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Abstract. We present an efficient and rigorous numerical procedure for calculating

the elastodynamic response of a fault subjected to slow tectonic loading processes

of long duration within which there are episodes of rapid earthquake failure.

This is done for a general class of rate- and state-dependent friction laws with

positive direct velocity effect. The algorithm allows us to treat accurately, within

a single computational procedure, loading intervals of thousands of years and to

calculate, for each earthquake episode, initially aseismic accelerating slip prior to

dynamic rupture, the rupture propagation itself, rapid post seismic deformation

which follows, and also ongoing creep slippage throughout the loading period

in velocity-strengthening fault regions. The methodology is presented using the

two-dimensional (2-D) antiplane spectral formulation and can be readily extended

to the 2-D in-plane and 3-D spectral formulations and, with certain modifications,

to the space-time boundary integral formulations as well as to their discretized

development using finite difference or finite element methods. The methodology

can be used to address a number of important issues, such as fault operation under

low overall stress, interaction of dynamic rupture propagation with pore pressure

development, patterns of rupture propagation in events nucleated naturally as a part

of a sequence, the earthquake nucleation process, earthquake sequences on faults

with heterogeneous frictional properties and/or normal stress, and others. The

procedure is illustrated for a 2-D crustal strike-slip fault model with depth-variable

properties. For lower values of the state-evolution distance of the friction law,

small events appear. The nucleation phases of the small and large events are very

similar, suggesting that the size of an event is determined by the conditions on the

fault segments the event is propagating into rather than by the nucleation process

itself. We demonstrate the importance of incorporating slow tectonic loading

with elastodynamics by evaluating two simplified approaches, one with the slow

tectonic loading but no wave effects and the other with all dynamic effects included

but much higher loading rate.
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1. Introduction

The purpose of this paper is to establish an efficient algo-

rithm for elastodynamic shear rupture analysis of a fault gov-

erned by a general class of rate- and state-dependent friction

laws in situations for which the total time of loading is vastly

longer than the time for waves to traverse the domain of in-

terest. Such an algorithm is needed to study slow tectonic

loading processes during which there are episodes of spon-

taneous rapid failure in earthquakes. Investigating these pro-

cesses requires a special approach, since quasi-static meth-

ods (used for calculating slow deformational processes of

long duration) fail as instabilities develop, while standard

elastodynamic algorithms not only use relatively small time

steps but also require an increasing amount of memory and

computational time at each time step to take into account all

the prior deformation history, and hence they are excluded

from direct implementation for investigating long-duration

processes because of limitations on computing resources.

Various solutions have been proposed. One of them [e.g.,

Okubo, 1989; Shibazaki and Matsu’ura, 1992] is to employ

a quasi-static method during slow deformation and then to

switch to a dynamic method once an instability starts. How-

ever, the abrupt switching from one scheme to another may

disrupt the natural development of the instability, and the ef-

fects of this disruption on the further model response cannot

be easily determined within this approach. Other approaches

[e.g., Cochard and Madariaga, 1996; Myers et al., 1996]

neglect all aseismic fault slippage, so that stressing between

earthquakes is trivially modeled, and give the fault a ”kick”

in the form of an abrupt small strength drop, once a crit-

ical stress has been reached somewhere. At that stage an

elastodynamic algorithm calculates rupture until arrest oc-

curs. This inevitably generates a population of small rup-

tures, and it requires careful study of dependence on the

abrupt strength drop magnitude to separate which may be

physical and which are artifacts of the abrupt drop [Cochard
and Madariaga, 1996]. Still another alternative is to use a

plate loading rate which is only a few orders of magnitude

less than representative seismic slip rates, rather than the

roughly 10 orders as for natural faults, and to use standard

elastodynamic numerical methodology throughout (like in

the work by Shaw and Rice [2000]). This is straightforward

to implement, at least if some provision is made for dissi-

pating wave energy, but makes it difficult to suitably model

aseismic slip processes and can blur the distinction between

aseismic slip before instability and small earthquakes.

The developments of the present work provide an inte-

grated numerical scheme allowing resolution of both slow

and fast deformational phases, as well as the transition be-

tween them, within a single mathematical framework for

elastodynamics. The method enables us to perform calcula-

tions over thousands of years of slow tectonic loading, punc-

tuated by earthquakes and the processes which lead to and

follow them. Thus we can resolve aseismic slip on velocity-

strengthening fault regions, advance of slip into more firmly

locked zones, and slowly accelerating aseismic slippage that

grows in spatial extent and will ultimately break out into

an earthquake but has duration that is vastly longer than the

seismic event itself. We also resolve all details of the break

out of rupture, its propagation and arrest, and the transient

post seismic slippage that develops.

Our methodology for studying slow loading processes

has two main ingredients. The first is based on the form

of elastodynamic relations that we use, in which the depen-

dence of the inertial response on prior deformation history

can be truncated so that only a (fixed) part of the deformation

history back from current time needs to be considered. That

translates into fixed memory requirements and fixed amount

of computation per each time step. It also makes the compu-

tation at each time step independent of how much time has

already been simulated. The methodology is illustrated in

this paper for the two-dimensional (2-D) antiplane case and

uses a spectral representation of elastodynamic relations de-

veloped by Perrin et al. [1995] in which the slip distribution

is represented as a Fourier series in the spatial coordinate,

truncated at large order, and fast Fourier transform (FFT)

methods are used. The corresponding methodology for the

2-D in-plane and 3-D cases is conceptually very similar and

can be easily adopted from the one presented here using 3-D

spectral elastodynamic relations developed by Geubelle and
Rice [1995] and Cochard and Rice [1997]. Our algorithm

can also be generalized to the (closely related) space-time

boundary integral formulation. Furthermore, for situations

such as elastic property heterogeneity that are not congenial

to spectral or boundary integral approaches, finite difference

or finite element procedures could be used, not in their con-

ventional application to directly calculate the rupture propa-

gation itself, but rather to calculate and numerically tabulate

the convolution kernels for use in our methodology.

