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Abstract

Although negligible at large scales, capillary forces may become dom-

inant for submillimetric objects. Surface tension is usually associated

with the spherical shape of small droplets and bubbles, wetting phe-

nomena, imbibition or the motion of insects at the surface of water.

However, beyond liquid interfaces, capillary forces can also deform solid

bodies in their bulk as observed in recent experiments with very soft

gels. Capillary interactions, which are responsible for the cohesion of

sand castles, can also bend slender structures and induce the bundling

of arrays of fibres. Thin sheets can finally spontaneously wrap liquid

droplets within the limit of the constraints dictated by differential ge-

ometry.

The aim of this review is to describe the different scaling parameters

and characteristic lengths involved in “elastocapillarity”. We focus suc-

cessively on three main configurations:

• 3D, deformations induced in bulk solids

• 1D, bending and bundling of rod-like structures

• 2D, bending and stretching of thin sheets

Although each configuration would deserve a detailed review, we hope

our broad description will provide a general view on elastocapillarity.
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1. INTRODUCTION

Fluid structure interactions are traditionally considered at large scales: wind dynamic pres-

sure blows up the sails of a ship, whereas hydrostatic pressure tends to deform the hull.

Rain may complicate manoeuvring on the deck, but the capillary forces responsible for the

spherical shape of the droplets have a negligible impact at this scale. At small scales (more

exactly, at small Reynolds numbers), interactions between viscous forces and soft structures

are important in the locomotion of micro-organisms and can induce deformations of cells or

blood vessels, as recently reviewed (Duprat and Stone, 2015). It is well known that surface

tension forces are associated with the motion of aquatic insects at the surface of water, cap-

illary rise and wetting (de Gennes et al., 2004). In terms of length scale, capillarity becomes

dominant over gravity below the capillary length `c =
p

�/⇢g. Beyond liquid interfaces,

can surface tension (or surface stress) also deform solids?

Capillary length:

`c =
q

γ
ρg

Recent technological advances in microfabrication and the development of very soft

materials have motivated numerous studies of the coupling between surface tension and

elasticity. In this review, we propose to explore the currently blooming field of elasto-

capillarity. We propose to develop three main configurations characterised by a specific

dimension:

• 3D: at which scale may surface tension deform bulk solids?

• 1D: how do bundles spontaneously appear in a brush removed from a liquid bath?

• 2D: can a thin sheet spontaneously wrap a droplet?

This review does not pretend to be exhaustive and interested readers are invited to read

other more specific reviews as a complementary approach. A recent review from Style

el al. present the most recent advances in the deformation of a bulk solid by surface

tension (Style et al., 2017). Snoeijer also discusses the coupling of lubrication flow, sur-

face tension and elasticity with the illustration of the familiar scraper coating process

(Snoeijer, 2016). Many stimulating reviews have been dedicated to capillary self-assembly of

small objects by capillary forces (Boncheva and Whitesides, 2005, Mastrangeli et al., 2009)

and to the collapse (Maboudian, 1997) or folding (Syms et al., 2003, Leong et al., 2010,

Crane et al., 2013) of engineered microstructures. In the more specific context of sur-

face engineering, impressive achievements have been realised with arrays of nanorods

or carbon nanotubes assembled through capillary interactions (De Volder and Hart, 2013,

Tawfick et al., 2016). From an academic prospective, the bundling of arrays fibres has fi-

nally been described in different reviews (Roman and Bico, 2010, Duprat and Stone, 2015).

The aim of the present review is to provide a broad view of elastocapillarity. The descrip-

tion of each configuration is limited to main scaling laws, with the hope they would bring

useful physical insights. More specific details will be found in the cited literature.

2. CAPILLARITY AND BULK ELASTICITY

2.1. The elasto-capillary length

Surface tension is mostly thought to be of interest when dealing with liquids. However,

solids are also subject to interfacial stresses which may induce deformations. Nevertheless,

a key difference between simple liquids and solids is the ability of solid interfaces to sustain

finite strains. As a consequence, surface stresses in solids are strain dependant. The surface

stress Υ and surface energy � of a solid are related through the Shuttleworth equation,

2 Bico, Reyssat, & Roman



which in its simplest form reads:

Υ = � +
d�

d"
(1)

where " is the interfacial strain (Andreotti and Snoeijer, 2016).

On which scale may surface stresses induce deformations in elastic solids? While trying

to measure the surface tension of solids (metals or ionic crystals), Nicolson has shown that

the characteristic length scale at which surface stresses become important is defined by

the competition of surface forces with bulk elastic stresses (M. M. Nicolson, 1955). The

characteristic stress resulting from surface tension, given by the classical Laplace law, is

of order Υ/L, where L is the size of the solid sample. Such stresses may induce elastic

deformations in the bulk of the solid. The induced strain becomes of order one when stresses

reach the shear modulus G of the solid. The effect of surface stresses is thus important on

structures whose characteristic size is smaller than the “shear elastocapillary length”:

`S = Υ/G (2)
shear elasto-capillary

length: `S = Υ/G

For usual materials such as glass, surface tension is of order 250mN/m, for an elastic

modulus G ' 20GPa, so that `s ⇠ 10 pm is below atomic scales. Similarly, in the case

of copper, Υ ⇠ 1.8N/m and G ⇠ 50GPa and we obtain `S ⇠ 40 pm. For such hard

solids, precise X-ray measurements may detect small variations in the lattice parameter as a

function of the size of the sample, but for most purposes, surface effects remain undetected.

In the past decades, there has been a lot of interest for much softer materials such as

elastomers, gels or biological tissues. These materials are highly compliant, with typical

values of G ⇠ 0.1� 1000 kPa and Υ ⇠ 0.01� 0.1N/m. For this class of materials, `S is at

least 10 nm and may be as large as 1mm. Such deformations may provide ways to measure

the surface tension of a solid-fluid interface, which remains poorly documented. Capillary-

induced deformations also constitute a useful tool to probe the mechanics of biological cells

as recently reported (Campàs et al., 2013).

2.1.1. Softening sharp solids. As it is the case for liquid-gas interfaces, the surface tension

of solid tends to smooth interfaces with high curvatures. For instance, a number of experi-

mental and theoretical studies motivated by contact printing discuss the rounding off of the

sharp edges of printing stamps made of soft elastomeric materials (Hui et al., 2002). These

stamps are initially formed into a stiff mold. When peeled off the master, the topography of

the replica tends to be smoothed out by surface stresses. A corner initially at right angle is

for instance rounded off with a radius R ⇠ Υ/G. Similarly, the edges of a square based prism

made of a very soft gel (G = 35 kPa) are softened by surface tension (Mora et al., 2013).

Mora and Pomeau also derive analytically the shape of angular solids in the asymptotic

regimes of very shallow or extremely sharp wedges (Mora and Pomeau, 2015). The soften-

ing of the edges of a solid also induce more global deformations at the large scale of a slender

object, which may be used to shape materials or monitor surface stresses. For instance,

ribbons with asymmetric triangular cross-section take the shape of helices under the action

of surface tension (Pham et al., 2013).

Periodic grooves or ripples patterns on the surface of very soft gels are also altered

significantly (Paretkar et al., 2014). The sharpest features are erased, or equivalently, high

spatial Fourier frequencies are attenuated under the action of surface tension. The relative

change ∆A in the amplitude A of the grooves of wavelength � is of order ∆A/A ⇠ Υ/G� ⇠
`S/�. Moreover, the surface tension of these gels of polydimethylsiloxane (PDMS), may

www.annualreviews.org • Elastocapillarity 3



(b)(a)

(c) (d)

Figure 1

(a) Surface tension rounds off the corner of soft solids with a radius R on the order of `s (adapted
from (Hui et al., 2002)). (b) The initially square cross-section of soft PDMS gels is rounded off
when dipped in toluene (illustration from (Mora and Pomeau, 2015)). The shear modulus of the
gel is 125 Pa (left), 60 Pa (center), 60 Pa (right). The effect is more pronounced for smaller and
softer objects. (c) Ribbons with asymetric cross-section deform under the action of solid surface
tension. The edges with different sharpness are deformed unequally, leading to the curling of the

ribbon into a helical shape (Pham et al., 2013). (d) The sharp texture of the interface of a soft
solid smoothens when removed from its mold (Paretkar et al., 2014).

be modified by exposure to UV light, leading to some degree of control of the surface

tension (Jagota et al., 2012).

Interfacial textures may finally emerge from the Biot instability, where creasing pat-

terns result from compression along the surface of a soft solid. The threshold for creasing

has recently be found to depend on the surface tension of the solid (Mora et al., 2011,

Chen et al., 2012).

2.1.2. Rayleigh-Plateau instability. A paradigm of capillary induced instability is the clas-

sical Rayleigh-Plateau instability: the liquid stream falling from a faucet breaks up into

a collection of droplets with overall lower surface to volume ratio (de Gennes et al., 2004).

