
AIAA JOURNAL, VOL. 41, NO. 12: TECHNICAL NOTES 2501

Elasticity Solution for Stresses
in a Sandwich Beam with
Functionally Graded Core

Satchi Venkataraman¤

San Diego State University, San Diego, California 92182
and

Bhavani V. Sankar†

University of Florida, Gainesville, Florida 32611-6250

Introduction

W EIGHT savingsoffered by sandwich constructionsfor struc-
tures that require high bending stiffness are signi� cant.

However, sandwich constructions have not been fully exploited in
structuralapplicationsdue to damage toleranceconcerns.The core–
face-sheet delamination is a major concern in sandwich construc-
tion. The stiffness discontinuityat the face sheet and core interface
results in a large increase in shear stresses. Although the core ma-
terial itself may be able to withstand very high shear stresses, the
bond (or adhesive layer) at the interface could be relatively weaker
resulting in interfacial delamination. Results from this study indi-
cate that the interfacial shear stresses can be reduced by varying
(functionallygrading) the core properties through the thickness.

This Note presents the displacement and stress � elds in a func-
tionallygraded core for a one-dimensionalsandwichplate and com-
pares them to that in a uniformcore. The objective is to demonstrate
the signi� cant reduction in shear stresses at the face-sheet–core in-
terface in the sandwich panel achieved by functionally grading the
core properties.

Elasticity Analysis
The sandwich analysis proposed here is based on the elasticity

analysis developed for a continuous functionally graded material
(FGM) beam by Sankar.1 For the sandwich beam analysis, we sub-
divide the beam in the thickness direction into four elements or
layers as shown in Fig. 1. The layers will be referred to as the top
and bottom face sheets and top and bottom halves of the sandwich
core. Euler–Bernoulli beam theory is used to model the face sheets
and plane elasticity equations are used to analyze the core. In this
Note, we will provide only the details necessary to reproduce the
results presented later. Details of the elasticity equations used to
derive the model are presented in Ref. 1.

The governing equations are formulated separately for each ele-
ment, and compatibilityof displacementsand continuityof tractions
are enforced at each interface (node) to obtain the global equations,
which are solved to obtain the displacement and stress � elds in the
individuallayersof the sandwichbeam. This procedureis analogous
to assembling element stiffnessmatrices to obtain a global stiffness
matrix in � nite element analysis.

The face sheets are assumed to be homogeneous and isotropic.
The core is functionally graded but symmetric about the midplane
given by z D 0. The elasticity coef� cients ci j of the top half of the
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Fig. 1 Traction forces and displacements at the interfaces of each ele-
ment in the FGM sandwich beam.

Fig. 2 Through-the-thickness variations of core modulus considered
for the functionally graded sandwich beam (Eh , sandwich core modulus
at the face-sheet interface; E0 , sandwich core modulus at center).

core are assumed to vary according to

ci j D c0
i j e

¸z (1)

In the following sections, we will derive the equations for each
element. The tractions and displacements at the interface between
each element are shown in Fig. 1. Each element has its own local
coordinate system.

Top Face Sheet
The Euler–Bernoulli beam theory is used for the analysis of face

sheets. This is admissible if the face sheet thickness is small (com-
pared to beam length and core thickness) and, hence, the shear de-
formation can be neglected.The reference plane .z D 0/ for the top
face sheet is assumed to be along the face-sheet–core interface as
shown in Fig. 2.

Let t1.x/ and p1.x/ be the shear and normal tractions that act at
the bottom surface of the face sheet. The normal surface loads pa

acting on the top surface can be combined with the normal traction
p1 . Our goal is to derive expressions for the displacements u.x; 0/
and w.x/ along the bottomsurface of the beam in terms of t1 and p1.

The equilibrium equations for the beam are expressed as

dP

dx
D ¡t1.x/ (2)



2502 AIAA JOURNAL, VOL. 41, NO. 12: TECHNICAL NOTES

d2 M

dx2
D dV

dx
D ¡p1 (3)

where P.x/ is the axial force resultant, V .x/ is the shear force, and
M.x/ is the bending moment along the length of the beam. Let the
displacement � eld in the beam be of the form

u.x; z/ D u1.x/ ¡ z
dw1

dx
(4)

whereu1.x/ is the axialdisplacementof pointson the bottomsurface
of the face sheet and w1.x/ is the transverse de� ection, which is
independent of z. The constitutive relations of the laminate are of
the form
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where the stiffness coef� cients A, B, and D are de� ned as follows:

[A; B; D] D
Z h f

0

NQ11.1; z; z2/ dz (6)

