

is the Fog computing layer including Fog nodes that can

compute and analyze requests from the IoT devices. The top

tier is the Cloud computing layer that includes several servers

in a data center [30].

While Fog computing provides several potential advan-

tages, it is still in the early stages of development. Thus,

several challenges, such as resource provisioning and appli-

cation orchestration for millions of IoT services, still require

attention. In our architecture, the Kubernetes platform has

been leveraged for the application orchestration. The IoT

applications are containerized and deployed in the form of

pods in the Fog nodes. To achieve high availability and per-

formance, an IoT application can have multiple pod replicas,

and Kubernetes can load-balance the traffic among these

pods. Because the resource capabilities of the Fog nodes are

Cloud

Fog

Locat ion A

Locat ion B

Locat ion C

P P

P

P

P

P

P P

P

FIGURE 3. Architecture of Kubernetes-based Fog computing.

heterogeneous, limited, and cannot be dynamically scaled,

the Fog node may face a lack of required resources to deploy

and execute the services. To handle this problem, several Fog

nodes in nearby locations (e.g., in the same city, campus, or

factory) can communicate and work together as a cluster. In

other words, the deployment and execution of an application

can be shared among the Fog nodes in a cluster. However,

the co-operation of Fog nodes in a Kubernetes cluster also

causes latency for redirecting requests to the Fog nodes in

other locations. Therefore, it is important to optimize the

performance of the cluster by allocating proper application

resources at each location to minimize the amount of network

traffic that is redirected and handled by Fog nodes in other

locations.

Although the Kubernetes scheduler supports several pow-

erful policies, these policies are insufficient for IoT services

because of the peculiarities of the Fog computing environ-

ment. There are two critical limitations of Kubernetes in the

Fog computing environment:

• The pods of an application are distributed among Fog

nodes. However, the scheduling mechanism in Kuber-

netes does not consider the network traffic status to

schedule the pods of the application at each Fog node.

For example, in Fig. 3, although a large proportion of

the network traffic is accessing location A, the pods

are still evenly distributed across all locations. Thus,

location A may lack the resources to handle the requests

immediately and this may cause a significant decrease

in the quality of service for clients on that location.

• In the Fog computing environment, the network traffic

accessing the application at each location fluctuates

substantially according to the density of IoT devices,

and the popularity of applications at different times.

Therefore, despite the frequent changes in resource de-

mands of the application at each location, Kubernetes

lacks the ability to monitor these changes according to

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: IoT-app-1

spec:

replicas: 9

template:

metadata:

labels:

app: IoT-app-1

spec:

affinity:

nodeAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- preference:

matchExpressions:

- key: location

operator: In

values:

- locationA

weight: 80

- preference:

matchExpressions:

- key: location

operator: In

values:

- locationB

weight: 20

containers:

...

FIGURE 4. Configuration for the preferred rule in nodeAffinity.

the real-time network traffic status.

Considering these two problems, we develop a framework

to provide application resources effectively in a Fog com-

puting environment. First, the network traffic status at each

location is considered to determine the appropriate resource

allocation at each location. For example, in Fig. 3, the number

of pod replicas at location A can be increased to handle the

large proportion of incoming network traffic. Second, our

framework can collect network traffic information frequently

in real time and allocate resources dynamically based on this

information, to adapt to the changes in network traffic status

over time.

B. ELASTIC RESOURCE PROVISIONING IN

CONTAINER-BASED FOG COMPUTING

In this section, we describe the proposed elastic resource

provisioning method for applications in container-based Fog

computing (ElasticFog), using Kubernetes’ scheduling fea-

tures and network traffic information in real time. The goal is

to distribute a proper number of pods of the IoT application

at each location automatically, based on the distribution of

incoming network traffic at each the location in real time.

kube-scheduler

ElasticFog

kube-proxy kube-proxy

measure the network 

traffic information

collect necessary info and 

update the nodeAffinity rule 

reallocate the pod 

distribution

Master Node

Worker Node Worker Node

FIGURE 5. Main workflow in the ElasticFog-based framework.

To exploit the information about the incoming network

traffic of the application, we define and create a new cor-

responding Endpoint object to store this information. We

use the user-space proxy to measure the average of network

traffic in bytes per second (Bps) accessing the application at

each worker node (Fog node) at predetermined intervals. This

value is then stored in the Endpoint object of the application.

Finally, the master node can retrieve the network traffic status

by reading this Endpoint object.