An analogous phenomenon occurs in the case of very soft solid cylinders.

Upon drying, a filament of acrylamid gel develops a tensed skin, which results in

the growth of a peristaltic instability illustred in Figure 2a. (Matsuo and Tanaka, 1992,

Barrière et al., 1996). Even in the absence of a macroscopic skin, a strand of very soft

agar gel released in toluene develops undulations along its axis (Mora et al., 2010). Ax-

ial modulations of the radius are found to develop if the gel/toluene surface tension

exceeds Υc ⇠ G⇢0, where ⇢0 is the radius of the undeformed cylinder and G is the

shear modulus of the gel (figure 2). The instability develops preferentially large wave-

lengths. Related instabilities occur for fluid or solid cylinders embedded in another com-

pliant matrix with various geometries, as has been studied theoretically and numeri-

cally (Henann and Bertoldi, 2014, Taffetani and Ciarletta, 2015, Xuan and Biggins, 2016).

2.1.3. Modification of the apparent elastic properties of multiphase solids. Since inter-

faces couple to bulk mechanical properties of soft materials, we expect soft multiphase

4 Bico, Reyssat, & Roman
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(a) Upon drying, cylinders of acrylamide gels undergo a pearling instability. Adapted from
(Matsuo and Tanaka, 1992). (b) When dipped in toluene, cylinders of soft agar gels develop a
peristaltic instability driven by surface stresses. Adapted from (Mora et al., 2010)

solids to display anomalous properties. According to the classical results from Eshelby, an

elastic matrix containing gas or liquid inclusions should appear softer than a plain mate-

rial (Eshelby, 1957). Conversely, inclusions with large shear modulus result in an overall

stiffer material. Extending these results to include the effects of surface tension yields

counter-intuitive results. Indeed, deforming small inclusions tends to increase their area.

Surface stresses thus oppose these deformations. As a consequence, a solid with soft inclu-

sions may appear stiffer than a plain specimen. Ducloué et al. show that elastic porous

materials do not follow Eshelby’s prediction (Ducloué et al., 2014): while air bubbles tend

to weaken oil-in-water emulsions, the softening is lower than expected. Style et al. even show

experimentally that liquid droplets smaller than `S stiffen the material in which they are

embedded (Style et al., 2015). This effect has also been recently explored through molecular

dynamics simulations (Liang et al., 2016).

As surface effects dominate at small scales, elastocapillary phenomena are expected to

be relevant for the field of nanotechnologies, which has been expanding in the past decade.

Understanding the mechanical properties of micro- and nanoscale devices is crucial for

applications. Different studies conducted with metallic wires of sub-micrometer diameter

reveal that their apparent stiffness deviates from predictions based on bulk values of the

Young modulus. For instance, apparent Young’s moduli of silver or lead deduced from

bending tests on nanowires depends on the geometry of the wires (Cuenot et al., 2004).

For a wire of radius r and length L, surface effects indeed dominate bulk contributions in

the bending stiffness when r3/L2 < `S .

2.2. Wetting soft solids

In the previous configurations surface stresses result from a single solid fluid interface.

However, a large number of situations also involve contact lines where three different phases

meet (eg a sessile droplet). In this section, we focus on the deformations at the vicinity of

this singular contact line.

2.2.1. Neumann and Young’s laws. Before describing the possible deformations induced

by a liquid drop on a soft solid susbrate, we recall the two classical laws of static wet-

ting in the respective cases of liquid or rigid solid substrates as sketched in Figure 3

www.annualreviews.org • Elastocapillarity 5



(de Gennes et al., 2004). Consider first a drop of liquid (phase 1) floating at the surface of

a bath of immiscible liquid (phase 2) in another fluid (phase 3). At equilibrium, the vector

balance of the tensions of the three interfaces applies at the contact line:

Υ12t12 +Υ13t13 +Υ23t23 = 0 (3)

where Υij is the interfacial tension between phases i and j and tij is the vector pointing

along the i/j interface (Figure 3(a)). Equation 3, known as Neumann equation, sets the

angles between the interfaces at the contact line.

The second classical result of wetting, the Young and Dupré equation, corresponds to

the case of a liquid droplet deposited on a flat rigid substrate (Figure 3(b)). Balancing

horizontal forces prescribes the value of the Young contact angle ✓:

Υ13 cos ✓ = Υ23 �Υ12 (4)

Although both equations 3 and 4 have been successfully used to describe the wetting

properties of liquids, these laws also constitute a subject of debate in the framework of wet-

ting or adhesion on deformable solids. Early works from Lester (Lester, 1961) and Rusanov

(Rusanov, 1978) question the validity of Young’s law in the case of wetting of very soft ma-

terials. This question has recently been blooming again as macroscopic values of `S can be

obtained with very soft gels (Marchand et al., 2012, Weijs et al., 2013, Weijs et al., 2014,

Style et al., 2017).

Υ
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Figure 3

(a) Neumann balance of interfacial tensions at a contact line: the vector sum of surface tensions at
the contact line vanishes. (b) Drop on a stiff solid: the contact angle is given by Young’s law,

which expresses the balance of horizontal projections of interfacial stresses. (c) On a soft solid, the
upward component of the liquid surface tension is balanced by elastic stresses in the substrate,

leading to the formation of a wetting ridge at the contact line. (d) Asymmetric wetting ridge

induced by a water drop at the surface of a very soft silicone gel. The scale bar represents 5µm.
Adapted from (Park et al., 2014). (e) Profile of silicone gel layers deformed upon adhesion of silica
particles of radius 15µm (adapted from (Style et al., 2013c)). (f) The shallow gap of thickness d
separating two layers of soft material may be squeezed by the negative Laplace pressure in a liquid

bridge connecting both walls. Adapted from (Wexler et al., 2014).
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2.2.2. Static wetting and adhesion. Consider a liquid drop deposited on the initially hor-

izontal surface of a soft material. If we neglect gravity, the drop takes the shape of a

spherical cap, and is characterised by its Young contact angle ✓. However, Young’s law

seems to only provide an incomplete description of the situation, as it overlooks the vertical

components of surface tensions. The liquid-gas surface tension indeed has a component

normal to the solid surface which must be balanced. The wetting of a soft solid thus results

in the formation of a ridge along the contact line of the drop (Figure 3(c), (d)). Shanahan

was a pioneer in describing theoretically the profile of the wetting ridge (Shanahan, 1987)

and more recent studies are inspired by his early work (Jerison et al., 2011, Limat, 2012).

The shape and size of the ridge is set by a balance of surface stresses and elastic forces in the

bulk of the soft solid, so that the characteristic size of the deformed region is of the order of

the elasto-capillary length `S . While the expected size of the ridge is very small for usual

elastomers (sub-micrometric for G ⇠ 1MPa), the shape of wetting ridges has recently been

measured experimentally in the context of wetting of soft gels (Pericet-Camara et al., 2008).

Jerison et al. report accurate measurements of the displacement field of wetting ridges in

the vicinity of the contact line formed by a water drop deposited on an elastic substrate

(Jerison et al., 2011). Their theoretical model shows excellent agreement with experimen-

tally measured displacement fields, for the particular case of a drop contact angle ✓ = ⇡/2.

One key ingredient is the introduction of the finite thickness of the layer of gel, which

regularises the divergence of the height of the ridge emerging in early models. In the gen-

eral configuration, ✓ 6= ⇡/2 and displacements may also occur along the solid surface on

which the drop rests. Tangential forces are applied on the solid and observed through the

formation of asymetric wetting ridges (Fig. 3d) (Das et al., 2011, Park et al., 2014).

The validity of classical laws of wetting by Neumann and Young (equations 3

and 4) in the wetting of soft solids is discussed by several authors (Das et al., 2011,

Style and Dufresne, 2012, Style et al., 2013a). Measuring the contact angles of drops of

various sizes is one way to shed light on this problem. In particular, the contact angle of

small drops on soft solids satisfies Neumann’s criterion, while larger drops obey Young’s

law (Style et al., 2013a, Style et al., 2017). The crossover between both regimes occurs for

drops of radius R ⇠ `S : at small scales, surface tension effects dominate over bulk forces.

More generally, Neumann’s balance of surface tensions applies in the close vicinity of a

contact line, while Young’s law is recovered at scales larger than `S .

The balance of surface tensions and bulk forces can be generalised to any combi-

nation of three phases, one of whom at least is a soft solid. This is for instance the

case (see Figure 3(e)) of the adhesion of stiff (soft) particles on soft (stiff) substrates

(Salez et al., 2013, Style et al., 2013c, Andreotti et al., 2016) or the shape of soft particles

floating at the interface between two liquids (Mehrabian et al., 2016). In any configuration,

deformations occur in the compliant phase on a scale `S around the triple line.