It shouldbenotedthat the limitsof integrationin Eq. (6)are0 to h f

becausewe use the bottom surface of the face sheet as the reference
surface. Substituting from Eq. (5) for P and M in the equilibrium
equations(2) and (3), we obtain the governingdifferentialequations
for the top face sheet:

A
d2u1

dx2
¡ B

d3w1

dx3
D ¡t1; B

d3u1

dx3
¡ D

d4w1

dx4
D ¡p1 (7)

We assume that the displacements and tractions are of the form

u1.x/ D U1 cos.» x/; w1.x/ D W1 sin.» x/

t1.x/ D T1 cos.» x/; p1.x/ D P1 sin.» x/ (8)

where U1 , W1, T1 , and P1 are constants to be determined.
The top face sheet is subjected to normal tractions such that

¾zz.x/ D Pan sin.» x/; » D n¼=L ; n D 1; 3; 5; : : :

(9)

where Pan is a known constant. Since n is assumed odd-valued,
the loading is symmetric about the center of the beam. The loading
given by Eq. (9) is of practical signi� cance because any arbitrary
loading can be expressed as a Fourier series involving terms of the
type Pan sin.» x/.
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Substitutingfrom Eqs. (9) and (8) into Eq. (7) we obtaina relation
between the interface displacements U1, and W1 and the tractions
T1 and P1:
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where K .1/ can be considered the stiffness matrix of element 1, that
is, the top face sheet.The superscriptson the right-handside indicate
that the tractions act on element 1.

Bottom Face Sheet
The equations of the bottom face sheet can be derived in a man-

ner similar to that for the top face sheet. Following the procedures
described in the preceding section, we obtain a relation for bottom

face sheet as follows:
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However, the de� nitions of A, B , and D are different from those
used for the top face sheet because the reference surface for the
bottom face sheet is at the top surface. The choice of reference
surface results in the integration being performed from ¡h f to 0,
thereby resulting in different values for the stiffness terms, which
are given by

[A; B; D] D
Z 0

¡h f

NQ11.1; z; z2/ dz (12)

Top Half of the Core
The functionallygradedcore is analyzedusing the planeelasticity

equations. The material is assumed to be pointwise isotropic but
spatiallyvarying.The exponentialvariationin theelasticcoef� cients
in the z direction [Eq. (13)] are obtained by varying the elastic
modulus and assuming a constant Poisson ratio:

[c.z/] D e¸z

2
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where c0
i j D ci j .z D 0/. The elasticity model developed earlier

[Eqs. (1–16) from Ref. 1] is used to analyze the core. The elasticity
model assumes a displacement � eld of the form

u.x; z/ D U .z/ cos » x; w.x; z/ D W .z/ sin.» x/ (14)

which satis� es simple support boundary conditions for the beam as
follows:

w.0; z/ D w.L; z/ D 0; ¾x x .0; z/ D ¾x x .L ; z/ D 0 (15)

The displacement variations through the thickness U .z/ and W .z/
are of the form

U .z/ D
4X

i D 1

ai e
®i Z ; W .z/ D

4X

i D 1

bi e
®i Z (16)

where ®i are the roots of the following characteristic equation (ob-
tained from the differential equations of equilibrium1):

Denote the x- and z-directiondisplacementsat the top and bottom
surfaces of element 2 by U1 , W1 , U2 , and W2, respectively. Then
the relation between these surface displacements and the constants
a1; : : : ; a4 in solution (16) can be obtained as
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where ri is the ratio of the arbitrary constants ai and bi in the dis-
placement functions for U .z/ and W .z/:

ri D
bi

ai

D ¡ .1 ¡ 2º/®i .¸ C ®i / ¡ 2.1 ¡ º/» 2

»® C .1 ¡ 2º/¸»
(19)

The tractions t1 , p1, t2 , and p2 acting on the surface can be related
to the stresses as follows:
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Thenusingthe stress–strain,strain-displacement,andconstitutive
relations we can express the surface tractions as a function of the
unknown coef� cients ai :
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The stiffnessmatrix of the top half of the FGM core [K .2/], which
relates the surface tractionsto the surface displacements,is obtained
by combining Eqs. (21) and (18) and eliminating the coef� cients ai

and is expressed as follows:
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Bottom Half of the Core
The differential equilibrium and stress–strain relations are iden-

tical to those de� ned for the top half of the core. The reference
surface for the z coordinate in the bottom half of the core is chosen
at its top surface (midplane of the sandwich) and hence z values
are negative. The similarities in geometry, loading, and the material
propertyvariationsbetween the top and bottomhalf of the sandwich
core permit us to obtain the stiffness matrix for the bottom half of
the core by means of a simple geometric transformationgiven by

£
K .3/

¤
D [T ]¡1

£
K .2/

¤
[T ] (24)

where the transformationmatrix T is of the form
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Assembling the Elements
To satisfy equilibrium, the contributionsof tractions from differ-

ent elements at each interface should sum to zero. Enforcing the
compatibility of displacements at the interfaces enables us to as-
semble the stiffness matrices of the four elements to obtain a global
stiffness matrix K :
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The displacements Ui and Wi are obtained by solving Eq. (26).
Then the complete displacement� eld in an element can be obtained
using Eqs. (16–18) and the stresses from the correspondingconsti-
tutive relations.