In Kubernetes, the scheduler provides a priority rule,

named nodeAffinity (the NodeAffinityPriority priority func-

tion), which can constrain the place of a pod on specific

nodes. There are two kinds of nodeAffinity rules: required

and preferred. The required rule means that the selected node

must be met for the pod’s requirements, while the preferred

rule means that Kubernetes scheduling attempts to enforce

the rule. Thus, the nodes that satisfy the preferred rule are

favored for placing the pod. For the preferred rule, a weight

field is specified for each node, from 1 to 100. The higher the

weight value, the more preferred the node is. In the Kuber-

netes cluster, each node can have a label in a key-value form.

As shown in Fig. 4, the preferred nodes in the configuration

of the nodeAffinity rule are determined based on this key-

value pair. ElasticFog exploits the preferred rule to allocate

pods of the application across locations. By using the pre-

ferred rule, we can ensure high reliability and availability of

the application by combining several other beneficial policies

provided by the Kubernetes scheduler (e.g., checking the

health of nodes, spreading the pods belonging to the same

service and balanced resource allocation). To determine the

node and its location in ElasticFog, the label of the Fog

node is set based on the location of the node. Specifically,

the key is location, and the value is the location’s name.

For example, the label of the node belonging to location A

is set as location: locationA. The value of the weight field

for each location is calculated based on the proportion of

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

Algorithm 1 Algorithm in ElasticFog

/* applicationList: List of applications running in the clus-

ter.*/

/* nodeList: List of nodes in the cluster. */

/* locationInfo: Information about the list of nodes at each

location. */

/* appTrafficInfo: Information about network traffic of the

applications on the node. */

/* weightInfo: The proportion of network traffic at the loca-

tion of the application. */

1: function CALCULATEWEIGHT(application)

2: totalTraf = 0

3: // calculate the total of traffic on the cluster

4: for node in range nodeList do

5: totalTraf += appTrafficInfo(node)

6: end for

7: for location, nodes in range locationInfo do

8: locationTraf = 0

9: // calculate the total of traffic at the location

10: for node in range nodes do

11: locationTraf += appTrafficInfo(node)

12: end for

13: // calculate proportion of traffic of the location

14: proportion = (locationTraf / totalTraf)*100

15: weightInfo(location) = math.Round(proportion)

16: end for

17: return weightInfo

18: end function

19: function MAIN

20: // traverse all the applications running in the cluster

21: for application in range applicationList do

22: // calculate the weight info for each location

23: weightInfo = calculateWeight(application)

24: // update the weight info for the locations

25: updateNodeAffinity(weightInfo)

26: end for

27: end function

incoming network traffic of the application at that location.

To accommodate 80% of the incoming network traffic of

application “IoT-app-1” at location A and 20% of incoming

network traffic at location B, the weight value is set to 80 for

location A and 20 for location B.

Fig. 5 describes the main workflow in the ElasticFog-based

framework. Kube-proxy measures the information about the

incoming network traffic of the application on each Fog

node. ElasticFog can be implemented as a control compo-

nent in Kubernetes, and it periodically collects up-to-date

information about the applications, Fog nodes, and network

traffic status. Using this information, ElasticFog calculates

the proportion of incoming network traffic at each location

and updates the nodeAffinity rules. Finally, the Kubernetes

scheduler reallocates the pods of the application according to

the nodeAffinity rule.

Details regarding the algorithm used in ElasticFog are

shown in Algorithm 1. Let nodeList be the list of Fog nodes

in the cluster, while applicationList is the list of applications

running in the cluster. Let locationInfo denote the list of

nodes at each location (e.g., locationA: [node1]; locationB:

[node2]), and let appTrafficInfo store information about the

incoming network traffic of the application on each Fog

node in Bps (e.g., node1: 800; node2: 200). Here, weight-

Info denotes weight preference value for each location of

the application in the nodeAffinity rule (e.g., locationA: 80;

locationB: 20). nodeList and applicationList can be retrieved

using the Kubernetes API. locationInfo can be updated based

on the labels of the Fog nodes, while appTrafficInfo can

be collected by reading the corresponding Endpoint object

created for the application. The algorithm traverses all the

applications running in the cluster. Based on nodeList, loca-

tionInfo, and appTrafficInfo, ElasticFog calculates the total

incoming network traffic of the application at each location

and in the cluster. Then, the proportion of incoming network

traffic at each location is calculated, and the weightInfo is

updated. The weight value of each location in the nodeAffinity

rule is updated according to the proportional values in the

weightInfo.