In a different geometry, a bridge of wetting liquid connecting two opposing soft walls

also provides capillary adhesion due to its negative internal Laplace pressure. Consider two

facing layers of soft material of thickness H deposited on stiff grounds and separated by a

gap d (Figure 3(f)). If � is the displacement of the surface of the soft layer, the induced strain

scales as �/H (we assume that the width of the liquid bridge is large in comparison with H).

The corresponding stress E�/H balances Laplace pressure �/d, leading to � ⇠ (�/E)(H/d).

As a consequence, the gap of initial thickness d between these compliant walls may be

squeezed if d2/H < `S (Wexler et al., 2014).

www.annualreviews.org • Elastocapillarity 7



2.2.3. Dynamical effects. The motion of a contact line at velocity V over a stiff substrate

is usually described by the balance of viscous and interfacial stresses through the capillary

number Ca = ⌘V/� where ⌘ and � are the viscosity and surface tension of the liquid

(de Gennes et al., 2004). The deformation of elastic substrates by droplets strongly impacts

the phenomena of dynamic wetting. Indeed, moving contact lines induce dissipation in

the wetting ridges which adds up to the usual viscous forces in the liquid. In early works,

Shanahan describes experimentally and theoretically how viscous dissipation in the induced

ridge may drastically slow down the spreading mechanism of a liquid drop (Shanahan, 1988).

One signature of this effect is that the velocity of a drop sliding under gravity on a soft

substrate is governed by the viscoelastic properties of the solid and may become independent

of the liquid viscosity (Carré et al., 1996, Long et al., 1996). On soft solids, analogs of

classical dynamic wetting laws involve a “solid capillary number” that compares surface

tension to viscoelastic dissipation in the bulk of the substrate (Karpitschka et al., 2015).

A wetting ridge at a contact line constitutes a local and reversible roughness which

enhances contact angle hysteresis on soft surfaces (Extrand and Kumagai, 1996). As a

result, rich contact line dynamics emerge on viscoelastic substrates: lines may for instance

move following a stick-slip motion in connection with the dynamics of the elastic ridge

itself (Kajiya et al., 2013, Karpitschka et al., 2015). Impact dynamics are also significantly

affected by viscoelastic dissipation in the substrate. The retraction of a spread droplet

after impact is for instance significantly hindered (Alizadeh et al., 2013) and “it is harder

to splash on soft solids” (Howland et al., 2016).

The coupling of capillary forces to the deformations of elastic substrates may lead to

interesting new applications. Gradients in the elastic properties of the substrate may

for instance become the driving force for the motion of droplets along a soft substrate

(Style et al., 2013b), a process coined as durotaxis by analogy with cell motility. One may

also hope for more efficient ways to harness transfer or dew collection, as the condensation

processes on soft substrates have been shown to be more efficient than on stiff surfaces

(Sokuler et al., 2010).

3. CAPILLARY-INDUCED BENDING OF RODS

In the previous section, we described how a drop of water may deform a bulk material.

Nevertheless, the elastocapillary length scale involved remains relatively small for usual

situations. However, we know from our everyday experience that a macroscopic brush

with unaligned bristles tend to form an elegant bundle when it is removed from a bath of

water. In this section, we propose to explore the bending deformation induced to slender

structures by capillary forces as encountered in a wide variety of natural or engineered

systems.

We first focus on the buckling of a single fibre by a liquid interface and derive a characteristic

length scale based on the coupling between bending and capillary forces. The single fibre

configuration is extended to the case of a brush or, more generally, to arrays of fibres.

We then describe how van der Waals interactions replace capillary forces when the liquid

evaporates and lead to “stiction”. We finally present other elastic modes of deformation,

involving stretching, twisting that are also relevant to micro-engineering applications.

8 Bico, Reyssat, & Roman



3.1. A rod in a drop: capillary buckling

As a simple academic configuration, consider a thin rod trapped inside a droplet of wetting

liquid in the absence of gravity or any other external field (Figure 4a). If the volume of

liquid is decreased (e.g. upon evaporation), should we expect the confined rod to pierce the

interface or, conversely, to match the spherical boundaries of its liquid container?

Piercing the interface would result into a compressive force F = p� cos ✓, where p is the

perimeter of a cross section of the rod, � the liquid surface tension and ✓ the Young contact

angle of the liquid on the rod (de Gennes et al., 2004). For the sake of simplicity we assume

that the liquid perfectly wets the rod (✓ = 0). The general case with finite contact angle

has also been addressed (Andreotti et al., 2011). As a consequence, we expect the simply

supported rod to buckle if F reaches the critical force derived by Euler, Fc = ⇡2EI/L2,

where L is the length of the rod, I the second moment of inertia and E the Young modulus

of the material (Audoly and Pomeau, 2010). In other words, the rod should buckle if its

length exceeds the critical length Lc = ⇡`B , where the bending length `B is given by

(Cohen and Mahadevan, 2003):

`B =

r

EI

p�
(5)

In the case of a cylindrical rod of radius r, we obtain p = 2⇡r, I = (⇡/4)Er4 and `B =
p

Er3/8�. Thin lamellae of width w and thickness t with t ⌧ w are also common in

academic studies as well as in practical situations (Neukirch et al., 2007). In this geometry,

we obtain similarly p = 2w and I = Et3w/12(1� ⌫2), where ⌫ is the Poisson coefficient of

the material, which leads to `B =
p

Et3/24(1� ⌫2)�.

Capillary-bending
length:

`B =
q

Er3

8γ

for a cylinder,

`B =
q

Et3

24(1−ν2)γ

for a lamella.

(a) (b)

Figure 4

a) Rod trapped in a droplet of wetting liquid: decreasing the volume of liquid eventually results in
a compressive load of the rod by the surface tension of the deformed interface. If the length of the
rod exceeds a critical capillary-bending length scale `B , the rod buckles. b) Coiling of a rod inside
a droplet (Schulman et al., 2017).

This capillary-induced buckling mechanism has for instance been proposed to explain

the formation of rings of carbon nanotubes inside cavitation bubbles (Martel et al., 1999).

If the length of the flexible rod is large in comparison with the perimeter of the

droplet, the rod may eventually form a coil into the droplet as illustrated in Figure 4b

(Roman and Bico, 2010, Schulman et al., 2017). In a different field, capillary-induced

coiling is also crucial for the capture of preys by some orb-weaver spiders. Although

the radial threads of spider nets are renowned for their amazing mechanical properties,

radial threads also display unique damping properties that prevent impacting preys from

bouncing off the web (Vollrath and Edmonds, 1989). The damping mechanism was only

recently evidenced (Elettro et al., 2016). The spiralling thread spun by the spider is
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actually significantly longer than its apparent length. The excess of length is stored in coils

formed into minute droplets deposited along the thread by the spider. In contrast with

an elastic string were the pulling force increases linearly with strain, the force required to

extend the thread is almost constant (equal to Fc if viscous forces are neglected). After

being stretched, the coil reforms slowly due to the high viscosity of the droplets, which

ensures the efficient damping of an impacting prey.

3.2. Elastocapillary rackets: measuring the capillary-bending length scale

How can `B be measured? Determining accurately the critical buckling length would not

be convenient. However, measuring the deflection induced by a lateral load could be more

efficient.

3.2.1. Scaling law. A simple technique consists in bending a ribbon into the shape of a

racket and assembling both ends with some wetting liquid (Figure 5a). At equilibrium,

both extremities meet parallely. The shape of the lamella follows Euler elastica mechan-

ics (Audoly and Pomeau, 2010) and is universal for such boundary conditions. However,

the bending elastic energy stored in the lamella depends on its size:

Ub ⇠
EI

L2
L (6)

where the length L of the bent part of the ribbon also gives the scale for its curvature.

Increasing the size of the racket reduces the elastic energy but also results in a cost of

surface energy. In the case of flexible lamellae of width w, the surface energy of the system

is proportional to:

Us ⇠ �w(L� Lt) (7)

where Lt is the total length of the lamella. Minimising the global energy of the system thus

sets the size of the racket (Cohen and Mahadevan, 2003, Py et al., 2007a):

L ⇠ `B (8)

A simple way of assessing `B thus consists in measuring the width d of the racket. The

numerical prefactor has to be determined numerically: d = 1.26 `B . The same scaling can

be generalised to rods although the derivation of the capillary energy slightly depends on

the volume of liquid in the meniscus connecting the facing extremities (Py et al., 2007a).

