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A partially-wetting liquid can deform the underlying elastic substrate upon which it rests. This situation

requires the development of theoretical models to describe the wetting forces imparted by the drop

onto the solid substrate, particularly those at the contact-line. We construct a general solution using a

displacement potential function for the elastic deformations within a finite elastic substrate associated

with these wetting forces, and compare the results for several different contact-line models. Our work

incorporates internal contributions to the surface stress from both liquid/solid Sls and Ssg solid/gas solid

surface tensions (surface stress), which results in a non-standard boundary-value problem that we solve

using a dual integral equation. We compare our results to relevant experiments and conclude that the

generalization of solid surface tension Sls s Ssg is an essential feature in any model of partial-wetting.

The comparisons also allow us to systematically eliminate some proposed contact-line models.

1 Introduction

The deformation induced by a drop of liquid resting on an

elastic substrate has been studied for some time.1–3 Describing

such deformations has led to the development of the eld of

elastocapillarity, in which elastic stresses are coupled to surface

tension (capillary forces). Among the many biological, medical

and industrial applications that involve the interaction of so

substrates with uid interfaces4 are enhanced condensation on

so substrates5 and adhesion by liquid bridges.6 Despite much

progress motivated by specic applications, a fundamental

characterization of how a liquid wets a so elastic solid remains

elusive.

In problems coupling elasticity to capillarity, the wetting

properties of the substrate strongly control the material

response. For a liquid on a hard substrate, these wetting prop-

erties are dened by the Young–Dupré equation,7,8

ssg � sls ¼ s cos a, (1)

which relates the liquid/gas s, liquid/solid sls and solid/gas ssg
surface tensions to the static contact-angle a. Fig. 1 illustrates

the interpretation of the Young–Dupré relationship as a hori-

zontal force balance. Note that this formulation leads to an

imbalance of forces normal to the solid substrate with

magnitude FCLt ¼ s sin a. The classical model of wetting of so

substrates includes this normal contact-line force applied as a

point load at the contact-line, as well as the capillary pressure

p ¼ 2s sin a/R uniformly distributed along the liquid/solid

surface area, as shown in Fig. 2. More recently, alternative

models of wetting have been proposed to properly account for

intrinsic surface stresses in the elastic substrate and to distin-

guish surface stress from surface energy.9,10 For these models,

thermodynamics dictates that the surface stress S is related to

the surface energy s by the Shuttleworth equation, SAB ¼ sAB +

vsAB/v3 with 3 the bulk strain parallel to the interface, reecting

an energetic penalty for deformation.11 Here A, B represent the

phases on either side of the interface. For substrates with an

incompressible surface layer, the surface stress S is equal to the

surface energy s and both can be referred to as surface tension

(Weijs et al.10). Herein, we refer to sAB as the surface tension and

SAB as the solid surface tension. The result of the newmodels is

to augment the classical model with a contact-line force

FCLk parallel to the solid and directed into the liquid phase.

In this paper we formulate a general model that describes

the deformations of an elastic substrate by a partially-wetting

liquid drop. The general model, formulated in terms of a

displacement potential function, accommodates three rival

Fig. 1 The Young–Dupré eqn (1) schematically as a horizontal force
balance.
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contact-line models. By introducing both liquid/solid Sls and

solid/gas Ssg solid surface tensions, we generalize the work of

Style and Dufresne12 on neutrally-wetting substrates (a¼ 90�) to

partially-wetting substrates (a s 90�). This leads to a force

boundary condition at the substrate surface that varies along

the problem domain. We construct a solution to this non-

standard problem by setting up a dual integral equation that

results from extending the boundary condition into the

complementary interval. We compare computed displacement

elds from the general model to experimental results. The

markedly different displacement elds predicted by the

different models eliminates one model, and suggests suitable

experiments to further resolve which of the others are most

plausible.