Once the nodeAffinity rule of the application is updated,

the pods of the application are immediately rescheduled.

To find the best-fit node to place the pod, the scheduler

in Kubernetes carefully considers hard requirements, such

as minimum requirement for CPU/RAM and health of the

node, and soft requirements, such as balanced resource allo-

cation, spreading the pods among nodes, and the node affinity

preference that is updated by ElasticFog. Using the weight

preference value in the nodeAffinity rule, the nodes belonging

to the locations with a high proportion of incoming network

traffic are prioritized when placing the pods.

It is interesting to note that ElasticFog also can exploit

other schedulers to improve resource provisioning by con-

sidering multiple powerful metrics in the decision-making

process. For example, paper [25] proposed a network-aware

scheduler (NAS) which is an extension of the default sched-

uler in Kubernetes. After completing the filtering step and

scoring step of the default scheduler in Kubernetes, NAS is

used to consider the minimum bandwidth requirement and

communication latency and find the best-fit node for the pod.

NAS checks the minimum bandwidth requirement of each

pod. If the node in the target location does not satisfy the

minimum bandwidth requirement, NAS will find the location

closest to the target location that satisfies the minimum band-

width requirement to deploy the pod. For example, suppose

that an application with nine replica pods is re-deployed in

the cluster shown in Fig. 3, where each replica pod requires a

minimum bandwidth. If location A has a large proportion of

the incoming network traffic, 7/1/1 is the intended number of

pods in locations A/B/C after the filtering and scoring step of

the default Kubernetes scheduler. However, if the remaining

bandwidth at location A is only enough to deploy 6 pods, the

remaining pod will be deployed at location B (assuming that

location B is closest to location A and its remaining band-

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

Cloud

Fog

Locat ion A

Locat ion E

Location C

P P

P

P

P

P

P P

P

Locat ion B

P P

P

Location D

P P

P

FIGURE 6. Medium-scale experiment of the Fog computing architecture.

width satisfies the minimum requirement). Consequently, the

pod distribution in locations A/B/C become 6/2/1. Therefore,

if NAS is implemented in the ElasticFog framework, multiple

metrics related to the real-time network status (bandwidth,

communication latency, and network traffic) can be fully

considered to allocate appropriate resources for the applica-

tion. In conclusion, ElasticFog can take into account diverse

requirements and metrics about computation and network

resources in real time to improve resource provisioning by

exploiting different scheduling policies in Kubernetes.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the proposed ElasticFog frame-

work in diverse situations. A cluster is set up including a set

of several nodes with Kubernetes version 1.14.2 and Docker

version 18.09.6. The master node runs with 4 CPU cores

and 4 GB of RAM, and worker nodes, which are Fog nodes,

run with 4 CPU cores and 3 GB of RAM. The evaluation

is performed in an IoT infrastructure scenario in which ge-

ographically distributed Fog nodes provide services for IoT

devices. The round-trip delay time between two locations is

10 ms. We use the NodePort Service to expose the application

so that it is reachable from outside the cluster. If clients send

requests to the application through wireless gateways linked

with a Fog node at its location, the requests are transferred to

the corresponding NodePort Service of the application on the

Fog node. Apache HTTP server benchmarking tool (ab) [31]

is used to create and send requests to the application.

We set up two experiments: a small-scale experiment (3

locations, 3 Fog nodes) and a medium-scale experiment (5

locations, 5 Fog nodes), as depicted in Fig. 3 and 6, respec-

tively. Each location has one Fog node. The number of pod

replicas of the application in the small-scale experiment is 9,

while that in the medium-scale experiment is 15. We verified

the operation and correctness of ElasticFog in the small-scale

experiment. The efficiency of a proper pod distribution is

evaluated in both experiments.

TABLE 1. Distribution of pods according to network traffic at each location.

Parameters Network traffic (kBps) Number of pods

Test case

Location
A B C A B C

1 12 0 0 7 1 1

2 8 4 0 6 2 1

3 7 5 0 5 3 1

4 6 6 0 4 4 1

5 4 4 4 3 3 3

A. DYNAMIC RESOURCE PROVISIONING USING

ELASTICFOG

Table 1 illustrates the pod distribution according to the in-

coming network traffic in the small-scale experiment when

using ElasticFog. In test case 1, when the incoming network

traffic of the application on locations A, B, and C is 12, 0,

and 0 kBps, respectively, the corresponding pod distribution

at the three locations is 7, 1, and 1. Meanwhile, if there is 4

kBps of network traffic coming through locations A, B, and

C, as in test case 5, the pods are evenly distributed to each

location. By combining the real-time network information

and the many beneficial policies for the application provided

by the Kubernetes scheduler, the decision for pod distribution

offers several advantages for the application as well as for

the cluster. For instance, although there is no network traffic

coming through locations B and C in test case 1, one pod is

allocated to each location, which ensures the high availability

of the application.