3.2.2. Boundary conditions. The Euler elastica equation has to be solved in order to predict

the exact shape of the racket (Audoly and Pomeau, 2010). For a beam of bending stiffness

EI, the evolution of the angle ↵ made by the tangent t to the lamella with the horizontal

is set by a moment balance along a portion ds of the beam:

EI
d2↵

ds2
ez + t⇥R = 0 (9)

where R is the constant vectorial tension acting on the beam, ez is the direction perpendic-

ular to the plane and s the curvilinear coordinate (Figure 5b). This equation can be solved

through standard shooting methods for given boundary conditions at both extremities. Al-

though the position and the slope of the tips are trivial, the balance between capillary forces
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a b c d
0.5 mm

Figure 5

(a) Elastocapillary racket: the opposite strands of a stip looped on itself are maintained by a
liquid meniscus. The shape of the loop is compared with a numerical solution of Euler elastica
equation (Py et al., 2007b). The width d of the racket provides a measure of `B . (b) Coordinates
used in the elastica equation. (c) Close-up of the capillary bridge in the vicinity of the contact
point of the strands. (d) Floating flexible frame deflected by a contrast in surface tension. The
surface pressure Π = �+

� �− can be inferred from monitoring the amplitide of deflection d.

and bending stiffness results into a specific boundary condition a the contact point of the

merged extremities: the initial curvature  = d↵/ds is proportional to 1/`B .

The precise derivation of the curvature jump at the contact point requires variational

methods (Majidi and Adams, 2009). However, this initial curvature can be viewed as a

simple moment balance (Figure 5c). If we note x the lateral extension of the liquid meniscus

at the junction between both strands of the racket, its radius of curvature is proportional

to rm ⇠ x2 (we assume x ⌧ −1). The resulting Laplace pressure is thus on the order

of P ⇠ �/rm, which leads to a force F ⇠ Pxw where w is the width of the beam. The

corresponding moment Fx ⇠ �w/ balances the bending moment EI, which finally leads

to:


−1 ⇠ `B (10)

The numerical prefactor depends on the exact configuration. In the case of a pair of

merging lamellea, we find −1 = `B/
p
2 (Roman and Bico, 2010). In the case of rods, the

induced curvature is independent of the quantity of liquid and can even be applied to dry

adhesion (Majidi and Adams, 2009).

3.2.3. Capillary induced deflection of flexible frames. A contrast in surface tension between

each side of a flexible frame floating at the surface of water can also induce a deflection of

the frame. Measuring the amplitude of this deflection constitutes an elegant way to assess

surface pressures on a Langmuir trough (Hu et al., 2003, Zell et al., 2010).

Consider a rectangular frame of length L with two rigid sides floating at the surface of

water. Adding surfactant molecules outside the frame results in a contrast in surface ten-

sion ∆�, which induces a deflection of the edges of the frame of amplitude d (Figure 5d).

The corresponding elastic energy scales as EIL(d/L)2 while the gain in surface energy is

proportional to ∆�dL. As a result, the amplitude varies linearly with the surface pressure:

d ⇠ L2

EI
∆� (11)

The same concept has recently been used to estimate the local surface tension of a soap

film (Adami and Caps, 2015).
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As a conclusion of this section, the capillary-bending length prescribes the characteristic

curvature surface tension may induce to a slender structure. An alternative way to define

this length scale would be to deposit the slender structure on a cylinder of radius R coated

with a wetting liquid. The structure spontaneously wraps the cylinder for R > `B . In the

opposite situation, the structure remains undeformed.

So far, we focused on a single rod. In the next section we propose to describe the bundling

of arrays of filaments induced by capillary forces.

3.3. Elastocapillary self-assembly

3.3.1. Bundles: from engineered systems to model experiments. In the previous section

we described how an isolated slender structure is prone to buckle under the action of

surface tension if its length exceeds the capillary bending length `B . However, a large

number of practical situations involve arrays of structures (Figure 6). For instance,

the possible collapse of micro-structures is an important constraint in the design of

Micro-Electro-Mechanical Systems (MEMS). Indeed, standard lithography processes

involve the evaporation of a solvent, which generates liquid bridges that can be fatal

for minute microstructures (Tas et al., 1996, Abe and Reed, 1996, Maboudian, 1997).

In material science, many works on carbon nanotube ”forests” have re-

ported the formation of pyramidal bundles (Lau et al., 2003) or cellular pat-

terns (Chakrapani et al., 2004, Correa-Duarte et al., 2004) after the evaporation of a

solvent. Similar structures are also commonly observed with arrays of micro-pillars obtained

with soft polymers (Duan and Berggren, 2010, Hu et al., 2015, Kim et al., 2016). Intrigu-

ing twisted bundles may even be observed (Pokroy et al., 2009, Kang et al., 2010). In mate-

rial science, beautiful works have recently been devoted to “elasto-capillary engineering” of

filamentary materials (Tawfick et al., 2016). Elegant nanotube “gardens” are for instance

produced by combining the controlled growth of carbon nanotubes on silicon substrates

and capillary bundling (Garćıa et al., 2007, De Volder et al., 2010, De Volder et al., 2011).

Harnessing capillary forces to build complex structures paves the way for interesting

applications such as field emission (Wang et al., 2016), enhanced molecule detec-

tion (Hu et al., 2010) or surfaces with tunable colour (Chandra and Yang, 2010).

Such capillary-induced bundling is finally not limited to engineered systems but is also

frequent in Nature. The barbules of bird feathers may for instance form fatal clumps when

contaminated by oil (Duprat et al., 2012). At a smaller scale, the adhesive setae from some

insect species may also form bundles (Gernay et al., 2016).

What are the physical ingredients driving elastocapillary bundling? Model experiments

conducted with macroscopic brushes show that bundling involves a cascade of pairing

reminiscent of coalescence mechanisms (Bico et al., 2004, Kim and Mahadevan, 2006,

Py et al., 2007a): as the brush is withdrawn from a bath of wetting liquid, pairs of smaller

bundles merge into large bundles that later merge larger bundles (Figure 7a). However, an

alternative mechanism involving simultaneous bundling is also relevant during the drying

of arrays of dense pillars. In the following sections, we propose to present both mechanisms.

3.3.2. Merging a pair of beams. As an elementary model configuration, consider two par-

allel plates separated by a distance d, small in comparison with the capillary length `c.
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(a)
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(b)

Figure 6

Examples of capillary induced bending and eventually bundling of array of slender structures: (a)
oil-contaminated barbules of a feather (Duprat et al., 2012), (b) array of bundled soft polymeric
pillars (Chandra and Yang, 2009), (c) and (d) self-assembled arrays of carbon nanotubes into
“nanogardens” (De Volder et al., 2010) or into pyramidal bundles or cellular patterns

(Correa-Duarte et al., 2004).

If the lamellae were rigid, Jurin’s law would dictate the equilibrium height of rise as

hJ = 2�/⇢gd (de Gennes et al., 2004). However, the low pressure in the rising liquid tends

to bring both lamellae together, which results in a thinner gap and to a higher equilibrium

height. The rising process eventually stops when the cost in elastic energy corresponding

to the bending of the lamellea compensates the gain in surface energy. If the lamellae are

long enough, the liquid reaches an equilibrium height at a fixed distance Lstick from the

clamping base of the lamellae (Figure 7b). This distance is readily derived with the same

energy argument used in the previous section to describe the size of a racket.

In the limit Lstick � d, the typical curvature of the bent lamella d/L2
stick results into the

elastic energy:

Ub ⇠ EI

✓

d

L2
stick

◆2

Lstick. (12)

As in the case of the racket, the surface energy reads:

Us ⇠ �w(Lstick � Lt), (13)

for lamellae of total length Lt and width w. Minimising the global energy Ub + Us with

respect to Lstick provides the sticking length:

Lstick ⇠ `
1/2
B d1/2 (14)

as validated experimentally for both array of lamellae (Bico et al., 2004,

Kim and Mahadevan, 2006) or of cylindrical rods (Py et al., 2007a).

www.annualreviews.org • Elastocapillarity 13



 

b c da

5 mm

Figure 7

(a) Bundling mechanism involving a cascade of pairing as a brush of long fibres is withdrawn from
a bath of wetting liquid (Bico et al., 2004). (b) A pair of parallel beams of total lenght Lt and
separated by a spacing d adhere up to a distance Lstick from their clamping base when put in
contact with a wetting liquid. (c) Bundling sequence of a 2D array of fibres: two bundles of
average size N/2 merge into a large bundle of size N . (d) Alternative mechanism involving a
single step as an initially immersed array of fibres is progressively dried. Sketch adapted from
(Tawfick et al., 2016).

3.3.3. Dynamics. In terms of dynamics, different time scales can be defined as a function of

the stiffness of the lamellea. In the case of rigid lamellae, the interplay between the viscous

flow driven by surface tension and the limiting hydrostatic pressure leads to a typical rising

time (de Gennes et al., 2004):

⌧r ⇠ ⌘�

(⇢g)2d3
⇠ ⌘

�

`2c
d3

(15)

In the opposite case of long flexible lamellae, the dynamics is dominated by the closure of

the gap induced by the low pressure in the rising liquid. In this situation, the resulting

visco-elastic time scale is given by (Duprat et al., 2011):

⌧ve ⇠ ⌘

�

L6
t

d3`2B
(16)

Nevertheless this relation is not universal and we expect elasto-capillary rise between circular

rods to follow different time scales. The rising liquid can indeed flow along the curved corners

formed along contacting rods.