Elastocapillary phenomena generally become important

when the liquid surface tension s and the elastic resistance of

the solid substrate have similar magnitude, as measured by the

elastocapillary number Y ¼ s/EL. Here E is the elastic modulus

of the substrate and L is a characteristic length scale. For most

liquids of interest s ¼ 10–100 mN m�1, and to adjust Y it is

typically easier to change L or E. Experiments on the wrinkling

of elastic sheets13–16 and capillary origami17 use small L. Using

silicone gel,18,19 gelatin20,21 or agar gel22 as a solid substrate

allows E to be controllably tuned over several orders of magni-

tude. In systems without an intrinsic length scale, the elasto-

capillary length ‘ ¼ s/E sets the size of the elastic deformation.

For reference, water (s¼ 72 mNm�1) on a silicone gel substrate

(E ¼ 3 kPa) yields deformations of order ‘ � 10�6 m. This is

distinct from thin solids, such as those utilized in capillary

origami experiments, where an alternative elastocapillary

length
ffiffiffiffiffiffiffiffi

B=s
p

can be dened using the bending modulus B as a

measure of the elastic resistance.

Many of the relevant experimental studies mentioned above

involve neutrally-wetting (a ¼ 90�) substrates.13,18 Studies of

partial-wetting generally involve adding surfactant to the liquid

to adjust the liquid/gas surface tension. Schroll et al.16 study

how the wrinkling of ultra-thin elastic sheets due to a droplet is

affected by the presence of a liquid bath covered in a pre-

determined surfactant concentration. They derive near-

threshold and far-from-threshold limits that recover experi-

mental observations. Daniels et al.22 have shown that a droplet

of surfactant-laden liquid placed on an agar gel can fracture the

substrate in a starburst pattern. The number of arms in a given

starburst is controlled by the surface tension contrast ssg � s,

an alternative measure of the degree to which a liquid partially

wets a so solid. Bostwick and Daniels23 developed a model to

predict the number of arms for this situation, and have shown

that the location of the contact-line, which depends upon a and

the droplet volume V, is the critical parameter in wavenumber

selection, in agreement with experiments. Lastly, Style et al.24

study the contact mechanics of glass particles pressed into so

materials. These results show that a obeys a generalized Young–

Dupré equation when the indenting particle size is on the order

of the elastocapillary length ‘.

Theory of the spreading of liquids over compliant

substrates naturally relies upon an appropriate characteriza-

tion of the physics of wetting, in much the same way that

traditional dynamic spreading laws for liquids on rigid

solids25–27 build upon the static Young–Dupré equation. For a

liquid spreading on a so viscoelastic substrate, Kajiya et al.28

show that the liquid can move continuously or with stick-slip

motion depending upon the ratio of the loss to storage

modulus.29 The motion of a liquid on a so substrate expe-

riences viscoelastic braking from the wetting ridge at the

contact-line.30–32

Hence, a description of the deformation eld is needed to

study the dynamics of spreading. Most of the existing theoret-

ical models are only valid for neutrally-wetting (a ¼ 90�)

substrates12,18 or straight 2D contact-lines.33 Alternative

methods employ computational approaches such as density

functional theory (DFT)34 and molecular dynamic (MD) simu-

lations35 to gain a more thorough understanding of the wetting

forces acting at the contact-line. The thrust of our work lies in

the modeling of partially-wetting systems.

We begin by formulating a mathematical model (Section 2)

for the deformation of an elastic substrate due to a partially-

wetting liquid droplet. The effects of partial-wetting appear in

(i) the contact-line force boundary conditions and (ii) the solid

surface tensions Ssg s Sls. Three rival contact-line models are

introduced and the governing equations are recast using a

displacement potential. We then construct a general solution

of the dual integral equation that results from the disconti-

nuity in solid surface tension S along the surface of the

substrate. The discontinuity occurs where the interface

changes from liquid/solid to solid/gas. Our numerical results

are presented in Section 3, where we contrast measures of the

elastic displacement eld for the different models as they

depend upon the model parameters. Comparisons between

the predicted elds and relevant experiments allow us to

systematically eliminate some proposed contact-line models.

In addition, we show that the generalization of solid surface

tension is an important feature for modeling wetting on so

substrates. We conclude with some remarks in Section 4 on

Fig. 2 Definition sketch: a liquid droplet with contact-line radius R

wetting an elastic substrate of height h, elastic modulus E and Poisson
ratio n and the associated wetting forces included in the model; the
capillary pressure p and contact-line force FCL.
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future studies that could help resolve the issue of which model

of wetting is most realistic.