The second ingredient is variable time stepping. The size

of the time step to be made is dictated by the current values

of slip velocities and parameters of the constitutive law. The

smaller the slip velocities, the larger the time step, and vice

versa. While the truncation of the convolutions over prior

slip velocity history reduces the amount of computation re-

quired to complete one time step, the variable time step-

ping reduces enormously the number of time steps needed

to simulate processes during the essentially aseismic phases

of deformation which constitute almost all of the fault his-

tory. Throughout the computation, time steps can change by

many orders of magnitude in value, allowing us to go in rel-
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atively few steps through periods of essentially quasi-static

loading, to consider more carefully the nucleation phase, and

to resolve in great detail the features of the dynamic propa-

gation during an instability. The coefficients of proportional-

ity between the time steps and slip velocities depend on the

parameters of the constitutive law as well as on numerical

stability considerations that we derive here. We present the

formulation for a general class of rate- and state-dependent

friction laws with a positive direct velocity effect. The proto-

type of such laws is the experimentally derived logarithmic

law of Dieterich [1979, 1981] and Ruina [1983]. The pres-

ence and size of the positive direct velocity effect for the

quasi-static range of slip velocities, amply documented in

such experiments, are shown to be crucial in allowing long

time steps during slow deformation phases without losing

stability (during such phases, velocity-strengthening parts

of the fault zone are continuously slipping, producing an

aseismic viscoplastic type response to which rate- and state-

dependent friction then reduces).

The main goal of the present paper is to give the de-

tailed description of the method in its current, much im-

proved form. Earlier versions of the methodology were

briefly outlined and/or implemented by Zheng et al. [1995],

Rice and Ben-Zion [1996], and Ben-Zion and Rice [1997].

We describe the algorithm ingredients in sections 2-6. The

new developments include understanding constraints on the

time step during slow deformation phases and corresponding

limitations on the procedure applicability (section 4), much

more efficient truncation and evaluation of the convolution

integrals involved (section 6), and a new procedure for up-

dating the system in a time step (section 5). These devel-

opments allow consideration of a much wider range of the

constitutive parameters, better numerical convergence of the

results, and enhanced resolution in time and space with the

same computational resources.

The proposed methodology can be used to address a num-

ber of important issues, such as fault operation under low

overall stress, interaction of dynamic rupture propagation

with pore pressure development, patterns of rupture prop-

agation in events nucleated naturally as a part of a sequence,

the earthquake nucleation process, earthquake sequences on

faults with heterogeneous frictional properties and/or nor-

mal stress, and others. Section 7 demonstrates the imple-

mentation of the algorithm by considering the elastodynamic

response of a 2-D crustal strike-slip model, with depth-

variable properties, descended from the model of Tse and
Rice [1986] and studied by Rice and Ben-Zion [1996] and

Ben-Zion and Rice [1997]. Considering a wider range of

constitutive parameters than the range tractable for previous

studies, we observe that small events appear for lower values

of the state-evolution distance. The nucleation phases of the

small and large events are very similar, suggesting that the

size of an event is determined by the conditions on the fault

segments that the event is propagating into rather than by the

nucleation process itself. We show how insufficient resolu-

tion in time can produce more complex slip accumulation

that looks ”smooth” and plausible yet is just a numerical ar-

tifact. We also evaluate two simplified approaches, one with

the slow tectonic loading but no wave effects (quasi-dynamic

approach, as in the work by Rice [1993]), and the other with

all dynamic effects included but much higher loading rate

(like in the work by Shaw and Rice [2000]). The compar-

ison shows that incorporating slow tectonic loading is very

important for determining the true model response.

2. Elastodynamic Relation and Truncation of
Convolution Integrals

As an illustration of the elastodynamic relations, let us

consider a 2-D antiplane framework, in which the fault plane

coincides with the
�

- ✁ plane of a Cartesian coordinate sys-

tem
�✄✂ ✁ and all particles move parallel to the

�
direction.