Another time scale has also been proposed to describe a configuration where the liquid flows

from the clamp to the tip (Aristoff et al., 2011, Taroni and Vella, 2012): ⌧b ⇠ ⌘`B/�. A

future comprehensive study of elastocapillary dynamics involved in the different practical

situations would be highly valuable.

3.3.4. Elastocapillary coalescence. The pairing mechanism presented in the previous section

can be adapted to larger scales. A bundle composed of N beams indeed results from

the grouping of two smaller bundles of average size N/2. Both smaller bundles may be

considered as effective beams with a stiffness multiplied by N/2 (assuming that the presence
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of a thin layer of fluid lubricates the relative sliding of the beams) and a separating distance

that is also amplified (Figure 7). The effective distance is simply Nd/2 for a simple linear

array and proportional to N1/2d in the case of a 2-dimensional lattice. Inputting this

effective stiffness and distance in Equation 14, we obtain the merging length for a bundle

of size N Lstick(N) ⇠ N3/4`
1/2
B d1/2 for a linear array. In the case of 2D lattice, the scaling

is slightly different, Lstick(N) ⇠ N3/8`
1/2
B d1/2. The inversion of this relation prescribes the

maximum size Nmax of a 2D bundle composed of flexible elements of length Lt:

Nmax ⇠ L
8/3
t

`
4/3
B d4/3

(17)

in agreement with experimental data obtained with model brushes (Py et al., 2007a).

3.3.5. Simultaneous bundling. Although the previous model is relevant for long brushes

withdrawn from a liquid bath, alternative scenarios have been developed to describe the dry-

ing of 2D arrays of dense pillars initially immersed in a volatile liquid. In this approach, bun-

dles are formed in a single step when the interface of the liquid reaches the top of the pillars

(Figure 7d). For pillars of radius r, deforming the interface corresponds to a cost in surface

energy on the order �r2 per pillar. As a consequence, pillars mutually attract through lat-

eral capillary forces (Kralchevsky and Nagayama, 2000, Chandra and Yang, 2009). How-

ever, forming a bundle also results into bending elastic energy. For a bundle containing

N pillars, the average deflection is proportional to N1/2d. As a consequence, the elastic

energy per bent pillar scales as Er4Nd2/L3. Comparing surface and bending energies, we

obtain the following scaling for the maximum size of a bundle:

Nmax ⇠ (L/Ls)
3 with Ls =

✓

Er2d2

�

◆1/3

(18)

This scenario is consistent with experimental data obtained with Si

nanorods (Zhao and Fan, 2006) or epoxy micropillars (Chandra and Yang, 2010) cor-

responding to pillar densities r/d ⇠ 0.2.

3.3.6. Size distribution. Although both bundling mechanisms provide a maximum size

Nmax for the self-assembled clusters, wide size distributions are observed in experiments

(Boudaoud et al., 2007). Nevertheless, distributions can be rescaled by Nmax, and their

actual shape rely on dynamics. In the cascade mechanism for instance, the first step

consists in forming pairs. However, about one third of the flexible structures remain

statistically unpaired as their first neighbours are already paired. Successive associations

can later on lead to bundles of size 3, 4, 5... and finally to any size below Nmax.

Different approaches have been proposed to describe this distribution from crude mean

field (Boudaoud et al., 2007) to more sophisticated dynamical models, such as arrays of

rigid plates with elastic hinges (Bernardino and Dietrich, 2012, Wei and Mahadevan, 2014)

or idealised brushes of parallel lamellae (Singh et al., 2014, Hadjittofis et al., 2016). The

comparison of the two last references with experimental data is particularly convincing.

Nevertheless, a comprehensive study of the size distribution in the case of 2D arrays of

pillars still remains to be conducted both experimentally and theoretically.
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Combining buckling and bundling mechanisms may also explain qualitatively different

morphologies observed experimentally such as pyramidal bundles or cellular patterns. In-

deed, isolated pillars or small bundles may buckle and collapse on the substrate, while

wider bundles may resist and form the walls of the observed cells (Chiodi et al., 2010,

Tawfick et al., 2016). However, further work would be necessary to confirm quantitatively

such scenario.

3.3.7. Stiction. Although capillary forces can induce the formation of bundles, we might

expect elastic microstructures to recover their initial shape once the liquid has totally

evaporated. However, collapsed structures generally remain permanently deformed due to

attractive molecular forces, which is a major issue for Micro-Electro-Mechanical Systems

(MEMS) (Tas et al., 1996, Abe and Reed, 1996, Maboudian, 1997) or microcontact print-

ing (Hui et al., 2002, Sharp et al., 2004). Van der Waals surface energy Wa involved in

contact adhesion is indeed of the same order of magnitude as the surface tension. In the

case of contact between flat surfaces, the relations between elasticity and surface tension

can be adapted by simply replacing � by Wa (DelRio et al., 2005). When cylindrical rods

are involved, the actual contact width a depends on a balance between adhesion energy

and material stiffness, a ⇠
�

Wa

E
r2
�1/3

(Chaudhury et al., 1996). As a consequence � should

be replaced by W
4/3
a /(Er)1/3 (Roca-Cusachs et al., 2005, Kim et al., 2016).

3.4. Collapsing tubes and channels

In the previous sections, we showed how capillary forces may induce the collapse of simple

slender structures such as rods or lamellae. However, similar effects are also observed in

tubular geometries. For instance, tongues of hummingbirds have a peculiar gutter shape

which spontaneously closes by capillarity when in contact with a liquid. Nectar is then

safely transported through the self-assembled straw (Rico-Guevara and Rubega, 2011).

The deformation of compliant channels induced by capillary forces may however be

tragic in other situations. The collapse of lung airways of premature babies is a major

issue which has motivated numerous academic studies (Grotberg and Jensen, 2004). If

we consider a flexible tube internally liquid-lined, capillary energy is lowered if the tube

collapses, as the liquid-vapour surface is reduced (Figure 8a). The mechanism involves a

snap-through instablility and occurs when surface tension forces overcome the rigidity of the

cross-section of the tube (Hazel and Heil, 2003). As a crude approximation, the problem is

similar to the deformation of flexible frames presented in Section 3.2.3. A tube of radius R

and wall thichness t is expected to buckle and eventually collapse for R � `B ⇠
p

Et3/�

(note that the relevant rigidity is based on the deformation of the cross-section and not in

the bending of the tube along its length as in bundling).

From an engineering prospective, soft microfluidic channels may also deform under

Laplace pressure drop, which may enhance the flow velocity (Anoop and Sen, 2015) or cap-

illary rise (Cambau et al., 2011). In an ideal situation, a microfluidic channel may be viewed

as a rigid groove of width w and depth d covered with a plate of thickness t (Figure 8b).

The deflection � induced by a pressure drop of order �/d is readily estimated from a torque

balance. The capillary moment per unit length scales as �w2/d, while the restoring moment

from the bent plate corresponding to a typical curvature �/w2 is proportional to Et3�/w2.
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At equilibrium, the induced deflection should thus follow:

� ⇠ w4

d`2B
(19)

The closing condition is thus similar to the adhesion of wet lamellae: w ⇠ `
1/2
b d1/2, in

agreement with experiments conducted with a model setup (Cambau et al., 2011). The

actual problem is however more complex as stretching of the wall of the channel is usually

also involved.

a

b

c

Figure 8

(a) Possible collapse of a flexible tube of radius R > `B lined with a layer of liquid. (b) Deflection
of a channel covered with a flexible lid. (c) Adhesion of a pair of lamellae submitted to a tensile

load T in the ideal case where the lamellae do not have any bending rigidity but are unstretchable.

3.5. Capillarity against tension

Deformations induced by capillary forces are not limited to bending modes. The capillary

adhesion of a pair of parallel rods or ribbons submitted to a tensile force has for instance

recently been investigated (Duprat and Protiere, 2015, Legrain et al., 2016).