Fig. 7 depicts a dynamic adjustment of pod distribution in

real time using ElasticFog. The amount of network traffic at

each location fluctuates substantially during the experiment.

The pod distribution is adjusted according to the proportion

of incoming requests at each location. For example, when the

proportion of incoming network traffic at the three locations

is equal (at 0 s), the number of pods distributed to each of

the three locations is the same: 3. When the proportion of

incoming network traffic at location A rises to approximately

70% and the proportion of the other locations is only 15%

each (at 450 s), the pod distribution becomes 6, 2, and 1 at

locations A, B, and C, respectively. Similarly, when 100%

of the incoming network traffic is at location A (at 900

s), the pod distribution becomes 7, 1, and 1 to A, B, and

C, respectively. This proves that ElasticFog is aware of the

changes to the network traffic status in real time and quickly

adjusts the number of pods among locations.

Because the application can be frequently re-scheduled

when using ElasticFog, it is worth evaluating the total time

for the deployment and re-deployment process, as shown

in Fig. 8. The deployment time is measured from the ap-

plication is deployed until all of its replica pods become

"running" status (ready to serve the client requests). The

re-deployment time is measured from the application is re-

scheduled until all the replica pods return to "running" status.

The re-deployment time is 11.5 s in the case of the small-

scale experiment and 17 s in the case of the medium-scale

experiment. In both experiments, the re-deployment time

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

0 450 900 1350 1800 2250 2700
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Nu
m

be
r o

f p
od

s

pods in location A
pods in location B
pods in location C

0

10

20

30

40

50

60

70

80

90

100

Pr
op

or
tio

n 
of

 in
co

m
in

g 
ne

tw
or

k 
tra

ffi
c

requests in location A
requests in location B
requests in location C

FIGURE 7. Dynamic adjustment of pod distribution in real time.

small-scale medium-scale
0

2

4

6

8

10

12

14

16

tim
e 

(s
)

deployment time
re-deployment time

FIGURE 8. Total time for deployment and re-deployment process.

is higher than the deployment time. This is because the

re-deployment process requires Kubernetes to kill the old

pod and create a new one sequentially. It ensures that the

application always has a certain number of available pods to

handle client requests during the re-deployment process, to

ensure the high availability of the application.

B. EFFECT OF POD DISTRIBUTION IN THE FOG

COMPUTING ENVIRONMENT

To analyze the effect of pod distribution on system perfor-

mance in the Fog computing environment, we evaluate the

throughput and latency between different pod distributions as

shown in Figs. 9 and 10. Scenario 1 evenly distributes pods

to each location, while scenario 2 has pods concentrated on

location A. For example, the pod distributions in the small

and medium-scale experiments are 3, 3, 3 pods and 3, 3, 3,

3, 3 pods, respectively, in scenario 1, while they are 7, 1, 1

and 11, 1, 1, 1, 1 pods in scenario 2. In this evaluation, we

focus on the network traffic accessing one location (location

A). We increase the incoming network traffic at location A

by increasing the number of concurrent requests having the

same size from 1 to 16.

To balance the workload among the Fog nodes in Kuber-

1 2 4 8 16
(a)

0

20

40

60

80

100

120

140

160

La
te

nc
y 

(m
s)

scenario 1
scenario 2

1 2 4 8 16
(b)

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (k

bp
s)

scenario 1
scenario 2

Number of concurrent requests

FIGURE 9. Performance at location A with different pod distributions in the

small-scale experiment: (a) Latency; (b) Throughput.