The only nonzero displacement is ☎✝✆✟✞ ✂✡✠ ✁ ✠☞☛✍✌ , and we define

slip ✎✏✞✑✁ ✠☞☛✍✌ on the fault plane as the displacement discontinu-

ity ✎✏✞✑✁ ✠☞☛✍✌✓✒ ☎✡✆✄✞✕✔✗✖ ✠ ✁ ✠✍☛✍✌✙✘ ☎✡✆✄✞✕✔✏✚ ✠ ✁ ✠✍☛✍✌ . The relevant shear

stress on the fault plane is denoted by ✛✜✞✑✁ ✠☞☛✍✌✢✒✤✣✄✥ ✆✦✞✑✔ ✠ ✁ ✠☞☛✍✌ .
It is possible to express the stress on the fault plane in terms

of the slip history on the fault plane only [e.g., Cochard and
Madariaga, 1994, Perrin et al., 1995] as✛✜✞✕✁ ✠✍☛✍✌✧✒ ✛✦★✗✞✕✁ ✠✍☛✍✌✜✩✫✪ ✞✕✁ ✠✍☛✍✌✙✘✭✬✮✰✯✟✱ ✞✑✁ ✠☞☛✍✌✲✠ (1)

where ✬ is the shear modulus,
✯

is the shear wave speed,✱ ✞✕✁ ✠✍☛✍✌✳✒✵✴✎✏✞✕✁ ✠✍☛✍✌✳✒✷✶ ✎✏✞✕✁ ✠✍☛✍✌✹✸✺✶✡☛ is the slip rate, ✛ ★ ✞✕✁ ✠✍☛✍✌ is

the ”loading” stress (i.e., the stress that would act if the fault

plane
✂✻✒ ✔ were constrained against any slip), and

✪ ✞✑✁ ✠☞☛✍✌ ,
incorporating stress transfers, is a linear functional of prior

slip ✎✏✞✑✁✗✼ ✠✍☛ ✼ ✌ over the causality cone (i.e., all ✁✗✼ and
☛ ✼ satis-

fying
✯ ✞ ☛✧✘✽☛ ✼ ✌✿✾❁❀ ✁ ✘ ✁❂✼ ❀ ). The last term of (1) represents

radiative damping [Rice, 1993], and the explicit extraction

of the damping term from the functional
✪ ✞✑✁ ✠☞☛✍✌ allows for

evaluation of ✪ ✞✕✁ ✠✍☛✍✌ without concern for singularities.

In (1), most of the elastodynamic response is contained

in the stress transfer functional
✪ ✞✕✁ ✠✍☛✍✌ . Cochard and

Madariaga [1994] have expressed it as a double convolution

integral in space and time. Perrin et al. [1995] have derived

a spectral representation of
✪ ✞✑✁ ✠☞☛✍✌ as a single convolution

integral in time for each Fourier mode, when representing

slip and the functional as Fourier series in space. General-

izations to general slip and/or opening states in 3-D prob-

lems are given by Geubelle and Rice [1995] and Cochard
and Rice [1997]. We use the spectral representation of Per-
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rin et al. [1995] for the illustration here and write

✎✏✞✑✁ ✠☞☛✍✌✢✒ ❃❅❄❇❆ ❄❉❈☞❊❋●■❍ ✚ ❃ ❄❇❆ ❄ ❈✹❊✦❏ ● ✞ ☛✍✌✍❑▼▲❖◆◗P✗❘■✠
(2)✪ ✞✕✁ ✠✍☛✍✌❙✒ ❃❅❄❇❆ ❄❉❈☞❊❋●■❍ ✚ ❃ ❄❇❆ ❄ ❈✹❊✦❚ ● ✞ ☛✍✌✍❑ ▲❯◆◗P■❘ ✠❲❱ ● ✒ ✮✺❳❩❨❬ ✠

where
❬

is the length of the fault domain under considera-

tion, replicated periodically. The replication distance
❬

has

to be chosen several times larger than the domain over which

rapid faulting takes place, to assure that there is negligible

influence of waves arriving from the periodic replicates of

the rupture process. For adaptation to our numerical proce-

dure, ❭✳❪❴❫ ❪ (even) will be some large number of FFT sample

points used to discretize this domain. Also, coefficients ❏ ●and ❚ ● are complex in general, with respective conjugates❏ ✚ ● and ❚ ✚ ● , but take real values for
❨ ✒ ✔ and ❭ ❪❴❫ ❪ ✸ ✮ , so

that the representations involve ❭ ❪❴❫ ❪ degrees of freedom. To

satisfy the elastodynamic wave equation, ❏ ● ✞ ☛✍✌ and ❚ ● ✞ ☛✍✌are related by

❚ ● ✞ ☛✍✌✢✒❵✘ ✬ ❀ ❱ ● ❀✮ ❛❝❜❞❢❡❤❣ ✞ ❀ ❱ ● ❀ ✯ ☛ ✼ ✌☛ ✼ ❏ ● ✞ ☛✐✘❥☛ ✼ ✌✍❦■☛ ✼ ✠ (3)

where ❡ ❣ ✞ ✌ is the Bessel function of the first kind of order

one. Equations (1)-(3) are referred to as the ”displacement”

representation of the elastodynamic relations. An analogous

”velocity” representation can be obtained by combining (1)

and (2) with the result of integrating (3) by parts, giving

❚ ● ✞ ☛✍✌✓✒✤✘❧✬ ❀ ❱ ● ❀✮ ❏ ● ✞ ☛✍✌
(4)✩❵✬ ❀ ❱ ● ❀✮ ❛ ❜❞✽♠ ✞ ❀ ❱ ● ❀ ✯ ☛ ✼ ✌ ✴❏ ● ✞ ☛✐✘❥☛ ✼ ✌✍❦■☛ ✼ ✠

where ✴❏ ● ✞ ☛✍✌♥✒♦❦ ❏ ● ✞ ☛✍✌✹✸✺❦✗☛ and ♠ ✞q♣ ✌r✒ts✢✉✈①✇ ❡ ❣ ✞❇② ✌✹✸ ②▼③ ❦ ②with ♠ ✞✕✔ ✌④✒⑥⑤
. As any other boundary integral formu-

lation, the spectral representation (2), (3) or (2), (4) gives✪ ✞✕✁ ✠✍☛✍✌ as a functional of ✎✏✞✕✁ ✠✍☛✍✌ , because ✪ ✞✕✁ ✠✍☛✍✌ can be ex-

pressed in terms of the ❚ ● ✞ ☛✍✌ , ❚ ● ✞ ☛✍✌ are related to ❏ ● ✞ ☛✍✌ ,and ❏ ● ✞ ☛✍✌ can be expressed in terms of ✎✏✞✕✁ ✠✍☛✍✌ by the in-

verse Fourier transform.