2 Mathematical formulation

A partially-wetting droplet resting on a solid substrate is held by

liquid–gas surface tension s at its free surface. For negligible

gravitational forces, the equilibrium shape is a spherical-cap

with contact-line radius R, static contact-angle a and volume

V

R3
¼ p

3

ð2� 3 cos aþ cos3 aÞ
sin

3
a

: (2)

Note that for xed volume drops, R and a are not indepen-

dent parameters. The linear elastic substrate has thickness h

and is characterized by an elastic modulus E and Poisson ratio

n, as shown in Fig. 2. The liquid interacts with the solid through

both the capillary pressure p ¼ 2s sin a/R uniformly distributed

over the liquid/solid contact area and the unbalanced contact-

line force FCL applied at the contact-line radius R (cf. Fig. 2). We

compute the elastic response in the substrate due to these

wetting forces.

2.1 Field equations

We begin by introducing the axisymmetric displacement eld u,

u ¼ ur(r, z)êr + uz(r, z)êz, (3)

in cylindrical coordinates (r, z), which satises the governing

elastostatic Navier equations,

(1 � 2n)V2u + V(V$u) ¼ 0. (4)

The strain eld 3 is dened as

3 ¼ 1

2

�

Vuþ ðVuÞt
�

; (5)

while the stress eld sij for this linear elastic solid is given by

sij ¼
E

1þ n

�

3ij þ
n

1� 2n
3kk

�

: (6)

2.2 Boundary conditions

We assume the elastic substrate is pinned to a rigid support at z

¼ 0 by enforcing a zero displacement boundary condition there,

u(r, 0) ¼ 0. (7)

On the free surface z ¼ h, we specify the surface tractions

srzðr; hÞ ¼ FrðrÞ; 0 # r#N;

szzðr; hÞ � SlsVk
2uzðr; hÞ ¼ FzðrÞ; 0 # r#R;

szzðr; hÞ � SsgVk
2uzðr; hÞ ¼ FzðrÞ; R\r#N:

(8)

here Vk
2 is the surface Laplacian and Fz(r) and Fr(r) are the

applied vertical and horizontal forces associated with the

liquid/solid interactions. These forces are model-dependent,

and their particular choice will be discussed in Section 2.3. As

discussed by Style and Dufresne,12 Jerison et al.,18 introducing

the S solid surface tension (i) allows for the modeling of

neutrally-wetting substrates Ssg ¼ Sls(a ¼ 90�) and (ii) regular-

izes the singularity associated with applying a d-function force

to the medium's surface. Here, we extend this technique to

allow us to model partially-wetting substrates with Ssg s Sls

corresponding to a s 90�.

2.3 Wetting forces

We now develop a model for the forces Fz, Fr associated with the

wetting of a liquid droplet on a so elastic substrate. For a

liquid droplet held by uniform surface tension s, the vertical

wetting forces are given by

FzðrÞ ¼ s sin a

�

dðr� RÞ � 2

R
HðR� rÞ

�

: (9)

here the capillary pressure p ¼ 2s sin a/R (second term) is

uniformly distributed over the liquid/solid surface area by the

Heaviside function H(R � r), whereas the unbalanced vertical

contact-line force FCLz ¼ s sin a (rst term) is applied as a point

load using a delta function d(r � R) at the contact-line r ¼ R.

Note the orientation of the applied forces; the capillary pressure

p compresses the substrate, while the contact-line force FCLz
tends to pull the substrate upwards. In fact, the upward contact-

line force precisely balances the net downward force from the

pressure. Eqn (9) is the standard, or classic, description of

wetting of so substrates.

More recent models of wetting have introduced an uncom-

pensated parallel contact-line force Fr(r), in addition to the

vertical wetting forces (9) described above.10,34 Here we would

like to construct a general solution for the models of wetting

discussed below in order to contrast the resulting elastic elds.

Each model for the uncompensated parallel contact-line force

can be written as

Fr(r) ¼ FCL
r d(r � R) (10)

with the coefficient FCLr for the respective model shown in

Table 1.