1 2 4 8 16
(a)

0

20

40

60

80

100

120

140

160

La
te

nc
y 

(m
s)

scenario 1
scenario 2

1 2 4 8 16
(b)

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (k

bp
s)

scenario 1
scenario 2

Number of concurrent requests

FIGURE 10. Performance at location A with different pod distributions in the

medium-scale experiment: (a) Latency; (b) Throughput.

netes, the requests may be redirected to pods belonging to

Fog nodes at other locations. If many requests are redirected

to other locations, it may significantly increase the latency,

due to the network delay between locations. As illustrated in

Fig. 9(a) and 10(a), the median latency in scenario 1 is much

higher than that in scenario 2, and it tends to increase with an

increase in the number of concurrent requests. Consequently,

the throughput in scenario 1 is significantly lower than that

in scenario 2, as shown in Fig. 9(b) and 10(b). In the small-

scale experiment, the throughput obtained with 1 request in

scenario 2 is approximately 140% larger than that obtained

in scenario 1, and the throughput in scenario 2 is twice

higher than that in scenario 1 as the number of concurrent

requests increases. Because location A consists of three pods

in scenario 1 and seven pods in scenario 2, the proportion of

requests handled at location A in scenario 1 is significantly

lower than that in scenario 2. In other words, most requests

in scenario 2 can be handled immediately at location A,

whereas a large proportion of the requests in scenario 1

are considerably delayed by redirection to other locations.

Likewise, the throughput in scenario 2 of the medium-scale

experiment, which has 11 out of 15 pods at location A, is

twice higher compared with scenario 1.

Figs. 11 - 14 compare the latency and cumulative through-

put between ElasticFog and the default mechanism in Ku-

bernetes with network traffic variation among locations. The

network traffic at each location is changed by sending a

different number of concurrent requests that have the same

size to the location. Note that the numbers in the format

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

TABLE 2. Pod distribution according to the ratio of concurrent requests in the

small-scale experiment

Ratio of concurrent requests

(A:B:C)

Number of pods

(A,B,C)

2:2:2 3, 3, 3

4:4:1 4, 4, 1

6:2:1 6, 2, 1

8:1:1 7, 1, 1

TABLE 3. Pod distribution according to the ratio of concurrent requests in the

medium-scale experiment

Ratio of concurrent requests

(A:B:C:D:E)

Number of pods

(A,B,C,D,E)

2:2:2:2:2 3, 3, 3, 3, 3

4:4:1:1:1 6, 6, 1, 1, 1

6:2:1:1:1 10, 2, 1, 1, 1

8:1:1:1:1 11, 1, 1, 1, 1

a:b:c indicate the number of concurrent requests at each of

locations A, B, and C, respectively, in the case of the small-

scale experiment. In the medium-scale experiment, a:b:c:d:e

represents the number of requests accessing locations A,

B, C, D, and E, respectively. We assume that the default

Kubernetes mechanism always maintains an even number of

pods among locations (3 pods on each location) regardless

of changes in the network traffic status, while ElasticFog

dynamically adjusts the number of pods at each location

according to the ratio of concurrent requests. The number of

concurrent requests and the corresponding number of pods

in the ElasticFog case for the small-scale and medium-scale

experiments are shown in Table 2 and 3.

As observed in Figs. 11 and 12, the median latency for

requests at location A in the default Kubernetes mechanism

tends to increase from 18 ms to 61 ms (in the small-scale

experiment) and from 21 ms to 73 ms (in the medium-scale

experiment) as the number of concurrent requests at this

location increases from 2 to 8. In contrast, it varies from 18

ms to approximately 25 ms (in the small-scale experiment)

and from 21 ms to approximately 28 ms (in the medium-

scale experiment) in the case of ElasticFog. This means that

the increase in the number of pods at location A effectively

minimizes the latency for handling the client requests when

there is an increase in the at this location. It is important to

note that when the Fog node at location A has more pods,

the number of pods in other nodes located at locations B

and C will decrease, because the number of replica pods

of the application is fixed. Therefore, the latency of the

requests at locations B and C in ElasticFog can, in some

cases, be slightly higher than that in the default Kubernetes

mechanism.

Figs. 13 and 14 illustrate the cumulative throughput of the

clients on all locations. In the default Kubernetes mechanism,

the cumulative throughput for the 8:1:1 case is decreased

approximately 26% compared to the 2:2:2 case in the small-

scale experiment, and it shows more than 35% degradation

compared between the 2:2:2:2:2 and 8:1:1:1:1 case in the

2:2:2 4:4:1 6:2:1 8:1:1
0

20

40

60

80

La
te

nc
y 

(m
s)

location A

Kubernetes
ElasticFog

2:2:2 4:4:1 6:2:1 8:1:1
Ratio of concurrent requests

0

20

40

60

80
location B

Kubernetes
ElasticFog

2:2:2 4:4:1 6:2:1 8:1:1
0

20

40

60

80
location C

Kubernetes
ElasticFog

FIGURE 11. Latency of requests at three locations in the small-scale

experiment.