As a model experiment, consider a pair of vertical lamellea of length L clamped at

their upper extremities with a separating distance d and each submitted to a constant

tension T per unit width, e.g. by hanging weights. We assume that the lamellae do not

have any bending rigidity but are unstretchable. Upon introduction of some wetting liquid

inside the spacing, the lower parts of the lamellae join at a distance Lstick from the clamp

and form an angle ✓ with the vertical as sketched in Figure 8c (tan ✓ = d/2Lstick). The

interfacial energy (per unit width) gained by a lamella by adhering to its neighbour is

Uγ = �(L � Lstick/ cos ✓). As a result of sticking, the bottom point of the lamella lifts by

an amount � = d(1 � cos ✓)/2 sin ✓, inducing a work WT = �T � of the tension force. The

equilibrium Y shape formed by the adhered lamellae is found by maximizing WT +Uγ with

respect to ✓, yielding:

cos ✓ =
T

T + �
(20)

which is reminiscent of the equation defining Young contact angle. Note that the tension

is not necessarily constant and may depend on ✓. For instance, merging lamellae of length

L and thickness t clamped at both ends without any prestrain induces a progressively

increasing tension. Indeed, the corresponding strain can be estimated from elementary
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geometry as " = 1−cos θ
sin θ

d
L
, which leads to the tension T = Et 1−cos θ

sin θ
d
L
. In such a case, the

adhesion angle ✓ is determined by solving the non-linear equation obtained by imputing the

value of T (✓) in the expression for cos ✓.

4. DROPS AND ELASTIC SHEETS

In the previous section, we have described how capillary forces may buckle or, more generally

deflect a rod. Can these results be extended to plates? Bending a plate of thickness h along

a single direction involves the same bending elastic energy proportional to h3 as in the case

of a rod. However, we know that wrapping an orange with a sheet usually leads to complex

folds and wrinkles. Indeed, bending simultaneously a sheet in two different directions

also involves stretching (Audoly and Pomeau, 2010). Since stretching energy scales linearly

with h, the cost of stretching is relatively very high in comparison with bending in the

limit of small thicknesses. As a consequence, whenever possible, a thin sheet complies with

geometrical constraints or mechanical load by pure bending, preserving the distances along

its surface, with important consequences on elasto-capillary phenomena.

In this section we propose to first present the conditions for the spontaneous wrapping

of a liquid droplet with a sheet. We then focus on the capillary adhesion of a thin sheet

on a rigid substrate, as an illustration of how geometrical constraints may impose a finite

stretching of the sheet. We finally describe the case of a small droplet deposited on a floating

sheet and show how the stretching modulus of the plate becomes a relevant parameter, due

to the tension induced by capillary forces.

4.1. Capillary origami

4.1.1. Folding hinges. Although complex 2D structures are commonly obtained through

conventional lithography, building 3D micro-objects remains challenging. Capillary

forces constitute a promising tool to self-assemble micro-objects in 2D and even in 3D

(Boncheva and Whitesides, 2005, Mastrangeli et al., 2009). Impressive 3D structures have

for instance been obtained by depositing a tiny droplet of water on flat templates where

hinges have been previously designed (Legrain et al., 2014). When the droplet is in contact

with the template, capillary forces acting at the contact line tend to pull the flaps, while

the positive Laplace pressure tends to push the hinge away (Figure 9a). The global effect

is a moment of the order of �L per unit width, where L is the length of the flaps (we here

assume that the radius of the droplet is comparable to the size of the structure). As a

consequence, the hinge closes with angle ↵ ⇠ �L/C where C is the rotational stiffness of

the hinge per unit width. Surface tension forces may even be activated on demand using a

small quantity of tin deposited on the hinges (Syms et al., 2003, Filipiak et al., 2009). As

temperature is increased, the tin melts into a liquid droplet whose surface tension may fold

the hinge (Figure 9a). Elegant sub-micrometre self-folding cases have been produced with

such techniques (Cho et al., 2010).

4.1.2. Folding elastic plates. In a technologically simpler situation, a featureless plate (with-

out hinges) may also fold with a very good reproducibility, but now involves distributed

elastic bending of the plate. When a droplet of liquid is deposited on a flexible tem-

plate (Py et al., 2007b), the torque induced by capillary forces tends to bend the plate into

a shape that depends on the volume of liquid. The radius of the droplet is here compa-

18 Bico, Reyssat, & Roman



200nm200nm200nm

a)

b)

Figure 9

Folding elastic plates with surface tension : a) Capillary forces resulting from melting a thin layer

of tin induce a moment and consequently, a rotation along the hinges at a submicrometre scale
(pictures from (Cho et al., 2010)). b) A droplet deposited on a thin elastic sheet may bent the
sheet to minimize the liquid-air interface, leading to the spontaneous wrapping of the droplet
(Py et al., 2007b).

rable with the size of the template, so that the contact line remains pinned at the edges

of the plate (the liquid partially wets the plate). Experimentally, as the liquid evaporates,

the structure may fold on itself (see Figure 9b) or, conversely, open again if the bend-

ing rigidity is too large. Although computing in detail the non-linear coupling between

the deformable droplet and the folding plate is complex (Brubaker and Lega, 2016b), the-

oretical descriptions with simplified (de Langre et al., 2010, Chen et al., 2010) or bidimen-

sional (Brubaker and Lega, 2016b, Péraud and Lauga, 2014) geometries describe almost

quantitatively the evolution of the structure as a function of the volume of the droplet.

In terms of scaling, the closing condition for a plate of size L is simply set by a balance of

the capillary torque with the elastic response EI/L of the plate as a curvature of order 1/L

develops. The structure is thus expected to close for L > Lc with

Lc ⇠ `B

The numerical prefactor depends on the actual shape of the template (Py et al., 2007b).

Additional effects such as contact line depinning (Brubaker and Lega, 2016b,

Péraud and Lauga, 2014) or gravity can also be taken into account and lead to a

large number of competing stable equilibrium states. The equilibrium configurations

observed in practice depend on the mode of preparation of the system. An interesting

example is when a drop impacts the elastic sheet, triggering capillary folding. Different

fold states are observed as a function of the impact velocity (Antkowiak et al., 2011).

We believe that the dynamics of elasto-capillary systems, a challenging problem due to

non-linear interactions, could become an interesting general subject for future work.

From a more academic point of view, many studies have been dedicated to the case of

a partially wetting droplet deposited on a long flexible strip (Rivetti and Neukirch, 2012,

Antkowiak et al., 2011), which can be approximated as a two dimensional problem. In this

case, the capillary moment is limited by the size of the droplet and scales as �Rw, where w is

the width of the strip. If the strip deflects with an angle ↵, the resulting curvature induced

to the strip is of the order of ↵/R and the elastic restoring moment scales as EI↵/R. At
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equilibrium, the deflection angle thus reads:

↵ ⇠ (R/`B)
2

Depending on the boundary conditions and initial conditions, the strip may simply bend as

in the case of a droplet sitting on the cantilever of an AFM (Bonaccurso and Butt, 2005),

but also undergo snap through instabilities (Fargette et al., 2014) on pre-buckled strips.

Finally, if the elastic stiffness varies along the strip, the drop should shift from stiff to soft

regions, as it is energetically favorable to minimize the area of the drop in contact with air.

This effect would then constitute an analogous for the durotaxis phenomenon observed with

bulk materials (Style et al., 2013b).

The more general case of a sessile drop sitting on a flexible disc was considered by

several authors in the limit of linear plate theory, which fails as soon as the deflections

become comparable with the thickness of the plate (Kern and Müller, 1992, Olives, 1993,

Brubaker and Lega, 2016a). In fact, the corresponding axisymmetric bending solutions also

involve compressive azimuthal stresses, which leads to buckling and symmetry breaking.

4.1.3. Applications and practical situations. Capillary wrapping is a robust feature, which

is observed on various systems systems with different wettability (Geraldi et al., 2013,

Bae et al., 2015). At nanoscales, computer simulations even show that graphene sheets

are expected to wrap around nanodroplets (Patra et al., 2009). Several practical applica-

tions of capillary origami have been envisioned.

Self-folding micro-containers could for instance be used to encapsulate drugs

(Fernandes and Gracias, 2012), while three-dimensional photovoltaic cells exhibit enhanced

yield (Guo et al., 2009). Elastic self-closing structures are also present in Nature: the

flowers of some species of waterlilies are able to close and trap an air bubble when im-

mersed. This phenomenon has recently inspired the development of “elasto-pipettes”

which may capture a given volume of liquid from a bath and release it to another one

(Reis et al., 2010, Meng et al., 2014).

Once the structure is closed, an additional electric field applied between the droplet and a

substrate covered with a dielectric layer may be used to reopen the structure: the charged

droplet entrapped in the folded structure is attracted by the ground and the structure

tends to unfold as the voltage is increased (Piñeirua et al., 2010). Similarly to classical

electrowetting, a characteristic voltage Uc =
p

�d/✏ can be defined, where d is the thick-

ness of the dielectric layer and ✏ its permittivity. This type of actuation was proposed as a

way to produce “iridophores” mimicking the color change of particular cells on the skin of

cephalopods (Manakasettharn et al., 2011). Magnetic actuation has finally been proposed

as a way to manipulate ferrofluid droplets wrapped in a thin plate (Jamin et al., 2011).