We emphasize that the spectral representation, in com-

parison with space-time boundary integral formulations, is

very advantageous from the computational point of view.

The matrix of convolution integrals, implied by a space-

time formulation after discretization in space, is replaced in

the spectral approach by a diagonal matrix, once the FFT
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Figure 1. Convolution kernel ♠ ✞q♣ ✌ for the velocity formu-

lation in the 2-D antiplane case.

is used to transform from ✎✏✞✑✁ ✠☞☛✍✌ to ❏ ● ✞ ☛✍✌ and then the in-

verse FFT from ❚ ● ✞ ☛✍✌ to
✪ ✞✕✁ ✠✍☛✍✌ . Even though the spectral

approach uses a larger number of degrees of freedom than

needed for the domain of interest itself, the drastic reduc-

tion in the number of time convolutions significantly short-

ens the computation of the stress transfer functional ✪ ✞✑✁ ✠☞☛✍✌ ,
which is the most time-consuming stage of the analysis. We

show this in Appendix B, where we further discuss the re-

lation between spectral and space-time formulations. Note

that Cochard and Rice [1997] showed how to reformulate

the spectral method to rigorously eliminate the replications,

but that requires far more complex calculations of the convo-

lution kernels and still twice more degrees of freedom than

needed for the domain of interest.

If the convolution integrals in (3) or (4) had to be com-

puted in full, the algorithm would be impractical for in-

vestigation of long deformational processes. Evaluation of

the convolution integrals is the most computationally de-

manding part of the elastodynamic analysis and may take

more than 99% of the total computational time [Perrin et
al., 1995]. Fortunately, truncation of the convolutions is pos-

sible, which significantly reduces the overall computational

time. If the duration of the physical problem is much longer

than the time required for elastic waves to traverse the spatial

domain of the system, it is not necessary to keep examining

the influence of displacements of points on the failure sur-

face at all prior times. This is reflected in rapid decay of
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the kernels of the convolution integrals for both the velocity

and displacement formulations. At large values of ♣ , the ker-

nels ♠ ✞q♣ ✌ (shown in Figure 1) and ❡❤❣ ✞q♣ ✌☞✸ ♣ have amplitude

decay like
⑤▼✸ ♣✄⑧ ❈✹❊ for an oscillation (at circular frequency❀ ❱ ● ❀ ✯ ) that averages in time to zero.

To truncate the convolutions, we define the elastodynamic

time window as the time interval ✇ ☛⑨✘✽⑩❩❶⑨✠✍☛ ③ , where, in the

computationally most efficient version of our methodology,⑩ ❶ may be different for different Fourier modes.
⑩ ❶ is cho-

sen such that the contribution to the functional
✪

of the de-

formation history occurring prior to time ✞ ☛✄✘❷⑩ ❶ ✌ has negli-

gible effect on the simulation results. Since only the effects

from the current time
☛

backward to ✞ ☛❸✘❹⑩ ❶ ✌ need be in-

cluded in the dynamic response, the convolution integrals

are truncated by computing them only within the elastody-

namic time window defined. This transforms (3) and (4) into

❚ ● ✞ ☛✍✌✢✒❺✘♥✬ ❀ ❱ ● ❀✮ ❛✽❻▼❼❞ ❡ ❣ ✞ ❀ ❱ ● ❀ ✯ ☛ ✼ ✌☛ ✼ ❏ ● ✞ ☛✐✘❽☛ ✼ ✌❉❦✗☛ ✼ (5)

and

❚ ● ✞ ☛✍✌✓✒❹✘❾✬ ❀ ❱ ● ❀✮ ❏ ● ✞ ☛✍✌
(6)✩❺✬ ❀ ❱ ● ❀✮ ❛ ❻ ❼❞ ♠ ✞ ❀ ❱ ● ❀ ✯ ☛ ✼ ✌ ✴❏ ● ✞ ☛✐✘❥☛ ✼ ✌✍❦■☛ ✼ ✠

respectively. The discussion of the truncation implementa-

tion is given in section 6.