2:2:2:2:2 4:4:1:1:1 6:2:1:1:1 8:1:1:1:1
0

20

40

60

80

La
te

nc
y 

(m
s)

location A

Kubernetes
ElasticFog

2:2:2:2:2 4:4:1:1:1 6:2:1:1:1 8:1:1:1:1
0

20

40

60

80
location B

Kubernetes
ElasticFog

2:2:2:2:2 4:4:1:1:1 6:2:1:1:1 8:1:1:1:1
Ratio of concurrent requests

0

20

40

60

80
location C

Kubernetes
ElasticFog

2:2:2:2:2 4:4:1:1:1 6:2:1:1:1 8:1:1:1:1
0

20

40

60

80
location D

Kubernetes
ElasticFog

2:2:2:2:2 4:4:1:1:1 6:2:1:1:1 8:1:1:1:1
0

20

40

60

80
location E

Kubernetes
ElasticFog

FIGURE 12. Latency of requests at five locations in the medium-scale

experiment.

medium-scale experiment. This is because the number of

pods at location A does not change in the default Kubernetes

even if the network traffic coming to that location increases

significantly, as proved by the fact that the throughput at

location A does not increase. Meanwhile, the throughput

at location A in ElasticFog tends to increase because the

number of pods in this location is increased according to the

increase in the incoming network traffic. In some cases, the

number of pods in the other locations of the default Kuber-

netes may be higher than that in ElasticFog. For example, in

the small-scale experiment, the number of pods in locations

B and C in the Kubernetes mechanism is higher than that

in ElasticFog in the case of 8:1:1. However, the throughput

at these locations of the default Kubernetes is just slightly

higher than that in ElasticFog. This is because the amount of

network traffic coming through these locations is not high,

and a small number of pods can still handle the requests

effectively. Consequently, the cumulative throughput at the

three locations of ElasticFog is approximately 59% higher

than the Kubernetes mechanism in the 8:1:1 case. It is

important to note that Kubernetes tends to face a decrease

in cumulative throughput with changes in network traffic,

whereas ElasticFog maintains the cumulative throughput be-

cause of dynamic reallocation of the resources according to

the distribution of network traffic at each location.

The efficiency of ElasticFog can also be seen clearly in

the medium-scale experiment. For example, the cumulative

throughput of five locations of ElasticFog is higher by ap-

proximately 10% in the 4:1:1:1:1 case and by approximately

44% in the 8:1:1:1:1 case when compared with Kubernetes.

Overall, we can conclude that the cumulative throughput in

the Kubernetes mechanism worsens for unbalanced incoming

network traffic because of the lack of dynamic adjustment of

the pod distribution, while ElasticFog maintains a high cu-

mulative throughput regardless of the distribution of network

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

2:2:2 4:4:1 6:2:1 8:1:1 2:2:2 4:4:1 6:2:1 8:1:1
0

100

200

300

400

Th
ro

ug
hp

ut
 (k

bp
s)

383
363

347

282

387 396
414

448

Kubernetes ElasticFog

location A
location B
location C

FIGURE 13. Cumulative throughput of requests at three locations in the

small-scale experiment.

2:2:2:2:2 4:4:1:1:1 6:2:1:1:1 8:1:1:1:1 2:2:2:2:2 4:4:1:1:1 6:2:1:1:1 8:1:1:1:1
0

100

200

300

400

500

Th
ro

ug
hp

ut
 (k

bp
s)

544

420 406

351

548

465
500 505

Kubernetes ElasticFog

location A
location B
location C
location D
location E

FIGURE 14. Cumulative throughput of requests at five locations in the

medium-scale experiment.

traffic. Therefore, it is important to distribute the pods of an

application appropriately among locations to minimize the

latency and maximize the throughput of the client requests in

the cluster.