2.4 Summary of wetting models

Model I corresponds to the classic picture of wetting in which

the contact line exerts no horizontal force on the substrate. In

contrast, Models II and III take the same form with respect to a,

Table 1 Horizontal contact-line force FCLr for the classic description of
wetting (I), used by Jerison et al.,18 Style and Dufresne,12 and updated
Models II and III, proposed by Das et al.34 andWeijs et al.,10 respectively.
Here s is the surface tension, n the Poisson ratio, and a the contact
angle given by eqn (1)

Model FCLr

I 0

II �s(1 + cos a)
III �sð1þ cos aÞ

�

1� 2n

1� n

�
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but have different dependence on the Poisson ratio n of the

substrate. Note that for the unusual case of n ¼ 0, Model III

reduces to Model II; however, ordinary materials do not typi-

cally reach this limit.36 The more interesting case is that of

incompressible substrates, for which n ¼ 1/2 and Model III

reduces to Model I. Many so materials are known to be highly

incompressible37 and modern measurement techniques38 are

making it possible to obtain precise values of the deviation from

1/2. In particular, the experiments of Style et al.24 report n ¼
0.495 for the silicone gel to which we compare model results

below. Even if Model III were the correct model, the closeness to

n ¼ 1/2 would explain why Model I has been so successful in

predicting the elastic deformations on so substrates.

2.5 Displacement potential—Love function

The Navier eqn (4) are simplied by introducing the Galerkin

vector G,39 dened such that

u ¼ 1þ n

E

�

2ð1� nÞV2G � VðV$GÞ
�

(11)

with

G ¼ x(r, z)êz. (12)

Sometimes the potential x is referred to as the Love function

from classical linear elasticity. We substitute (11) into the

coupled system of differential eqn (4) to show that x satises the

biharmonic equation

V
4
x ¼ 0. (13)

The displacement (7) and traction (8) boundary conditions

can similarly be written in terms of the potential function x.

2.6 Hankel transform

We seek solutions to (13) for the potential function using the

Hankel transform pair,

x̂ðs; zÞ ¼
ð

N

0

rxðr; zÞJ0ðsrÞdr; (14a)

xðr; zÞ ¼
ð

N

0

sx̂ðs; zÞJ0ðsrÞds; (14b)

where J0 is the Bessel function of the rst kind and s is the radial

wavenumber.

2.7 Reduced equations

We introduce the following dimensionless variables;

uh ~u
s

E
; rh ~rh; zh ~zh; sh

~s

h
; Rh ~Rh: (15)

here lengths are scaled by the thickness of the elastic substrate

h and elastic deformations by the elastocapillary length ‘h s/E.

Herein we drop the tildes for notational simplicity. Substituting

the Hankel expansion (14a) into (13) gives a reduced equation

for x̂,

V4x̂ ¼
�

d2

dz2
� s2

�2

x̂ ¼ 0; (16)

combined with the no-displacement condition on the rigid

support z ¼ 0,

dx̂

dz
¼ 0; ð1� 2nÞd

2
x̂

dz2
� 2ð1� nÞs2x̂ ¼ 0: (17)

The general solution of (16) and (17) is given by

x̂ ¼ C

�

coshðszÞ þ sz sinhðszÞ
2ð1� 2nÞ

�

þDðsz coshðszÞ � sinhðszÞÞ;

(18)

with the constants C, D to be determined from the traction

boundary conditions (8). Here we note that the form of (8) is not

amenable to standard analysis because the vertical boundary

conditions szz change along the problem domain r ˛ [0,N]. We

address this issue in the following section by constructing a

solution to this non-standard problem using a dual integral

formulation. Given the solution x̂, we compute x in real space by

evaluating the inverse Hankel transform (14b). Once the

potential function x is known, the displacement u, strain 3 and

stress s elds are obtained via substitution into (11), (5) and (6),

respectively.

