
PHYSICAL REVIEW B 68, 035431 ~2003!
Elasticity theory connection rules for epitaxial interfaces
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Elasticity theory provides an accurate description of the long-wavelength vibrational dynamics of homoge-
neous crystalline solids, and with supplemental boundary conditions on the displacement field can also be
applied to abrupt heterojunctions and interfaces. The conventional interface boundary conditions, often referred
to as ‘‘connection rules,’’ require that the displacement field and its associated stress field be continuous
through the interface. We argue, however, that these boundary conditions are generally incorrect for epitaxial
interfaces, and we give the general procedure for deriving the correct conditions, which depend essentially on
the detailed microscopic structure of the interface. As a simple application of our theory we analyze in detail
a one-dimensional model of an inhomogeneous crystal, a chain of harmonic oscillators with an abrupt change
in mass and spring-stiffness parameters. Our results have implications for phonon dynamics in nanostructures
such as superlattices and nanoparticles, as well as for the thermal boundary resistance at epitaxial interfaces.
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I. INTRODUCTION
Continuum elasticity theory was developed in the 18

and 19th centuries—prior to the wide acceptance of
atomic view of matter—to describe the mechanics of ela
solids.1 Modern applications of elasticity theory aboun
throughout science and engineering, from providing a lo
wavelength description of the dynamics of crystalline l
tices, to the inversion of seismological data to image
three-dimensional structure of the Earth’s interior.

The fundamental degree of freedom in a nonpolar ela
medium is the displacement fieldu(r ), the deviation of the
medium at pointr from its position in mechanical equilib
rium. When applied to composite media consisting of lay
or regions of different materials, characterized by differe
elastic parameters, a question naturally arises: What bo
ary conditions should be imposed on the displacement fi
at the interfaces?

An example of such a composite system is shown sc
matically in Fig. 1. Alternating layers of typeA andB mate-
rials, each characterized by different elastic constants
mass densities, are separated by abrupt interfaces. W
each region the displacement field satisfies an approp
equation of motion. For an isotropic continuum with ma
densityr, the field equation is

] t
2u5v l

2
“~“•u!2v t

2
“3“3u, ~1!

wherev l[A(l12m)/r and v t[Am/r are the longitudinal
and transverse bulk sound velocities, respectively, de
mined by the Lame´ coefficientsl andm. The solution of the
set of second-order equations of the form~1!, or their gener-
alization to anisotropic media, requires boundary conditio
on u and (n•“)u, wheren is a unit vector normal to the
interface.

The conventional boundary conditions applied in this si
ation ~assuming fully bonded materials! are as follows.2,3

First, the displacement field is assumed to be continu
across an interface

uA5uB . ~2!
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The condition~2! implies that the two materials are attach
and do not separate. The second condition follows from m
mentum conservation and requires that the force density
continuous,

TA
i j nj5TB

i j nj . ~3!

HereTi j is the stress tensor, defined by the continuity eq
tion

] tP
i1] jT

i j 50 ~4!

for momentum densityP[r] tu, andn is the unit normal.4

In an isotropic elastic medium, it follows from Eq.~1! that
the stress tensor is given by

Ti j 52l~“•u!d i j 22mui j ~5!

52ci jkl ukl , ~6!

where

ci jkl 5ld i j dkl1m~d ikd j l 1d i l d jk! ~7!

is the elastic tensor for a linear isotropic solid, and where

ui j [~] iuj1] jui !/2 ~8!

is the strain tensor.
The purpose of this paper is to point out that these bou

ary conditions~2! and ~3!, while quite appropriate for the

FIG. 1. Superlattice consisting of layers of dissimilar elas
mediaA andB.
©2003 The American Physical Society31-1
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geophysical application mentioned above, are generally
correct when applied to long-wavelength vibrational dyna
ics in crystals with abrupt, epitaxial~crystalline! interfaces.
The reason is because in the latter application, elasti
theory is only an approximate long-wavelength descript
for the underlying microscopic lattice dynamics—which ne
essarily depends on the detailed atomic structure of
interface—whereas Eqs.~2! and ~3! make no reference to
that microscopic structure. For example, the correct bou
ary conditions must depend on the effective force consta
between typeA and B atoms in Fig. 1, as well as that be
tween atoms of the same type.