Results and Discussion
The length of the beam is denoted by L , the core thickness by

h, and the face-sheet thicknesses by h f . Sandwich-beam results
presented here correspond to a beam L=h D 10 and h f =h D 0:1.
The face-sheet elastic modulus is chosen at an arbitrary value of
1.0. We restrict our study to the case where the beam is loaded in
the transversedirectionby a sinusoidalload given by pa sin.¼ x=L/.
The chosen load magnitude is pa=E f D 10¡2 . The sandwich core
modulus at the midplane is kept � xed at E f =1000 while the core
modulusat the face-sheetinterface, Eh , is varied.The ratioof Eh=E0

variesfrom1 to 1000.When Eh=E0 D 1, corepropertiesare constant
through the thicknessand identical to a regularsandwich panel.The
value of Eh is gradually increased until it reaches the value of the
face sheet for Eh=E0 D 1000. The different pro� les of the elastic
modulus variations in the sandwich core are shown in Fig. 2. The
displacementsthroughthe thicknessof the sandwichcoreare plotted
in Figs. 3 and 4, respectively. The bending stresses, normal stress
(core compression), and shear stress are plotted in Figs. 5, 6, and 7,
respectively.

The in-plane displacement (Fig. 3) exhibits a nonlinear varia-
tion through the thickness of the core for the functionally graded
core sandwich, signi� cantly different from that observed in homo-
geneous sandwich cores. The elasticity solution also provides the
compressionsof the sandwich core in its thickness direction,which
is often ignored in beam/plate models. The through-the-thickness
variations of the transverse de� ection (Fig. 4) indicate that maxi-
mum core compression occurs at the midplane of the core where

Fig. 3 Variation of in-plane displacement U through the thickness of
the FGM beam for different ratios (Eh/E0) at Ef /E0 = 1000 (Ef , face-
sheet modulus; Eh , sandwich core modulus at face-sheet interface; E0,
sandwich core modulus at center).
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Fig. 4 Variation of transverse displacement W through the thickness
of the FGM beam for different ratios (Eh/E0) at Ef /E0 = 1000 (Ef , face-
sheet modulus; Eh , sandwich core modulus at face-sheet interface; E0,
sandwich core modulus at center).

Fig. 5 Variation of the through-the-thickness bending stress (normal-
ized by the face-sheet elastic modulusEf ) in the FGM beam for different
ratios (Eh/E0) at Ef /E0 = 1000 (Eh , sandwich core modulus at face-sheet
interface; E0 , sandwich core modulus at center).

Fig. 6 Variation of the through-the-thickness normal compressive
stress (normalized by the facesheet elastic modulus Ef ) in the FGM
beam for different ratios (Eh/E0) at Ef /E0 = 1000 (Eh , sandwich core
modulus at face-sheet interface; E0, sandwich core modulus at center).

Fig. 7 Variation of the through-the-thickness shear stress (normalized
by the face-sheet elastic modulus Ef ) in the FGM beam for different
ratios (Eh/E0) at Ef /E0 = 1000 (Ef , face-sheet modulus; Eh , sandwich
core modulus at face-sheet interface; E0, sandwich core modulus at
center).

Fig. 8 Reduction in interfacial shear stresses for varying ratios of ex-
treme values of core moduli (Eh/E0) and ratios of core thickness to
face-sheet thickness, h/hf .

the elastic modulus is a minimum. The core compression increases
as the Eh=E0 ratio is increased.

The bending stress variations (Fig. 5) in the core are as expected.
The linear variation in strains results in small levels of bending
stress in the core near the midplane. The stress increases near the
face sheet. This is particularly pronounced as the value of the core
modulus is increased to match the value of the face-sheet thickness.

The normal stress ¾zz in the core (Fig. 6) varies linearly from the
applied surface load on the top surface to zero at the bottom of the
core, and this behavior seems to be independent of the variation in
core properties.This is an interestingresult because it simpli� es the
calculations required to study the core crushing problem. It must
be noted that the example consideredhere used a smoothly varying
(sinusoidal) surfacepressureload.The resultswillneed tobeveri� ed
for concentrated loads such as contact loads.