2.8 Dimensionless groups

The following dimensionless groups arise naturally from the

choice of scaling (15),

Yh
s

Eh
; Ysg h

Ssg

Eh
; Yls h

Sls

Eh
; Lh

R

h
: (19)

Here Y, Ysg and Yls are the liquid/gas, solid/gas and liquid/solid

elastocapillary numbers and L is the aspect ratio or dimen-

sionless contact-line radius. We also dene the solid surface

tension contrast DY h Ysg � Yls, which can be viewed as a

measure of partial wetting.

2.9 Dual integral equation

The vertical component szz of the traction boundary condi-

tions (8) changes along the problem domain depending upon

whether the solid substrate interacts with the liquid droplet

(r ˛ [0, R]) or the passive gas (r ˛ [R, N]). To specify the

constants C, D in our general solution (18), we recast the

traction boundary conditions (8) in a form amenable to a dual

integral solution,

srz ¼ Fr(r), 0 # r #N (20a)

szz � SsgVk
2uz � Fz(r) ¼ (Sls � Ssg)Vk

2uz, 0 # r # R (20b)

szz � SsgVk
2uz � Fz(r) ¼ 0, R < r # N (20c)

The vertical force balance (20b) and (20c) is then written as
ð

N

0

AðsÞJ0ðsrÞds ¼
	

GðrÞ 0# r#R

0 R\r#N
(21)
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with

AðsÞ ¼ s ŝzz þ Ssgs
2ûz � F̂ z

� �

;GðrÞ ¼ DS

ð

N

0

s3ûzJ0ðsrÞds; (22)

and DS h Ssg � Sls. Eqn (21) is recognized as a dual integral

equation with a standard solution,40,41

AðsÞ ¼ 2

p

ðR

0

cos st

ðR

t

rGðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � t2
p drdt: (23)

Note that the solution is valid over the full domain r ˛ [0,N].

Substituting ((18) and (22)) into (23) yields

s(t̂zz + Ssgs
2ûz � F̂ z) ¼ CA1(s) + DA2(s), (24)

where

AkðsÞ ¼ DS
2

p

ðR

0

cos st

ðR

0

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � t2
p

ð

N

0

q3vkðqÞJ0ðqrÞdqdrdt; (25)

and

v1ðqÞ ¼ � q3sinh q

2ð1� 2nÞ ; (26a)

v2ðqÞ ¼ q2
2ð3� 10nþ 8n2Þsinh q� 2qð1� 2nÞcosh q

2ð1� 2nÞ : (26b)

Eqn (24) and the Hankel-transformed horizontal force

balance (20a) are a linear system of equations for C, D, whose

solution is given in the Appendix.

3 Results

Our goal is to contrast the three contact-line models and the

interpretation of solid surface tension for partial wetting, by

comparing theoretical displacement elds to relevant experi-

ments. Some of these comparisons can be directly evaluated

using data from the literature, while others identify tests which

would help design future experiments. We compute the elastic

elds by substituting the coefficients C, D into (12) and evalu-

ating (14b) for the displacement potential, from which the

displacements u, strains 3 and stresses s are readily obtained.

These solutions provide quantitative measures of how the

elastic eld, for instance the vertical contact-line displacement

uCLz (peak height), varies with the model parameters.

We begin by comparing our model to the experimental

results of Style et al.,19 who use confocal microscopy to measure

surface displacements on silicone gels from partially-wetting

droplets. Their focus is in how the displacement elds vary with

two length scales, the contact-line radius R and substrate height

h. Fig. 3 shows how the vertical surface displacement uz changes

across the substrate for Model I. Material parameters for our

computations are taken directly from the reported values.19

Note that n z 1/2 for silicone gels, which implies that contact-

line Models I and III are equivalent for these experiments. We

see that our model is able to adequately reproduce the experi-

mental results over a range of contact-line radii, which is

achieved experimentally by varying the droplet volume while

holding the other parameters xed. The capillary pressure p ¼
2s sin a/R tends to compress the material beneath the drop and

is more pronounced for smaller drops, as would be expected.

For larger drops R ¼ 225.5 mm (solid line type), the contact-line

force dominates the elastic response and the compressive

troughs on either side of the contact-line peak become nearly

symmetrical, reecting a nearly two-dimensional solution.18

Despite the large variation in surface prole with droplet size,

the local geometry of the wetting ridge remains invariant; the

predicted microscopic contact angle 93.8� for both contact-line

Models I and II agrees well with that reported by Style et al.19 (cf.