There are numerous applications of elasticity theory
solid state systems with heterostructures, where the us
the conventional boundary conditions would lead to qua
tatively incorrect results. Examples include phonons in na
structures such as quantum dots,5 quantum wells,6

superlattices,7,8 surfaces with overlayers,9 and nanoparticles
embedded in host materials.10–12 A correct use of boundary
conditions might be especially important for nanometer-sc
elastic media such asphononicband-gap materials.13 Also,
the thermal resistance of a heterojunction is determined
phonon scattering at the interface and is therefore sensitiv
the connection rules orS matrix.14

Finally, we would like to point out a strong analogy b
tween this work and the problem of determining the app
priate interface boundary conditions for the envelope fu
tions in effective mass theory.15 In this case, effective mas
theory serves as the appropriate long-wavelength approx
tion to the full Schro¨dinger equation that contains the micr
scopic periodic potential of the crystalline lattice, and co
nection rules are required to join envelope functions throu
an interface between crystals with different effective ma
The microscopic theory of these connection rules was
developed by Kroemer and Zhu,16,17 and our work may be
regarded as an elasticity theory analog of Refs. 16 and 17
their seminal work on phonons in heterostructures, Ak
and Ando18 analyzed the vibrational connection-rule proble
from this point of view, and the boundary conditions w
derive are consistent with those of Ref. 18. However, th
authors did not realize that the small off-diagonal eleme
in the connection matrix@defined below in Eq.~10!# do
in fact change the boundary conditions from the conv
tional ones.19 We will show very clearly that using the con
ventional boundary conditions can give an incorrect vib
tional spectrum.

In the next section we give a detailed derivation of t
connection rules for the case of a simple one-dimensio
model of an inhomogeneous crystal, a chain of harmo
oscillators with an abrupt change in mass and spring stiffn
parameters, and in Sec. III we compare the results of u
both our connection rules and the conventional connec
rules to exact results obtained by numerical diagonalizat
In Sec. IV we relate the connection rule problem to that
calculating theS matrix for plane-wave scattering from th
interface. The problem of determining the interface bound
conditions between three-dimensional solids is discusse
Sec. V, and our conclusions are summarized in Sec. VI.
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II. CONNECTION RULES IN ONE DIMENSION

We turn now to an analysis of the one-dimensional ca
where a chain of atoms with nearest-neighbor bonds are
strained to move on a line. The vibrations in this case
purely longitudinal.

An abrupt interface is introduced at positionx0. To the
left of x0 the mass of each atom ismA , and the effective
spring constant of the nearest-neighbor bonds iskA ; the cor-
responding parameters on the right side aremB andkB . The
strength of the bond connecting the typeA and B atoms,
which is generally different fromkA andkB , is denoted by
kJ . The lattice constant on both sides is equal toa. The
model we consider is illustrated in Fig. 2.

According to elasticity theory, which is valid for vibra
tional wavelengths large compared witha, the regions to the
left and right of the interface are described by the wave eq
tions

~] t
22v I

2]x
2!uI50, v I[aAkI /mI, I 5A,B. ~9!

The elasticity theory description of a homogeneous chai
reviewed in the Appendix. To proceed, the wave equati
~9! must be supplemented with boundary conditions
u(x0) andu8(x0).

A general linear homogeneous interface boundary con
tion may be expressed in the form

F u~x0!

u8~x0!
G

B

5M F u~x0!

u8~x0!
G

A

, ~10!

whereM is a 232 matrix. The connection rule matrix im
plied by the boundary conditions~2! and ~3! is

M5S 1 0

0 kA /kB
D . ~11!

A common application of Eq.~11! is to an elastic string with
an abrupt change in mass density, but no change
elasticity;20,21 in this case Eq.~11! reduces to the identity
matrix.22

It is simple to demonstrate that~11! is the only matrix
consistent with conditions~2! and ~3!: First, continuity re-
quires thatM1151 andM1250. To find the other elements
we note that in one dimension thexx component of the stres
tensor of Eq.~5! is Txx52rv2]xu. The stress immediately

FIG. 2. Model of an atomically sharp interface in a on
dimensional crystal.
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ELASTICITY THEORY CONNECTION RULES FOR . . . PHYSICAL REVIEW B68, 035431 ~2003!
to the left of the interface is thereforeTA
xx52kAuA8 (x0), and

that to the immediate right isTB
xx52kBuB8 (x0). Now, Eq.