The more interestingresult from the present analysis is the trans-
verse shear stresses at the core–face-sheet interface. Conventional
design of sandwich laminates restrict the shear stress at the core–

face-sheet interface to the bond (adhesive) shear strength, which is
typically lower than the shear strength of the core material. There-
fore, the core material is not fully utilized. It is hence desirable to
reduce the interfacial shear stress while carrying a high shear stress
in the core. It appears that this is possiblewith a functionallygraded
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core. The shear stress variations in the core are plotted in Fig. 7 for
h=h f D 10. The interface shear stress reduces as the Eh=E0 ratio
is increased. The maximum reduction of 20% occurs for the case
Eh=E f D 1, for which the core elastic modulus varies exponentially
from E0 D E f =1000 at the center to Eh D E f at the core–face-sheet
interface. Figure 8 shows the ratio of shear stress at the interface
for differentvalues of Eh=E0 ratio and h=h f ratio. The reduction in
shear stress at the interface increaseswith increase in h=h f ratio (or
for beams when the face sheet is signi� cantly thinner than the core).
For the example problem the reduction in interface shear stress is
42 and 63% for h=h f values of 20 and 40, respectively.

Summary
The elasticity solution obtained for a simple functionally graded

beam has been extended for a sandwich con� guration. The stresses
calculated from the elasticity solution were used to demonstrate
the reduction in face-sheet–core interface shear stress possible by
functionally grading the sandwich core elastic properties.
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I. Introduction

G EOMETRICALLY nonlinear analysis of shells for small
strains and large rotations can be described in terms of three

key steps: derivationof the geometricstiffnessmatrix, iterativesolu-
tion of the governingequations,and stress retrieval and updating. It
is the derivationof the geometricstiffnessmatrix and stress retrieval
for thin shells that is the focus of this Note. Here the geometry of
the shell surface is approximatedwith � at triangularshell elements,
each of which is composed of a membrane and a plate element.

In the literature a number of methods exist for the derivation
of the geometric stiffness matrix of shells. These are based on
classical nonlinear shell theory represented as a two-dimensional
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Cosserat surface, three-dimensional elasticity degenerate shells,
and perturbation methods. The excellent comprehensive review by
Ibrahimbegović1 addresses the various approaches and the related
complex issues involved.

The presentapproachis basedon gradientmethods that are equiv-
alent to perturbationmethods (e.g., Green et al.2), where � rst-order
perturbation analysis corresponds to � rst-order Taylor-series lin-
earization.Related to the present approach is the corotationalrealm
(for example, see Bathe and Ho3 and Peng and Cris� eld4).

The geometric stiffness matrix is derived by � rst performing a
load perturbationon the linear equilibrium shell equations with re-
spect to the local coordinatessystem to yield the in-planegeometric
stiffness matrix. Then out-of-plane considerations that involve the
effect of rigid-body rotations on member forces complete the lo-
cal geometric stiffness matrix formulation. As for stress retrieval,
the linear equations of elasticity are used throughout because of
the a priori removal of rigid-body rotations by a special procedure,
which is developed later. These two features make this approach
unique compared to other methods of similar general characteris-
tics. Finally a computer program featuring incrementalanalysisand
Newton’s method, geometric effects, pure deformations isolation,
internal stresses retrieval, and updating of nodal forces and coordi-
nates was coded to implement the derivationsdescribed herein and
used to solve a number of problems that appeared in the literature
with practically matching results.

II. Geometric Stiffness Matrix of
the Flat Triangular Shell Element

Load perturbationof the shell equilibrium equations leads to the
well-established de� nition of the geometric stiffness matrix as the
gradient with respect to the global coordinates of the nodal force
vector when stresses are held � xed.5 To circumvent the taking of
impossible derivativesof the three-dimensionalrotation matrix, the
loadperturbationmethodis appliedwith respectto localcoordinates.
In that case an additional out-of-plane effect has to be considered.
This out-of-plane effect is physically the change in the nodal force
vector as a result of the rigid-body rotation.The geometric stiffness
matrix is thus composed of four individual matrices, two in-plane
(IP) and two out-of-plane(OP) matrices for the membrane and plate
elements, respectively:
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A. In-Plane Contribution of the Flat Triangular Membrane Element
The nodal force vector of the simple plane stress triangular � nite

element (CST) that is described by Zienkiewicz6 is used as the
membrane element is given as
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where the coef� cients br , cr r D i , j , m are explicitly de� ned in
Ref. 6; t is the thickness of the element; and ¾x , ¾y , ¿ are its
stresses. The gradient of Eq. (2) that is taken in a rather straightfor-
ward manner6 to yield a 6 £ 6 in-planecontributionto the geometric
stiffness matrix of the membrane is
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