4.1.4. Geometrical limit in capillary origami (R � `B). In most practical examples pre-

sented above, the size of the thin plate is close to the folding threshold, R ⇠ `B so that

capillary and elastic forces are of comparable magnitude. Another interesting limit corre-

sponds to the case where capillary forces strongly dominate over bending, R � `B , but

are still unable to induce significant stretching. Beautiful experiments were conducted

with polystyrene sheets of thickness t ⇠ 100 nm corresponding to R/`B > 102 and lead to

strongly deformed shapes (Figure 10). These equilibrium shapes may be predicted using a

geometrical limit where the membrane is unstretchable but can accommodate large com-

pression through the formation of wrinkles (Paulsen et al., 2015). Depending on the amount
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Figure 10

In the limit of very flexible sheets (R � `B), capillary wrapping leads to geometrically optimal

non-axisymmetric shapes. Scale bar 1mm (Paulsen et al., 2015).

of liquid present inside the structure, a circular sheet first adopts a shape analogous to the

parachutes described by G.I. Taylor (Taylor, 1963). As the volume of trapped liquid gets

small, the global shape undergoes symmetry breaking, leading to structures reminiscent of

samosas (Figure 10).

4.2. Capillary stretching

The previous situations mostly involve a balance between capillary forces and bending. In

this section we examine if surface tension may induce significant stretching in an elastic

membrane.

4.2.1. Stretching parameter. Consider a model configuration where a thin disk floats at

the surface of a bath of liquid (Figure 11c). We assume here for simplicity that the surface

energy of the solid does not depend on strain, so that the notions of surface stress and

energy presented in Section 2.1 are here equivalent. The total mechanical tension sustained

by the membrane is the surface tension of the liquid �, but surface stresses apply along the

faces of the membrane, leading to an absolute in-plane strain is "1 = (� � �SV � �SL)/Et,

where �SV and �SL are respectively the solid/vapour and solid/liquid surface energies.

This deformation takes as a reference state the solid without interfacial forces, in a putative

state where it would be surrounded by the same material (Figure 11a). In practice however,

one would measure this deformation with respect to a reference state corresponding to a

membrane freely suspended in air (Figure 11b), therefore with an absolute compression

induced by surface stress "0 = 2�SV /Et. As a conclusion, depositing the membrane at the

surface of the liquid leads to the relative stretching strain:

" = "1 � "0 = (1 + cos ✓)S with S =
�

Et
(21)

where ✓ is Young’s contact angle. The capillary stretching parameter S thus corresponds to

the characteristic strain induced on a sheet by surface tension or equivalently to the ratio

of surface tension to stretching energies.

Capillary stretching
parameter:

S =
�

Et

In general, we therefore expect elasto-capillary systems with a size L to depend on two

dimensionless parameters (L/`B ,S). Typical values of S used in the experiments reported in

this review range from S ⇠ 10−3 to 10−6 and it would be tempting to disregard stretching

effects. Nevertheless, due to boundary conditions or to the geometry of the system, the

impact of stretching and in-plane forces may be significant.
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Figure 11

Action of surface stresses on a thin sheet: while the ideal extraction of a membrane would induce
a compressive strain "0, depositing this membrane at the surface of a liquid bath results in a
stretching stain "1. Laying a thin sheet initially sustained in the air thus leads to a relative strain
" = "1 � "0. Nevertheless, the global tension across the membrane is equal to the surface tension

of the liquid.

a) b)

5 cm

Figure 12

(a) Sticking a thin disk on a sphere faces geometrical incompatibilities: maintaining a constant
radius in the disk results in a compression of the perimeter and conversely, maintaining the
perimeter constant induces a stretching strain along the radial direction. (b) Depositing a wide
adhesive sheet on a sphere leads to complex adhesion patterns, which width (indicated with the
red circle) is set by the critical radius ac.

4.2.2. Capillary wrapping of a rigid sphere. A first illustration of capillary induced stretch-

ing is the case of the wrapping of a solid sphere by a thin sheet coated with a wetting liquid.

Consider an ideal case where an initially flat disk of radius a and thickness t perfectly covers

a sphere of radius R (Figure 12a). We focus here on the limit where bending is negligible in

comparison with capillary adhesion (R � `B). Transforming the disk into a spherical cap

results in a radial extension and an orthoradial compression of the sheet. Indeed keeping

constant the perimeter of the disk as it is embossed to the sphere obviously tends to stretch

the radial direction, and conversely, maintaining the diameter results in a excess of perime-

ter. The scaling for the corresponding strains can be estimated from simple length conser-

vation as " ⇠ (a/R)2, which leads to a cost in elastic energy Ue ⇠ Eta2(a/R)4. Conversely,

the gain in adhesion energy simply reads Us ⇠ �a2. The disk is therefore expected to adhere

perfectly on the sphere if its radius is below a critical value (Majidi and Adams, 2009):

ac = RS
1/4 (22)

Very complex adhesion patterns are experimentally obtained with larger disks (Figure 12b).

However, the characteristic width of these patterns remains set by ac (Hure et al., 2011).
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An interesting transition between bending and stretching is also found in the “liquid

blister” test (Chopin et al., 2008). A sheet is initially laid on a plate covered with a thin

layer of liquid and indented from underneath through a hole in the plate. Different tran-

sitions are observed as the displacement d imposed by the indentor is increased. First,

the blister remains axisymmetric, and its extension R is dictated by a balance between

stretching and adhesion and follows R ⇠ dS−1/4. However due to the increasing stretching

energy, the blister eventually takes a triangular shape set by a balance between bending

and adhesion.

We see on these examples that capillary adhesion leads to in-plane stresses which are

the main players in determining the boundaries of adhesive patches. These stresses are

not due to capillary force directly pulling on the boundary of the plate, but are indirectly

induced by the distortion in its geometry.

4.2.3. Sheet on a drop. We now describe another scenario for capillary stretching. In an

elegant experiment (Figure 13a), a very thin polymeric disk of radius L is laid on a liquid

drop of radius R � `B (King et al., 2012). The combination of capillary traction along

the boundary, and Laplace pressure acting on the surface of the sheet tends to impose the

radius of curvature of the droplet to the elastic disk, leading, as in the case of the rigid

sphere, to radial tension and orthoradial compression. As a consequence, wrinkles appear

when the compressive stress induced by the deformation of the disk overcomes the capillary

tension, Et(L/R)2 ⇠ �, ie L/R ⇠ S
1/2. The wavelength of the wrinkles results from a

balance between capillary traction and bending stiffness (Paulsen et al., 2016). When the

radius of the sphere is decreased (and therefore the compressive orthoradial load increased),

localised folds eventually appear and motivate current theoretical developments.

4.2.4. Drop on a floating sheet. Another elastocapillary experiment consists in depositing

a tiny drop on a large thin disk floating on bath of liquid (Figure 13b). In the regime of

highly compliant sheets (the radius of the drop R � `B), an intriguing radial wrinkling

pattern is observed (Bodiguel, 2006, Huang et al., 2007, Toga et al., 2013). As in the case

described just above, capillary forces produce a dimple in the sheet below the droplet,

which results in radial tension. Outside the drop, this tension tends to pull inwards any

material circle on the sheet, resulting in azimuthal compression. Wrinkling occurs when

compression overcomes the isotropic tension initially induced by capillary traction on the

outer boundaries of the floating membrane. While the number N of wrinkles apparently

relies on a balance between capillary traction and bending (N ⇠
p

R/`B), the interplay

between surface tension and stretching dictates their radial extension Lw, as experiments

were first interpreted to follow Lw ⇠ RS
−1/2 (Huang et al., 2007). From these two visual

observations (N,Lw), one can infer `B and S, and therefore estimate nondestructively both

the material stiffness E and the thickness of the sheet t. This experiment triggered an active

research in the last years because the detailed description of the different phenomena is quite

subtle. Note for example the period doubling wrinkling close to the contact-line with the

drop (Figure 13c), which is reminiscent of the more complete capillary cascade observed

in (Huang et al., 2010). Only after several years did theoretical studies obtain a prediction

for the extension Lw ⇠ RS
−1/3, which would also be compatible with experimental data

(Schroll et al., 2013).