~10! requires that

kBuB8 ~x0!5kB@M21 uA~x0!1M22 uA8 ~x0!#, ~12!

which implies

TB
xx52M21 kBuA~x0!1M22~kB /kA!TA

xx . ~13!

Therefore, the condition~3! requires thatM2150 and M22
5kA /kB .

We now proceed with our derivation of the correct boun
ary condition matrixM for the model shown in Fig. 2. The
coordinatesxn(t) of the atoms are written as

xn~ t !5xn
01jn~ t !, xn

0[na. ~14!

The equation of motion for atomn is

mnj̈n5kr~jn112jn!2kl~jn2jn21!, ~15!

wherekr is the stiffness of the spring to the right of ma
mn , andkl is that to the left. Assuming harmonic time d
pendence we have, for the atoms immediately to the leftn
521) and right (n50) of the interface

2v2mAj215kJ~j02j21!2kA~j212j22! ~16!

and

2v2mBj05kB~j12j0!2kJ~j02j21!. ~17!

Next we introduce the displacement fieldu(x) as a smooth
interpolating function between thejn , such that

u~xn
0!5jn , ~18!

and use the following relations:

j225uAS x02
3

2
aD'uA~x0!2

3

2
auA8 ~x0!, ~19!

j215uAS x02
1

2
aD'uA~x0!2

1

2
auA8 ~x0!, ~20!

j05uBS x01
1

2
aD'uB~x0!1

1

2
auB8 ~x0!, ~21!

j15uBS x01
3

2
aD'uB~x0!1

3

2
auB8 ~x0!. ~22!

Because the interface boundary conditions involve the
placement field and its first derivative only, second a
higher-order gradients are neglected here. Furthermore
the frequencyv is formally of the order of a gradient~re-
call the bulk dispersion relationv5vuku), for consistency
we also neglect the terms proportional tov2 in Eqs. ~16!
and ~17!.23

The resulting coupled equations can be put in the form
03543
-
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S kJ
1

2
akJ

2kJ aS kB2
1

2
kJD D F u~x0!

u8~x0!
G

B

,

5S kJ aS kA2
1

2
kJD

2kJ
1

2
akJ

D F u~x0!

u8~x0!
G

A

, ~23!

which, upon comparison with Eq.~10!, identifies

S kJ
1

2
akJ

2kJ aS kB2
1

2
kJD D

21S kJ aS kA2
1

2
kJD

2kJ
1

2
akJ

D
~24!

as the connection rule matrix. Therefore we obtain, for
model shown in Fig. 2, the connection rules

M5S 1 aFkAkB2
1

2
kJ~kA1kB!G /kJkB

0 kA /kB

D . ~25!

Several remarks are in order. First, the correct connec
rules clearly depend on the microscopic structure of the
terface, including the stiffnesskJ of the interface bond, which
is generally different thankA andkB . The boundary condi-
tions cannot be deduced by conservation laws that do
make reference to the microscopic structure. Second, the
trix ~25! is generally off diagonal, implying a connectio
between the displacement fieldu on one side of the interface
with the strainu8, as well as the displacement, on the oth
Third, the displacement field is generallynot continuous
through the interface, in contrast with the convention
assumption.24 This discontinuity, however, does not impl
that the two sides are separated. It simply means that
atomic displacementsjn , when extrapolated from each sid
to the ‘‘mathematical interface’’ atx0, do not meet. Fourth,
we note that in the limita→0 the boundary conditions~11!
and ~25! agree. However, this limit is not meaningful in
real crystal. Fifth, Eqs.~11! and~25! also become equivalen
in the event thatkJ has the special valuekJ* given by

1

kJ*
5

1

2 S 1

kA
1

1

kB
D . ~26!

Sixth, although we have assumed that the lattice structur
the same at the interface as in the bulk, the method we u
would apply to a relaxed interface as well, once that relax
structure is known. And finally, although the connection ru
themselves may depend on the arbitrary choice of interf
positionx0, observable quantities do not. For example, if t
interface position is moved fromx0 to x08 and the vibrational
spectrum is computed with the shifted connection rulesand
the new interface position, the spectrum remains unchan
1-3
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BETTENHAUSEN, BOWIE, AND GELLER PHYSICAL REVIEW B68, 035431 ~2003!
~within the accuracy of elasticity theory!. We have therefore
chosen the simplest interface position.