ESI, Fig. S5†). We attribute this observation to the generaliza-

tion of solid surface tension.

The peak height uCLz directly at the contact-line can be used

as a measure of the elastic response of the underlying substrate.

In Fig. 4, we plot the peak height for Models I and III as a

function of the contact-line radius R for various substrate

heights h, and compare with experiments on silicone gel

substrates.19 For a xed substrate height h, the peak height

increases with increasing contact-line radius R, achieves a

Fig. 3 Comparison with Style et al.,19 Fig. 1. Surface displacement uz
on a h ¼ 50 mm thick substrate against r from Model I, III, as it depends
upon the contact-line radius R for n¼ 0.5, Ysg ¼ 0.207, DY¼�0.033, E
¼ 3 kPa, s ¼ 46 mN m�1 and a ¼ 95�. Lengths are reported in mm.
Experimental results are shown with open symbols. Material properties
are taken to be those reported in the experiments.19

Fig. 4 Comparisonwith Style et al.,19 Fig. 3. Contact-line displacement
uCLz computed from Model I, III against drop radius R, as it depends
upon the substrate height h for n ¼ 0.5, Ysg ¼ 0.207, DY ¼ �0.033, E ¼
3 kPa, s ¼ 46 mN m�1 and a ¼ 95�. Lengths are reported in mm.
Experimental results are shown with open symbols.
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maximum and decreases thereaer. Smaller substrate heights

lead to uniformly smaller peak heights reecting the presence

of the underlying rigid support, where the zero displacement

condition (7) is enforced. In contrast, thicker substrates are less

affected by the underlying support since there is more material

to resist the applied surface tractions, resulting in larger peak

deformations. Fig. 4 demonstrates the non-monotonic depen-

dence on contact-line radius, consistent with experiments. We

attribute this behavior to the effects of partial wetting (a ¼ 95�)

that result from a non-trivial difference between the liquid/solid

and solid/gas solid surface tensions DY s 0.

For neutrally-wetting a ¼ 90� substrates (DY ¼ 0), the peak

height is a monotonic function of the contact-line radius L for

Models I, III, as shown in Fig. 5. That is, the peak height

increases with the contact-line radius and then plateaus. We

conclude that the generalization which differentiates between

the Sls and Ssg solid surface tensions is a feature of the model

that is required to reproduce the experimental data. In contrast,

Fig. 5 shows that for Model II with DY ¼ 0, the peak height is a

non-monotonic function of the contact-line radius that is also

consistent with experiments (cf. Fig. 4).

We proceed by contrasting contact-line Models I, III and II

on incompressible (n ¼ 1/2) substrates. Fig. 6 plots the surface

displacements uz, ur for Models I and II on a neutrally wetting

a¼ 90� substrate. The peak heights uCLz are supercially similar,

but the elds vary greatly away from the contact-line. Notice that

beneath the drop the eld is compressive for Model I and

tensile for Model II. Outside the drop, the compressive dimple

is much more pronounced for Model II. Fig. 7 compares surface

proles for uorinert drops with a ¼ 40� against experiment

demonstrating that Model I more accurately captures the

experimental observations. Additional comparisons to experi-

ment are given in the Supplementary Material. A more dramatic

difference between Model I and II is seen in the radial surface

displacement. For Model I, there is a peak on the droplet side

and a trough on the gas side of the contact-line that eventually

becomes symmetric as the contact-line radius increases. In

contrast, the radial displacement is directed into the drop (ur <

0) for Model II. In addition to the qualitative differences in the

radial displacement eld, note the radial displacement ur scale

changes by an order of magnitude betweenModels I and II. This

observation is robust and occurs over a large range of parame-

ters (cf. ESI†). Such a dramatic effect should clearly be visible in

experiment. However, Jerison et al.,18 Fig. 2 measure the radial

displacement eld on incompressible silicone gel substrates

showing a eld more similar to that of Model I than Model II.