In view of the truncation procedure, the velocity formu-

lation has an important advantage over the displacement for-

mulation. As pointed out by Perrin et al. [1995], the first

(algebraic) term in (4) and (6) corresponds to the final static

elastic stress, and the remaining integral term corresponds

to wave-mediated stress transfer carrying the elastodynamic

effects. The isolation of the static term is important in our

computational procedure where we truncate the remaining

convolution integral. During slow deformational periods

where ✴❏ ● ✞ ☛✍✌ is small, the static term ✘ ✬ ❀ ❱ ● ❀ ❏ ● ✞ ☛✍✌✹✸ ✮ con-

tributes most to ❚ ● ✞ ☛✍✌ . During all deformation phases, the

velocity formulation with truncation (1), (2), and (6), unlike

the displacement formulation with truncation (1), (2), and

(5), ensures that regardless of the way the convolution inte-

gral is truncated, the long-term static stress field (that is, the

stress field after passage of all waves) due to slip up to the

time
☛

is always exactly represented. Thus, the velocity for-

mulation should be used for long deformational histories, al-

though the displacement formulation can also be useful, for

example, to study individual events. The same separation

into static and dynamic parts, with truncation of the convo-

lution on time within the dynamic part, may be carried out in

the framework of the space-time representation for
✪ ✞✑✁ ✠☞☛✍✌ ,

as we briefly discuss in Appendix B.

Note that the combination of (1), (2), and (6) with ⑩❩❶❽✒ ✔
(no convolution) would amount to static calculation of stress

transfers, then corresponding to the ”quasi-dynamic” proce-

dure of Rice [1993], also discussed by Ben-Zion and Rice
[1995] and Rice and Ben-Zion [1996]. Because of the re-

tention of the radiation term of inertial elastodynamics, as✬ ✱ ✸ ✞ ✮✰✯ ✌ in (1), the quasi-dynamic procedure allows solu-

tions to exist during instabilities; the solutions would not ex-

ist in a formulation with no damping term, which we usually

call quasi-static.

3. Constitutive Laws and Space Discretization

Constitutive laws used here are rate- and state-dependent

friction laws developed to incorporate experimental obser-

vations [Dieterich, 1979, 1981; Ruina, 1983]. These laws

include dependence of strength on slip velocity and on an

evolving state variable (or variables) which characterizes as-

perity contacts, thus allowing for loss of strength in rapid

slip and for subsequent rehealing so that repetitive failures

can occur. The laws have been successfully used to explain

various aspects of stable and unstable sliding between elas-

tic solids [Ruina, 1983; Rice and Ruina, 1983; Gu et al.,
1984; Tullis and Weeks, 1986] as observed in the labora-

tory. Also, they have been used to model earthquake phe-

nomena, including nucleation, ductile and brittle crustal slip

regions, spatio-temporal slip complexities, and earthquake

aftershocks [e.g., Tse and Rice, 1986; Stuart, 1988; Okubo,
1989; Horowitz and Ruina, 1989; Rice, 1993; Dieterich,
1992, 1994; Perrin et al., 1995; Ben-Zion and Rice, 1995,

1997; Rice and Ben-Zion, 1996; Stuart and Tullis, 1995;

Tullis, 1996; Boatwright and Cocco, 1996].

A formulation of such laws which assumes constant nor-

mal stress and one state variable, to record dependence on

slip history, is of the general form✛ ✒➀❿ ✞ ✱ ✠☞➁❂✌✝✠ (7a)❦✗➁❂✸✺❦✗☛✓✒❹➂ ✞ ✱ ✠✍➁✗✌❩✠ (7b)

where ➁ is the state variable and ✛ , ✱ , and ➁ depend on

space variables and time. The rate- and state-dependent

constitutive laws as usually formulated, based on labora-

tory observations, have the following properties. If slip ve-

locity ✱ is held constant, the state variable and hence the

stress evolve toward constant values, called steady-state val-

ues and denoted
➁➄➃✕➃➅✒➆➁▼➃❇➃ ✞ ✱ ✌ and ✛ ➃❇➃➇✒ ✛ ➃❇➃ ✞ ✱ ✌ , respec-

tively, where ➁ ➃✕➃ satisfies ➂ ✞ ✱ ✠✍➁ ➃❇➃ ✌➈✒ ✔ and ✛ ➃❇➃ is given by✛ ➃❇➃ ✒➉❿ ✞ ✱ ✠✍➁ ➃❇➃ ✌ . All laws of the class (7) reduce, for ➁ near➁ ➃✕➃ ✞ ✱ ✌ , to ❦■➁❤✸✺❦✗☛➋➊➌✘ ✞ ✱ ✸✰➍✧✌ ✇ ➁r✘➎➁ ➃❇➃ ✞ ✱ ✌ ③ , where ➍ has di-

mensions of slip and can be interpreted as a characteristic
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slip distance required for evolution to the steady state (
➍

is

also sometimes denoted by
❦❤➏

or ❏ ➏ ). The state variable
➁

is

usually chosen in such a way that
➁▼➃❇➃✓✒➐➍⑨✸ ✱ , particularly if➁

is to be interpreted as a characteristic lifetime of the asper-

ity population on the contact surfaces;
➍

is then interpreted

as a measure of the sliding distance required to establish a

new population of asperity contacts, and is assumed to be

independent of ✱ . The law (7) is said to exhibit steady-state

velocity weakening if ❦ ✛ ➃✕➃ ✸✺❦ ✱♦➑ ✔ and steady-state veloc-

ity strengthening if ❦ ✛ ➃❇➃ ✸✰❦ ✱ ✾ ✔ . If the slip velocity ✱ is

suddenly increased or decreased, the stress ✛ simultaneously

increases or decreases; that is, instantaneous positive viscos-

ity is incorporated in (7) through the requirement✶✄❿ ✞ ✱ ✠✍➁✗✌✶ ✱ ✾ ✔✟➒ (8)

This property is sometimes called ”direct velocity depen-

dence” or ”direct effect” and is well established experimen-

tally. As discussed in section 4, the presence and size of

this direct effect are essential for our numerical procedure to

be efficient in simulating processes of long duration. Hence

our method is not immediately applicable to other constitu-

tive laws, such as slip-weakening laws (which emerge as the

limit case here for rapid slip if ❿ and ➂✢✸ ✱ are, in the limit,

independent of ✱ ), which do not have that property.