In an attempt to understand this capillary wrinkling, the simpler situation of an annulus

floating on water was first considered: wrinkling appears when the surface tension of the
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Figure 13

(a) A disk of very flexible membrane wrinkles when laid on a drop (Paulsen et al., 2015). (b) A
drop, or a bubble on a very flexible floating membrane generates tension that leads to wrinkling
(Huang et al., 2007). (c) Close up of wrinkle patterns close to the contact-line with the drop
(Schroll et al., 2013). (d) Wrinkles are also observed on a floating annulus subject to differential
surface tension (Piñeirua et al., 2013).

outer liquid �o is significantly lower than that of the inner liquid surface �i (for instance

if surfactant is added outside the annulus). Indeed, the stronger inner tension �i tends to

reduce the radius of the inner hole, leading to azimuthal compression of the annulus along its

inner boundary, and eventually to buckling. A first experimental realisation of this problem

in a macroscopic system (Piñeirua et al., 2013) was limited to a different regime, where the

buckling wavelength was determined by the interplay of bending rigidity and underlying

liquid weight (Figure 13d). However in the limit of infinitely flexible sheets, or R/`B ⌧ 1,

theory shows that wrinkles extend over a distance Lw = R �i/2�o, if R is the radius of the

inner hole in an infinite membrane (Davidovitch et al., 2011). When returning to the initial

problem of the drop on a sheet, this result was used with the drop-induced pulling stresses �i
which was estimated as �3

i ⇠ Et �2
o in the limit of infinitely flexible sheets, which led to Lw ⇠

R(Et/�0)
1/3 ⇠ RS

−1/3. However, the richness of the simplified problem is illustrated by

recent experiments using ultra-thin sheets, which showed that far above buckling threshold,

a partial collapse of a finite annulus may also occur (Paulsen et al., 2017).

If the liquid drop is now deposited on a very thin elastomer membrane

clamped along its remote boundary, the drop strongly deforms the mem-

brane (Schulman and Dalnoki-Veress, 2015) seen as an extremely compliant sub-

strate. From the observation of the apparent contact angles, the tension in the

membrane may be measured, which may allow to infer the surface stress of the elas-

tomer (Nadermann et al., 2013). Droplets deposited on opposite sides of the membranes

interact through the out-of-plane deformation of the membrane that they induce, and

therefore spontaneously assemble (Liu et al., 2017).

5. CONCLUSION

Although surface tension is usually not considered in fluid-structure interactions involving

large scales, capillary forces become dominant at submillimetric scale and may deform

micro-objects. We focused in this review on three main types of deformation occurring

at different dimensions. 3D deformations induced by capillarity to an elastic solid occur

on a “shear” elastocapillary length `S ⇠ Υ/G. The parameter Υ represents the surface

stress acting at the surface of a solid in the case of an object immersed in a fluid. It can

also be taken as the surface tension of a liquid � when the deformations induced by a
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sessile droplet at the surface of a solid are considered. Since this length scale is atomic for

usual engineering materials, elastocapillary phenomena have long been neglected. However,

the growing development of soft polymers gives access to materials with Young’s moduli

5 to 10 orders of magnitude smaller than steel, paving the way to stimulating studies on

elasto-capillarity at the macroscopic scale.

Bending, buckling, bundling or coiling deformations in 1D slender structures give rise

to spectacular shapes and patterns. The typical curvature induced by surface tension forces

may be described by the bending length `B ⇠
p

Et3/�, where Et3 is the bending modulus

for a structure of thickness t.

The bending of slender structures may be extended to 2D sheets. However, geometri-

cal constraints result into stretching and compression, which may lead to complex buck-

ling instabilities and beautiful patterns such as wrinkles or folds. The effect of stretch-

ing/compression is characterized by a stretching parameter S = �/Et, which can also be

viewed as the comparison of `S with the thickness of the structure.

As a conclusion, elasto-capillarity thus describes fascinating phenomena across many

length scales. It covers a wide range of academic and applied problems from static and

dynamic wetting and adhesion to the self-assembly of slender structures or the genera-

tion of 3D shapes from flat templates. More particularly, the field of biophysics driven

by the better control of mechanics at the cellular level, is certainly mature for numer-

ous upcoming applications. Campàs et al. for instance nicely demonstrate how capillary

pressure may be used for in vivo probing of living cells (Campàs et al., 2013). Tubes of bi-

ological membrane are also known to undergo an instability reminiscent of elasto-capillary

instability of soft gels, which leads to the fragmentation of mitochondria through pearling

(Gonzalez-Rodriguez et al., 2015). The development of micro- and nano-engineered me-

chanical devices is also likely to raise new elasto-capillary problems.

SUMMARY POINTS

1. The 3D deformation of a bulk solid induced by surface tension occur at the “shear”

length scale `S = Υ/G. This scale is atomic for traditional engineering materials but

may become macroscopic when soft polymeric or biological materials are involved.

2. Depositing a liquid droplet at the surface of a soft elastic solid induces the formation

of a wetting ridge of typical extension `S , which affects the static and dynamic

wetting properties of the liquid.

3. Capillary induced moments may bend 1D slender structures. The corresponding

curvature is dictated by a “bending” length `B ⇠
p

Et3/�.

4. This bending effect may be extended to 2D sheets or shells although geometrical

constrains may induce the stretching or compression of the structure. This addi-

tional effect is characterised by a “stretching” number S = �/Et.

FUTURE ISSUES

1. Depositing a liquid droplet on a soft substrate induces the formation of a ridge

of typical size `S . However, the physical cut-offs of the stress singularities at the

contact line remain to be confirmed. Most soft materials are composed of polymers

www.annualreviews.org • Elastocapillarity 25



or gels and the evolution of surface stresses with strain is not obvious.

Determining experimentally such stresses would also be important since a strong

variation of Υ in the vicinity of the ridge should modify its profile.

More generally, understanding the dynamics of the deformation of soft solids would

be crucial. Measuring the dynamics of droplet sliding on a soft substrate may indeed

constitute a rheometry technique to probe soft materials.

2. Two different mechanisms seem to explain the formation of bundles obtained exper-

imentally with arrays of wet fibres. However the limit of validity of these scenarios

remains to be confirmed. More generally, understanding the bundling dynamics

would be very valuable. Several works have been dedicated to flexible rods, but the

general case of 2D arrays of fibres remains an open question.

3. Although large amplitude deformation of thin sheets mainly rely on bending,

stretching and compression may also play an important role due to geometrical

incompatibilities. A consequence of this additional ingredient is the formation of

wrinkles, folds or crumples, especially in the case of very thin sheets or shells (of

size L � `B). The description of such complex structures would deserve a compre-

hensive review.

Beyond static shapes, understanding the wrapping dynamics would also be impor-

tant from a practical point of view since the final structure may rely on the order

of folding events.

4. Finally, building up on the framework of elastocapillary phenomena may pave the

way to explore other surface interactions such as adhesion and even fracture, which

can also be described in terms of surface energy. Nevertheless additional effects

such as friction may have to be added.
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Andreotti et al., 2016.Andreotti, B., Bäumchen, O., Boulogne, F., Daniels, K. E., Dufresne, E. R.,

Perrin, H., Salez, T., Snoeijer, J. H., and Style, R. W. (2016). Solid capillarity: when and how

does surface tension deform soft solids? Soft Matter, 12(12):2993–2996.

Andreotti et al., 2011.Andreotti, B., Marchand, A., Das, S., and Snoeijer, J. H. (2011). Elastocap-

illary instability under partial wetting conditions: Bending versus buckling. Physical Review E,

84(6):061601.

Andreotti and Snoeijer, 2016.Andreotti, B. and Snoeijer, J. H. (2016). Soft wetting and the Shut-

tleworth effect, at the crossroads between thermodynamics and mechanics. EPL (Europhysics

Letters), 113(6):66001.

Anoop and Sen, 2015.Anoop, R. and Sen, A. K. (2015). Capillary flow enhancement in rectangular

polymer microchannels with a deformable wall. Physical Review E, 92(1):013024.

Antkowiak et al., 2011.Antkowiak, A., Audoly, B., Josserand, C., Neukirch, S., and Rivetti, M.

(2011). Instant fabrication and selection of folded structures using drop impact. Proceedings of

the National Academy of Sciences, 108(26):10400–10404.

Aristoff et al., 2011.Aristoff, J. M., Duprat, C., and Stone, H. A. (2011). Elastocapillary imbibition.

International Journal of Non-Linear Mechanics, 46(4):648–656.

Audoly and Pomeau, 2010.Audoly, B. and Pomeau, Y. (2010). Elasticity and Geometry: From hair

curls to the non-linear response of shells. Oxford University Press, Oxford.

Bae et al., 2015.Bae, J., Ouchi, T., and Hayward, R. C. (2015). Measuring the Elastic Modu-

lus of Thin Polymer Sheets by Elastocapillary Bending. ACS Applied Materials & Interfaces,

7(27):14734–14742.

Barrière et al., 1996.Barrière, B., Sekimoto, K., and Leibler, L. (1996). Peristaltic instability of

cylindrical gels. The Journal of Chemical Physics, 105(4):1735–1738.

Bernardino and Dietrich, 2012.Bernardino, N. R. and Dietrich, S. (2012). Complete wetting of

elastically responsive substrates. Physical Review E, 85(5):051603.

Bico et al., 2004.Bico, J., Roman, B., Moulin, L., and Boudaoud, A. (2004). Adhesion: Elastocap-

illary coalescence in wet hair. Nature, 432(7018):690–690.

Bodiguel, 2006.Bodiguel, H. (2006). Propriétés mécaniques de films polymère ultraminces. PhD
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