III. NUMERICAL STUDIES OF VIBRATIONAL SPECTRA

When kJ differs from kJ* , the influence of the off-
diagonal element in Eq.~25! can become substantial. T
demonstrate this we use elasticity theory with both Eqs.~11!
and ~25! to predict the normal-mode frequencies of a on
dimensional inhomogeneous crystal of finite lengthL, and
compare both with the exact spectrum obtained numerica
The interface is placed atx05L/2.

The elasticity theory spectrum is obtained by~numeri-
cally! searching for frequencies such that the three conditi
u(0)50, u(L)50, and Eq.~10!, are satisfied. The appropr
ate solution of the wave equation to the left of the interfa
on the interval 0<x<x0, is

uA~x!5sin~vx/vA!, ~27!

and to the right (x0<x<L) is

uB~x!5acos~vx/vB!1bsin~vx/vB!. ~28!

a andb are uniquely determined~at each frequency! by the
requirement that Eq.~10! be satisfied. This leads to

F u~x0!

u8~x0!
G

B

5CFa

bG5M F u~x0!

u8~x0!
G

A

, ~29!

where

C[S cos~vL/2vB! sin~vL/2vB!

2~v/vB!sin~vL/2vB! ~v/vB!cos~vL/2vB!
D .

~30!

From Eq.~29! we obtaina(v) andb(v) as

Fa

bG5C21M F sin~vL/2vA!

~v/vA!cos~vL/2vA!
G , ~31!

and the normal mode frequencies follow from the remain
boundary conditionuB(L)50.

The exact spectrum is obtained by expressing the cou
equations of motion~15! for a chain ofN atoms, with the
first and last atoms held fixed, as a nonsymmetric eigenv
problem. The system size is then given byL5Na. For the
results presented below, we useN5101.

Representative results are shown in Figs. 3–5. In e
case the angular frequencyv of moden is given in units of
pvA /L. Figures 3 and 4 the show vibrational spectra of t
inhomogeneous chains, both withkB55.0 kA . The curves in
these figures are independent of the massesmA andmB ; the
only mass dependence is in the energy scalepvA /L. In each
case the solid line is the exact spectrum, the dotted line is
elasticity theory spectrum calculated with the conventio
connection rules~11!, and the dashed line is the elastici
theory spectrum calculated with the connection rules~25!. In
Fig. 3,kJ50.20kA , and the three spectra are similar. In F
4, wherekJ50.05kA , the two sides are only weakly bonde
together, and the spectrum calculated with Eq.~25! agrees
03543
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with the exact spectrum, whereas the spectrum calcula
with Eq. ~11! does not. At higher frequencies both elastic
theory spectra deviate from the exact spectrum because
wavelength becomes shorter.

The final set of spectra we present, shown in Fig. 5, c
responds to a homogeneous chainkB5kA , with a weakly
bonded interfacekJ50.20kA . The spectrum calculated with
Eq. ~25! agrees well with the exact spectrum. The elastic
theory spectrum calculated with Eq.~11! misses the fine
structure present in the exact spectrum because Eq.~11!
makes no reference to the value ofkJ .

These examples are meant demonstrate our point tha
conventional boundary conditions are, as a matter of p
ciple, incorrect. However, a particular heterojunction m
turn out to have boundary conditions close to the conv
tional ones.

IV. S MATRIX

An alternative but physically equivalent way of expres
ing the interface boundary conditions is through anSmatrix.

FIG. 3. Vibrational spectrum withkB /kA55.0 and kJ /kA

50.20.

FIG. 4. Vibrational spectrum withkB /kA55.0 and kJ /kA

50.05.
1-4
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Whereas the matrixM gives the linear relation between th
displacement fieldu(x0) and its derivativeu8(x0) on sideA
to that on sideB, the S matrix relates the amplitudes o
waves incident on the interface, from both sides, to the c
responding outgoing waves. In this case we takex0 to be at
the origin and we write the elasticity theory solutions as25

uA~x!5A1 eivx/vA1A2e2 ivx/vA ~32!

and

uB~x!5B1eivx/vB1B2e2 ivx/vB, ~33!

whereA6 and B6 are complex coefficients giving the am
plitudes of the plane waves shown in Fig. 6.