Stability of steady frictional sliding, governed by the con-

stitutive laws of type (7) with the properties discussed above,

has been extensively investigated [Ruina, 1983; Rice and
Ruina, 1983; Dieterich, 1992; Gu et al., 1984; Ranjith and
Rice, 1999], particularly for single degree of freedom elas-

tic systems. Such systems are generically represented by a

spring-slider model, in which a rigid block is attached to a

spring of stiffness
❱

and slides on a frictional surface, with

the other end of the spring moving at the imposed rate ✱➔➓ .
Linear stability analysis of such a system, perturbed about

steady-state sliding at the rate ✱✿➓ , as in the work by Ruina
[1983], shows that the sliding is always stable for friction

with steady-state velocity strengthening, while for friction

with steady- state velocity weakening, there exists a critical

value of the spring stiffness ❱■→❴➣ such that perturbations from

steady-state sliding grow in time for systems with ❱ ➑ ❱✰→❴➣
and decay in time for systems with ❱✫✾↔❱■→❴➣ . For rates ✱➔➓
sufficiently small so that the inertia effects can be ignored,

the critical stiffness is given by❱■→❴➣❙✒➙↕❴✘ ✱ ❦ ✛ ➃❇➃ ✞ ✱ ✌☞✸✰❦ ✱➍ ➛✦➜ ❍ ➜✙➝ ✠ (9a)

where the precise definition of ➍ is➍✽✒ ✇ ✘ ✱ ✸ ✞ ✶✝➂ ✞ ✱ ✠☞➁✗✌☞✸✰✶✡➁✗✌ ③ ➜ ❍ ➜ ➝➟➞ ➠ ❍ ➠✍➡➢➡➥➤ ➜ ➝✹➦ ➒ (9b)

Here and in the following, notation ✇ ③ ➜ ❍ ➜✐➝ ➞ ➠ ❍ ➠ ➡➢➡ ➤ ➜➧➝ ➦
means that the expression in the brackets has to be evaluated

at steady state given by ✱ ✒ ✱✿➓ , ➁➅✒➨➁▼➃❇➃ ✞ ✱✿➓ ✌ . The origin

of the well-known result (9a) is important for our consider-

ation of variable time stepping in section 4. We review it in

Appendix A and use it to restrict the size of time steps.

Such a stability dependence on the system stiffness in the

case of steady-state velocity weakening has important im-

plications for the proper space discretization, imposing an

upper bound on a spatial element size in numerical model-

ing. To demonstrate this, let us continue with the antiplane

example. Selecting ❭ ❪❴❫ ❪ equally spaced sample points along

the domain of length
❬

, we discretize the domain into space

elements (also called ”cells”) ✇ ✁ ▲ ✚ ❣ ✠ ✁ ▲ ③ , ✁ ▲ ✒➫➩❉➭
,
➩➯✒⑤■✠ ✮ ✠ ➒❖➒➢➒ ✠ ❭ ❪❴❫ ❪ , ➭❷✒ ❬ ✸ ❭ ❪❴❫ ❪ . The discretized formulation deals

with slips ✎ ▲ and shear stresses ✛ ▲ at the sample points, taken

at the cell centers ✞✕✁ ▲ ✘✫➭✝✸ ✮ ✌ . Each of the cells has the ef-

fective stiffness ❱ (defined as reduction in ✛ ▲ due to elastic

interactions with the surroundings for unit slip ✎ ▲ at the same

sample point), given by ❱➯✒➳➲ ✬ ✸✰➭ . Here ➲ is a model-

dependent constant, of order unity. For example, ➲➵✒ ✮ ✸ ❳
when using the cellular basis set for slip (i.e., calculating the✛ ▲ as if the slip were locally uniform in each cell) like in the

work by Rice [1993] and
➲❥✒ ❳ ✸▼➸

for the spectral basis set

of (2). The values of
➲

cited apply for cells whose distance

from any free surface is many times
➭

and, in the spectral

case, for ❭ ❪❴❫ ❪⑨➺ ⑤
.

If we start with steady quasi-static sliding of the whole

domain at slip rate ✱➔➓ (taking this rate to be sufficiently

small so that the dynamic effects are negligible) and slightly

perturb the motion of one cell while maintaining steady slid-

ing of the other cells, we get that the linearized response to

the perturbation is governed by the same system of equa-

tions as for the spring-slider model, with the spring stiff-

ness replaced by the effective stiffness of the cell. Hence

the perturbation will grow if
❱❧✒✭➲ ✬ ✸✰➭ ➑ ❱ →❴➣ or, equiv-

alently, ➭➻✾⑥➲ ✬ ✸✰❱■→❴➣ , and the perturbation will decay if❱❢✒➼➲ ✬ ✸■➭➽✾➾❱■→❴➣ or, equivalently, ➭ ➑ ➲ ✬ ✸✰❱■→❴➣ . This

property defines the critical cell size ➭ ➓ ✒➉➲ ✬ ✸✰❱■→❴➣ . As em-

phasized by Rice [1993], the growth of the perturbation on

one cell, while the others continue the steady sliding, would

imply that the cell is capable of failing independently of the

surrounding cells, which would make the results dependent

on the numerical discretization. Hence, to insure that the

perturbation on a single cell decays, so that each cell can fail

only as a part of larger space segment, the mesh should be

refined enough for space element size
➭

to be much smaller

than the critical cell size
➭ ➓ . In other words, the condition➭ ➓ ✸✰➭➪➚✤➶❷✾➋✾➐⑤✗✠