VI. CONCLUSIONS

Fog computing and container-based applications are emerg-

ing as solutions to deal with the challenges of a tremendous

number of IoT services. The Kubernetes platform, which pro-

vides powerful and flexible features, has been exploited for

the management of containerized applications in Fog com-

puting. In this paper, we proposed a real-time elastic resource

provisioning for applications in container-based Fog com-

puting. ElasticFog is implemented based on the Kubernetes

platform, and it collects the network traffic status to provide

elastic resource provisioning of the application among geo-

graphically distributed Fog nodes in real time. By combining

the network traffic information and the Kubernetes scheduler,

we can consider not only the real-time network traffic status

of the application on each Fog node but also various use-

ful policies supported by the Kubernetes scheduler to take

decisions on resource provisioning for the application. The

experimental results with the small-scale and medium-scale

experiments proved that ElasticFog significantly improves

the system performance in terms of throughput and latency

compared with the default mechanism in Kubernetes. Thus,

it is important to provide a dynamic resource provisioning

based on changes in network traffic status in real time to

minimize latency and maximize the throughput of client

requests in the Fog computing environment.

REFERENCES

[1] Cisco, “Cisco annual internet report (2018–2023) white paper.” [Online].

Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html.

[2] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art

and research challenges,” Journal of internet services and applications,

vol. 1, no. 1, pp. 7–18, 2010.

[3] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet

of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29,

2016.

[4] N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-Molnar, and S. Mah-

moud, “Smartcityware: A service-oriented middleware for cloud and fog

enabled smart city services,” IEEE Access, vol. 5, pp. 17 576–17 588, 2017.

[5] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing: Funda-

mental, network applications, and research challenges,” IEEE Communi-

cations Surveys Tutorials, vol. 20, no. 3, pp. 1826–1857, 2018.

[6] M. Chiang and T. Zhang, “Fog and iot: An overview of research opportu-

nities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” in Proceedings of the first edition of the

MCC workshop on Mobile cloud computing, 2012, pp. 13–16.

[8] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of

things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116, 2016.

[9] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-

mance comparison of virtual machines and linux containers,” in 2015

IEEE international symposium on performance analysis of systems and

software (ISPASS). IEEE, 2015, pp. 171–172.

[10] J. Luo, L. Yin, J. Hu, C. Wang, X. Liu, X. Fan, and H. Luo, “Container-

based fog computing architecture and energy-balancing scheduling algo-

rithm for energy iot,” Future Generation Computer Systems, vol. 97, pp.

50–60, 2019.

[11] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,

Y. Xiang, and R. Ranjan, “Fog computing: Survey of trends, architectures,

requirements, and research directions,” IEEE access, vol. 6, pp. 47 980–

48 009, 2018.

[12] Kubernetes, “Kubernetes, production-grade container orchestration.”

[Online]. Available: https://kubernetes.io/

[13] D. Roca, J. V. Quiroga, M. Valero, and M. Nemirovsky, “Fog function

virtualization: A flexible solution for iot applications,” in 2017 Second

International Conference on Fog and Mobile Edge Computing (FMEC).

IEEE, 2017, pp. 74–80.

[14] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource provision-

ing for iot services in the fog,” in 2016 IEEE 9th international conference

on service-oriented computing and applications (SOCA). IEEE, 2016,

pp. 32–39.

[15] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task

scheduling and image placement in fog computing supported software-

defined embedded system,” IEEE Transactions on Computers, vol. 65,

no. 12, pp. 3702–3712, 2016.

[16] M. Aazam and E.-N. Huh, “Dynamic resource provisioning through fog

micro datacenter,” in 2015 IEEE international conference on pervasive

computing and communication workshops (PerCom workshops). IEEE,

2015, pp. 105–110.

[17] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation strategy

in fog computing based on priced timed petri nets,” IEEE Internet of

Things Journal, vol. 4, no. 5, pp. 1216–1228, 2017.

[18] M. Abbasi, M. Yaghoobikia, M. Rafiee, A. Jolfaei, and M. R. Khosravi,

“Efficient resource management and workload allocation in fog–cloud

computing paradigm in iot using learning classifier systems,” Computer

Communications, vol. 153, pp. 217–228, 2020.

[19] S. Hoque, M. S. de Brito, A. Willner, O. Keil, and T. Magedanz, “Towards

container orchestration in fog computing infrastructures,” in 2017 IEEE

41st Annual Computer Software and Applications Conference (COMP-

SAC), vol. 2. IEEE, 2017, pp. 294–299.

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029583, IEEE Access

N.D. Nguyen et al.: ElasticFog: Elastic Resource Provisioning in Container-based Fog Computing

[20] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, and S. Cretti, “Foggy:

a platform for workload orchestration in a fog computing environment,”

in 2017 IEEE International Conference on Cloud Computing Technology

and Science (CloudCom). IEEE, 2017, pp. 231–234.