We conclude that contact-line Model II does not accurately

capture the existing experimental data and, hence, rule it out as

a candidate contact-line law.

At this point, our candidate models have been reduced to

either Model I or Model III. We have demonstrated above that

the generalization of solid surface tensions (DY s 0) is an

essential feature of any model. Recall that Model III includes a

horizontal force that depends upon the Poisson ratio n, which

Fig. 5 Contact-line displacement comparing Models I, III and II by
plotting the axial uCL

z and radial uCL
r displacement at the contact-

line (r ¼ L), as it depends upon the solid elastocapillary number
Y ¼ Ysg ¼ Yls and the contact-line radius L for n ¼ 1/2 and a ¼ 90�.

Fig. 6 Comparison between Models I, III and II by plotting the surface
displacements uz, ur on an incompressible n ¼ 1/2 substrate, against r,
as it depends upon the contact-line radius L, for Yls ¼ 1, Ysg ¼ 1, a ¼
90+. Note the different scales for the radial displacement.

Fig. 7 Surface displacement uz for a fluorinert drop on a h ¼ 23 mm
thick substrate against r comparing Models I, III to Model II, for R ¼
196.59 mm, n ¼ 0.5, Ysg ¼ 0.349, DY ¼ 0.149, E ¼ 3 kPa, s¼ 17 mNm�1

and a ¼ 40�. Experimental results are shown with open symbols.
Lengths are reported in mm. Material properties are taken to be those
reported in the experiments.19
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degenerates into Model I when n ¼ 1/2. Fig. 8 shows the

displacement elds for Model III, as they depend upon n for

nearly incompressible substrates. For the vertical displacement

uz, the peak height does not appreciably change with n, while

the largest difference occurs near the center of the drop r ¼ 0.

The most dramatic difference occurs for the radial displace-

ment ur, where the presence of the horizontal force dominates

the elastic response, even at n¼ 0.45 and more so as n decreases

from 1/2. With regards to validation of the models, most

experiments utilize nearly incompressible materials and, as we

have stated, one cannot differentiate between Models I and III

in this limit. Experimental measurements of the radial

displacement eld on compressible substrates should resolve

this issue once and for all.

A typical measure of the elastic response due to a partially-

wetting liquid is the contact-line displacement, which can

usually bemeasured without sophisticated diagnostics. Another

benet is that the contact-line displacement is a scalar measure

of the more complicated elastic eld. Fig. 9 shows how the

contact-line displacement for a neutrally-wetting (a ¼ 90�)

substrate varies with the Poisson ratio n and solid elastocapil-

lary number Y for Models I, III. The information shown here

could be used in future experiments to reconcile the appro-

priate contact-line law, either Model I or III.

Finally, we show how the contact-line displacement varies with

L andDY in Fig. 10. Note that for partially-wetting situations, both

a and DY change with the surface chemistry. Hence, we plot the

displacements u sin a. The contact-line displacement for Model II

is given in the Supplementary Material. We view Fig. 10 as a guide

for future studies on partially-wetting substrates.

4 Discussion

We have considered the elastic deformations of a so substrate

due to the presence of a partially-wetting liquid. We construct a

general solution for the displacement potential (Love function)

comparing three rival contact-line models for wetting forces

imparted by the liquid onto the solid. In addition, our model

generalizes the concept of solid surface tension to partially-

wetting substrates as 90�, where Slss Ssg. The result of which

is a non-standard boundary-value problem that we solve using a

dual integral equation. The thrust of this work is that our

general solution encompasses all current contact-line models,

as well as the interpretation of solid surface tension as a surface

stress S h Ssg ¼ Sls or surface energy Ssg s Sls.