(10)➭ ➓ ✒➵➲ ✬ ✸✰❱ →❴➣ ✒❺✘ ➲ ✬ ➍➹r➘✰➴ ✇ ✱ ❦ ✛ ➃❇➃ ✞ ✱ ✌✹✸✺❦ ✱ ③
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should hold, where the maximum is sought over all allow-

able slip rates ✱ .

The critical cell size ➭ ➓ is directly related to the nucle-

ation size of model earthquakes, that is, to the size of the

patch that initiates unstable, dynamic slip. In simulations

with the constitutive laws of the type discussed here, rapid,

dynamic break-out of an instability is always preceded by

quasi-static slipping of a small zone. The size of this zone

just before the dynamic instability is what we call the nucle-

ation size. Changing
➍

, and consequently
➭ ➓ , changes the

nucleation size in an essentially linearly proportional man-

ner in all simulations we have done. Thus
➭ ➓ is not only a

very important numerical parameter, it is also a crucial phys-

ical parameter.

Note that expression (10) is derived neglecting inertial ef-

fects. Rice and Ruina [1983] have shown (by considering the

spring-slider model with mass) that inclusion of the inertial

effects increases
❱ →❴➣ in (9a) and hence decreases

➭ ➓ in (10),

which requires making cell size
➭

even smaller. They have

also analyzed uniform slip (at constant slip velocity) be-

tween elastic continua, with spatial perturbation of the type➷☞➬➢➮ ✞ ✮✺❳ �❩✸ ❬ ✌ and found that (1) there exists a critical wave-

length
❬ →❴➣ such that for smaller wavelengths the perturbation

is stable and for larger ones it is unstable and (2) the value of

the critical wavelength decreases appreciably with increase

in the slipping velocity. As confirmed by simulations, proper

resolution of high slip velocities during dynamic instabili-

ties requires the statically estimated critical cell size ➭ ➓ to

be discretized by tens and sometimes (e.g., in the case of

strong velocity weakening) even hundreds of cells
➭

. Proper

discretization is further discussed in sections 4 and 7 and by

Zheng and Rice [1998].

The need for such fine discretization stems from the rate-

and state-dependent friction laws that we discuss here. As al-

ready mentioned, these laws are supported by experimental

evidence at low ✱ , and their feature of state evolution over

a slip distance ➍ is supported by the concept of a character-

istic slip required for renewal of the asperity contact popu-

lation. The laws produce high slip velocities near the rup-

ture tips and incorporate small characteristic slip distances

to be resolved there, and hence require fine discretization in

space and time. The discretization constraints may be pos-

sible to relax by using modified forms of the friction laws,

for example, in which ➍ in the law for ❦■➁❤✸✺❦✗☛ depends on ✱
and increases significantly for the seismic range of ✱ . Tak-

ing ➍ proportional to ✱ at high slip rates would be equiva-

lent to having state evolve over a characteristic time (rather

than over a characteristic slip distance), as for the velocity-

weakening range of the ad hoc type of friction law used by

Shaw and Rice [2000]. Such modifications and their influ-

ence on the qualitative features of the simulation results still

have to be explored.

4. Variable Evolution Time Step

Simulating truly slow loading while capturing details of

occasional rapid failures requires varying evolution time

steps. Our time step selection criterion is based on two ob-

servations. First, we recognize that the slower the particle

velocities in a rupture process are, the longer the time steps

should become, and vice versa. Second, to assure proper in-

tegration of the constitutive law during the calculation, we

would like the relative displacement in each time step to be

small compared to the characteristic slip evolution distance➍
. To fulfill both of the above requirements, the time step

from one updating of field variables (slip velocity, stress,

etc.) to another, which we call the evolution time step ➱ ☛ ❪❐✃ ,
is chosen as ➱ ☛ ❪❐✃ ✒✤➹ ➬➢➮ ✇ ② ▲ ➍ ▲ ✸ ✱ ▲ ③ ✠ (11)

where ➍ ▲ , ✱ ▲ , and ② ▲ are the characteristic slip distance,

the current slip velocity, and a prescribed parameter for

the ith cell of the discretized domain (introduced earlier by✇ ✁ ▲ ✚ ❣ ✠ ✁ ▲ ③ , ✁ ▲ ✒➨➩❉➭
,
➩❸✒❁⑤✗✠ ✮ ✠ ➒❖➒➢➒ ✠ ❭ ❪❴❫ ❪ , ➭❒✒ ❬ ✸ ❭ ❪❴❫ ❪ ), respec-

tively, and the minimum is sought over all the cells. The

choice of parameters ② ▲ depends on the constitutive law and

stability considerations as explained below. Criterion (11)

allows us to adjust the evolution time stepping during a sim-

ulation based on current slip velocities of the cells, so that

slip in a time step does not exceed a fraction of the char-

acteristic slip distance of the friction law, the fraction being

prescribed by ② ▲ for cell ➩ . The adaptive time step ➱ ☛ ❪❐✃ can

be enormously longer than the time for waves to propagate

over the space domain during periods of slow, essentially

quasi-static, loading, before unstable rupture begins, and can

be very small during spontaneous failure, spanning up to 10

orders of magnitude in value in some of the simulations that

we have done.