TheSmatrix relates the coefficients in Eqs.~32! and~33!,
and is defined by

FA2

B1
G5SFA1

B2
G . ~34!

From Eq.~10! we obtain

FB1

B2
G5MFA1

A2
G ~35!

and therefore

FIG. 5. Vibrational spectrum withkA5kB andkJ /kA50.20.

FIG. 6. Incoming and outgoing waves related by theS matrix.
The interface is atx50.
03543
r-

S5
1

M22
S 2M21 1

detM M12
D , ~36!

where

M[S 1 1

iv/vB 2 iv/vBD 21

M S 1 1

iv/vA 2 iv/vA
D .

~37!

Here detM is the determinant ofM. A useful expression
for M may be obtained by combining Eqs.~11! and~25! as

M5S 1 M12

0 kA /kB
D , ~38!

whereM12 is either equal to zero or to the off-diagonal el

ment a@kAkB2 1
2 kJ(kA1kB)#/kJkB in Eq. ~25!. Using this

representation forM we obtain

M5
1

2S 11
kAvB

kBvA
1 iM 12

v

vA
12

kAvB

kBvA
2 iM 12

v

vA

12
kAvB

kBvA
1 iM 12

v

vA
11

kAvB

kBvA
2 iM 12

v

vA

D
~39!

and

detM5kAvB /kBvA . ~40!

Note that the complex terms in theS matrix come from the
off-diagonal element in Eq.~25!.

The S matrix provides a simple and direct way to obta
transmission and reflection amplitudest and r for scattering
from the interface. From Eq.~36! we observe that the trans
mission and reflection amplitudes for a wave of unit amp
tude incident from the left (A151 and B250) are

t5
detM
M22

5
2kAvB

kAvB1kBvA2 iM 12vkB
~41!

and

r52
M21

M22
5

kAvB2kBvA2 iM 12vkB

kAvB1kBvA2 iM 12vkB
. ~42!

In the limit kA5kB5kJ , where the mass density is disco
tinuous but the elasticity is continuous, these amplitudes
duce to

t→ 2vB

vB1vA
and r→ vB2vA

vB1vA
, ~43!

the well-known results for scattering from a ma
discontinuity.21 It can be shown that the transmission a
reflection coefficientsT and R defined as the fraction o
transmitted and reflected energy flux, are determined fr
Eqs.~41! and ~42! according to

T5
vAkB

vBkA
utu2 and R5uru2. ~44!
1-5
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In addition to relating the connection rule matrixM to
observable quantities, this scattering theory formulat
serves to reemphasize the main thesis of this paper, tha
connection rules must depend on the microscopic struc
of the heterojunction and cannot be determined by ‘‘
field’’ information alone.

V. BEYOND ONE DIMENSION

In this section we give a brief discussion of the gener
zation of our method to three-dimensional epitaxial hete
junctions. To allow for both longitudinal and transverse el
tic waves one must work with a 636 connection matrix
M3D satisfying

3
ux~x0!

uy~x0!

uz~x0!

ux8~x0!

uy8~x0!

uz8~x0!

4
B

5M3D3
ux~x0!

uy~x0!

uz~x0!

ux8~x0!

uy8~x0!

uz8~x0!

4
A

. ~45!

Here ui8[n•“ui , with n a unit vector normal to the inter
face, andi 5x,y,z. The procedure for obtainingM3D is iden-
tical to that described in Sec. II; however, in general it w
be necessary to include atomic bonds beyond those con
ing nearest-neighbor atoms.

To obtain quantitatively accurate connection rules o
would need to determine the atomic structure of the part
lar interface and the required force constants. This can
accomplished using first-principles electronic structure c
culation methods~for example, those based on density fun
tional theory!, although a full treatment of a three
dimensional heterojunction would be very demand
computationally.

VI. DISCUSSION

We have shown that the conventional interface bound
conditions used in elasticity theory, requiring that the d
placement field and its associated stress field be continu
are generally incorrect for epitaxial interfaces. The corr
boundary conditions are nonuniversal and depend on the
tailed microscopic structure of the heterojunction.