We compare the computed elastic displacement elds to

relevant experiments,18,19 which allows us to identify the most

likely model of wetting of so substrates from the potential

candidate models. When comparing to experiment, we imme-

diately see that the surface energy interpretation DY s 0 is an

essential feature that should be included in any model of

partial-wetting. Contact-line Model II is ruled out as a candidate

based upon the dramatic differences between the computed

displacement eld and experimental observations. This leaves

contact-line Models I and III as possibilities. However, since the

relevant experiments involve incompressible substrates nz 1/2,

which also coincides with the degenerate limit between Models

I and III, we are unable to identify the appropriate wetting law at

this time. Instead, we use our solution to the general problem to

show how measures of the elastic response vary with the

Fig. 8 Compressibility effects from contact-line Model III with R ¼
74.5 mm and R ¼ 225.5 mm: axial uz and radial ur displacement field in
mm, as it depends upon the Poisson ratio n, for Ysg ¼ 0.207, DY ¼
�0.033, E ¼ 3 kPa, s ¼ 46 mN m�1 and a ¼ 95�. Open symbols in left
sub-figure are two experiments from Style and Dufresne.12

Fig. 9 Comparison of the axial uCLz and radial uCLr contact-line
displacement for Models I and III, as it depends upon the Poisson ratio
n and the contact-line radius L for Y h Ysg ¼ Yls ¼ 1 and a ¼ 90�.

Fig. 10 Comparison of the axial uCLz sin a and radial uCLr sin a contact-
line displacement for Models I and III, as it depends upon DY and the
contact-line radius L for n ¼ 1/2 and Ysg ¼ 1.

This journal is © The Royal Society of Chemistry 2014 Soft Matter

Paper Soft Matter

P
u
b
li

sh
ed

 o
n
 3

1
 J

u
ly

 2
0
1
4
. 
D

o
w

n
lo

ad
ed

 b
y
 N

o
rt

h
 C

ar
o
li

n
a 

S
ta

te
 U

n
iv

er
si

ty
 o

n
 3

1
/0

7
/2

0
1
4
 1

4
:2

6
:2

7
. 

View Article Online

http://dx.doi.org/10.1039/c4sm00891j


relevant system parameters. The strategy is to use the theory to

suggest experimental efforts to resolve this dispute, which is of

practical importance in moving the eld forward.

Appendix: Computation of the
constants C, D

The integrals Ak, dened in eqn (25), can be evaluated by

interchanging the order of integration with respect to drdt /

dtdr and making use of a Bessel function identity,

J0ðsrÞ ¼
2

p

ðr

0

cos st
ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � t2
p dt; (27)

which yields

A1ðsÞ ¼ DSR
s6 sinh s

�

J0ðsRÞ2 þ J1ðsRÞ2
�

4ð1� 2nÞ (28)

A2 sð Þ ¼ DS
1

2
Rs5

�

J0ðsRÞ2 þ J1ðsRÞ2
�

�ðs cosh sþ ð4n� 3Þsinh sÞ:
(29)

Finally, we apply scalings (15) and simultaneously solve

((20a) and (24)) to give

C � X(s)/(2(�1 + 2n)) ¼ 2F̂ z(s)(s cosh s + (�1 + 2n)sinh s)

+ F̂ r(s)(2s sinh s + 4(�1 + n)cosh s

+ Ysg(s
2(1 + n)cosh s

+ s(�3 + n + 4n2)sinh s)

� D YLs(1 + v)(s cosh s

+ (�3 + 4n)sinh s)(J0(sL)
2

+ J1(sL)
2)) (30)

D � X(s) ¼ F̂ z(s)(2s sinh s + 4(1 � n)cosh s)

+ F̂ r(s)(2s cosh s + (2 � 4n + s2Ysg(1 + n)

� DYLs2(1 + n)(J0(sL)
2

+ J1(sL)
2))sinh s) (31)

where

X(s) ¼ s3(5 + 2s2 + 4n(�3 + 2n) + (3 � 4n)cosh2 s

+ sYsg(�1 + v2)(2s + (�3 + 4v)sinh2 s)

� DYLs(�1 + n
2)(J0(sL)

2 + J1(sL)
2)

� (2s + (�3 + 4n)sinh 2s)), (32)

and DY h Ysg � Yls. The applied forces F̂ are given by

F̂ zðsÞ ¼ sin a

�

LJ0ðsLÞ �
2

s
J1ðsLÞ

�

; F̂ rðsÞ ¼ FCL;rLJ1ðsLÞ;

(33)

with the coefficient FCL,r taken from themodels given in Table 1.
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