[21] C.-H. Hong, K. Lee, M. Kang, and C. Yoo, “qcon: Qos-aware network

resource management for fog computing,” Sensors, vol. 18, no. 10, p.

3444, 2018.

[22] D. Zhao, M. Mohamed, and H. Ludwig, “Locality-aware scheduling for

containers in cloud computing,” IEEE Transactions on Cloud Computing,

2018.

[23] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation

in fog computing based on containers for smart manufacturing,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712–4721,

2018.

[24] C. Wöbker, A. Seitz, H. Mueller, and B. Bruegge, “Fogernetes: De-

ployment and management of fog computing applications,” in NOMS

2018-2018 IEEE/IFIP Network Operations and Management Symposium.

IEEE, 2018, pp. 1–7.

[25] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-

aware resource provisioning in kubernetes for fog computing applica-

tions,” in 2019 IEEE Conference on Network Softwarization (NetSoft).

IEEE, 2019, pp. 351–359.

[26] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Resource provision-

ing in fog computing: From theory to practice,” Sensors, vol. 19, no. 10, p.

2238, 2019.

[27] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards delay-aware

container-based service function chaining in fog computing,” in NOMS

2020-2020 IEEE/IFIP Network Operations and Management Symposium.

IEEE, 2020, pp. 1–9.

[28] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Geo-distributed

efficient deployment of containers with kubernetes,” Computer Commu-

nications, 2020.

[29] Docker, “Docker, empowering app development for developers.” [Online].

Available: https://www.docker.com/

[30] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of

fog computing in the context of internet of things,” IEEE Transactions on

Cloud Computing, vol. 6, no. 1, pp. 46–59, 2015.

[31] ab, “ab - apache http server benchmarking tool.” [Online]. Available:

https://httpd.apache.org/docs/2.4/programs/ab.html

NGUYEN DINH NGUYEN received his B.S. de-

gree in electronics and telecommunications from

Vietnam National University, Hanoi in 2017. Now

he is pursuing his Master degree in the School

of Information and Communication Engineering,

Chungbuk National University. His research in-

terests cover cloud computing, edge computing,

SDN/NFV, and Internet of Things.

LINH-AN PHAN received the B.S. degree in

information technology from the University of

Science and Technology, University of Da Nang,

Vietnam, in 2013, and the M.S. degree in in-

formation and communication engineering from

Chungbuk National University, Korea, in 2019.

He worked as a Software Engineer at Samsung

Vietnam Mobile R&D Center, Vietnam from 2013

to 2017. Since 2019, he has been a PhD Student

with the School of Information and Communi-

cation Engineering, Chungbuk National University, Korea. His research

interests include wireless networks, the Internet of Things, and cloud/edge

computing.

DAE-HEON PARK received B.S, M.S., and Ph.D

degrees in Communication & Information en-

gineering from Sunchon National University in

2006, 2008, and 2015. Since 2011, he has been

a senior research at ETRI, Korea. His research

interests are IoT, AI, Cloud, BigData, and ICT

convergence with agriculture.

SEHAN KIM received the B.S and M.S degrees

in Computer Engineering from Korea Aerospace

University, Korea, in 1998 and 2000. He worked

as a research staff at Samsung Advanced Institute

of Technology in 2000. Since 2001, he has been a

Principal Researcher, Director at ETRI, Korea. His

research interests are Digital Twin, Platform, Data

Science with IoT, AI, Cloud, BigData, and intel-

ligent ICT convergence with Agriculture, food &

Fisheries.

TAEHONG KIM received his B.S. degree in com-

puter science from Ajou University, Korea, in

2005, and his M.S. degree in information and com-

munication engineering from Korea Advanced In-

stitute of Science and Technology (KAIST) in

2007. He received his Ph.D. degree in computer

science from KAIST in 2012. He worked as a

research staff member at Samsung Advanced In-

stitute of Technology (SAIT) and Samsung DMC

R&D Center from 2012 to 2014. He also worked

as a senior researcher at the Electronics and Telecommunications Research

Institute (ETRI), Korea, from 2014 to 2016. Since 2016, he has been an

associate professor with the School of Information and Communication

Engineering, Chungbuk National University, Korea. He has been an asso-

ciate editor of IEEE Access since 2020. His research interests include edge

computing, SDN/NFV, the Internet of Things, and wireless sensor networks.

12 VOLUME 4, 2016