The conventional boundary conditions are incorrect
cause the displacement fieldu(r ) is generally discontinuous
However, this discontinuity doesnot imply that the two sides
separate. In the elasticity theory description of crystall
lattice dynamics

u~r0!5rn2rn
0 ~46!

is simply a function giving the displacement of atomn at
each equilibrium lattice pointrn

0 . A discontinuity inu(r ) at a
‘‘mathematical’’ interface between layers of atoms impli
that the atomic displacementsrn2rn

0 on each side of an in
terface do not meet when smoothly interpolated to that in
03543
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face. In contrast, the condition that the stress be continu
follows from momentum conservation and is alwa
correct.26

It is tempting to approach the interface boundary con
tion problem by using elasticity equations generalized to
case of a compositionally graded crystal, characterized b
position-dependent mass density and elastic parameters
then take the limit of an abrupt composition change. But t
too is incorrect, for elasticity theory is intrinsically a long
wavelength description and can be formulated only
slowly graded systems, making the required limit invalid.

For example, the generalized wave equation describ
the long-wavelength vibrational dynamics in a on
dimensional crystal with lattice constanta, mass density
r(x), and stiffnessk(x), can be shown to be~see the Ap-
pendix!

@r~x!] t
22a]xk~x!]x#u~x,t !50. ~47!

Integration of Eq.~47! shows thatu(x) andk(x) u8(x) are
continuous, consistent with the conventional boundary c
ditions of Eq.~11!. However, Eq.~47!, which neglects stiff-
ness gradients higher order thank8(x), is not valid in the
abrupt limit.

Having made the case that the conventional interf
boundary conditions given in Eqs.~2! and~3! do not apply to
epitaxial interfaces, we must emphasize again that we h
not provided generally applicable conditions to replace E
~2! and ~3!. The connection rules in Eq.~25! are only valid
for the simple one-dimensional interface model shown
Fig. 2. We also emphasize that for some heterojunctions,
actual boundary conditions may be very close to the conv
tional ones.

In closing, we would like to speculate about the reas
the subject of this paper has been, to the best of our kno
edge, overlooked in the solid state physics literature. Hist
cally, elasticity theory was developed as a self-contain
branch of mechanics that made no reference to a poss
underlying atomic structure, and much of the theory w
developed before the general acceptance of the atomic v
of matter. The conventional boundary conditions~2! and ~3!
are certainly correct within elasticity theory proper. How
ever, within solid state physics, elasticity theory is regard
as a long-wavelength description with a well-defined b
limited regime of validity, and we believe that the connecti
rules in question were applied to heterostructures with
considering that regime of validity.
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APPENDIX: HOMOGENEOUS CHAIN

Here we record the long-wavelength theory of the hom
geneous harmonic oscillator chain with massesm, spring
1-6
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constantsk, and lattice constanta. In this case the equatio
of motion leads to

] t
2u~x,t !2

k

m
@u~x1a,t !22 u~x,t !1u~x2a,t !#50.

~A1!

Taylor expanding Eq.~A1! leads to the one-dimensiona
wave equation

~] t
22v2]x

2!u~x,t !50, ~A2!

with sound velocity

v[aAk/m. ~A3!

Next we derive the momentum conservation condit
satisfied by the displacement fieldu. The momentum density
carried by a longitudinal elastic wave in one dimension
P5r] tu, where r is the mass density. In the absence
external forces, Eq.~A2! shows thatP satisfies the continu
ity equation

] tP1]xT50, ~A4!

where

T52rv2]xu ~A5!
s-

om

y-

-

ia-

M

03543
s
f

is the scalar stress. As expected, Eq.~A5! is identical to the
xx component of the stress tensor of Eq.~5!. Similarly, the

energy densityE5 1
2 r@(] tu)21v2(]xu)2# satisfies the con-

tinuity equation

] tE1]xj e50, ~A6!

where

j e52rv2]xu] tu ~A7!

is the energy current.
The long-wavelength description of a harmonic oscilla

chain with spatially varying masses and spring constants
lows from the appropriate gradient expansion of

m~x!] t
2u~x,t !

5kS x1
a

2D @u~x1a!2u~x!#

2kS x2
a

2D @u~x!2u~x2a!#. ~A8!

Neglecting gradients beyondk8(x) leads to Eq.~47! quoted
in Sec. VI.
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