In between occurrences of dynamic ruptures, when slip

rates are very small, we would like evolution time stepping

to be as large as possible without compromising the algo-

rithm accuracy and stability. A rather insightful constraint

on the time steps at low slip rates can be derived by consider-

ing, as in our motivation for existence of the critical cell size,

quasi-static stability of perturbed motion of a single cell with

continuing steady sliding of the other cells at velocity ✱ ➓ . If

the grid is properly refined, then the perturbation on a single

cell dies away, as we have already considered. Demanding

that our time discretization preserves this property, we get a

condition for the size of the time step allowed, which pro-

vides a constraint for ② ▲ , ➩✙✒❺⑤■✠ ✮ ✠ ➒❖➒➢➒ ✠ ❭❮❪❴❫ ❪ from (11). We de-

rive this constraint in Appendix A by analyzing, as a simple
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model case, explicit integration of the governing equations

with a constant time step ➱ ☛ . From that we obtain:

➱ ☛ ➑ ➍✱ ➓ ❰ ➓❱✏➍❥✘ ✞✑Ï ➓ ✘ ❰ ➓ ✌ (12a)

if Ð ✾ ✔ and

➱ ☛ ➑ ➍✱ ➓ÒÑ ⑤❸✘ Ï ➓ ✘ ❰ ➓❱✏➍ Ó (12b)

if Ð ➑ ✔ , where

Ð ✒ ⑤➸ Ñ ❱✏➍❰ ➓ ✘
Ï ➓ ✘ ❰ ➓❰ ➓ Ó ❊ ✘ ❱✟➍

❰ ➓ (12c)

and ❰ ➓ and Ï ➓ are given by

❰ ➓ ✒ ✇ ✱ ✶ ✛✜✞ ✱ ✠☞➁✗✌☞✸✰✶ ✱ ③ ➜ ❍ ➜✙➝ ➞ ➠ ❍ ➠ ➡❖➡ ➤ ➜✐➝ ➦ ✠
(13)

❰ ➓ ✘ Ï ➓ ✒ ✇ ✱ ❦ ✛ ➃❇➃ ✞ ✱ ✌☞✸✰❦ ✱ ③ ➜ ❍ ➜ ➝ ➒
As the derivation in Appendix A shows, constraints

(12) are applicable to both steady-state velocity strengthen-

ing and steady-state velocity weakening with a sufficiently

dense grid. For the latter case we have ✞✕Ï ➓ ✘ ❰ ➓ ✌☞✸✰➍✫✒❾❱✰→❴➣
and ❱✦✸■❱✰→❴➣❙✒➐➭ ➓ ✸■➭➅✾❧⑤ , and hence (12) can be rewritten in a

more insightful form

➱ ☛ ➑ ➍✱ ➓ ❰ ➓✞✑Ï ➓ ✘ ❰ ➓ ✌ ✞ ➭ ➓ ✸✰➭♥✘✫⑤Ô✌ (14a)

if Ð ✾ ✔ and

➱ ☛ ➑ ➍✱ ➓ÒÑ ⑤❸✘ ➭➭ ➓ Ó (14b)

if Ð ➑ ✔ , with

Ð ✒ ⑤➸ Ï ➓ ✘ ❰ ➓❰ ➓ Ñ ➭ ➓➭ ✘➵⑤ Ó ❊ ✘ ➭ ➓➭ ➒ (14c)

Conditions (12) or (14) give an estimate of the required time

stepping for low slip velocities; if these conditions are not

met, cell-by-cell instabilities arise which either make the

simulations impossible or corrupt the results.

Deriving these restrictions is an important development

in the methodology, as they explained and eliminated many

of the numerical difficulties that we had. Note that when

the condition (12a) or (14a) is applicable (which is often the

case since large ➭ ➓ ✸✰➭ is required for proper space discretiza-

tion), it implies that if we refine the grid (taking smaller cell

size ➭ and hence larger ➭ ➓ ✸✰➭ in (14a) or larger ❱ in (12a)),

then we have to decrease the time stepping as well, even

in purely quasi-static phases of the analysis. The condition

also reveals that if the direct effect ❰ ➓ is decreased, then the

time steps should be chosen smaller as well. That is why the

efficiency of our algorithm, which relies on using long adap-

tive time steps during quasi-static loading periods, depends

on the size of the positive direct effect (quantified by ❰ ➓ ) for

the quasi-static range of slipping velocities. Note that (12) or

(14) are not applicable to the case ❰ ➓ ✒ ✔ , as their derivation

(Appendix A) assumes nonzero ❰ ➓ . Moreover, for a certain

range of (very small) values of ❰ ➓ , the inertial effects be-

come comparable to the direct effect even for small sliding

velocities and can no longer be ignored. The Rice and Ruina
[1983] inertial analysis indicates that linearized perturbation

to steady-state sliding of all wavelengths are unstable in the

case of ❰ ➓ ✒ ✔ . In practice, it is possible to simulate a single

dynamic event in the case with ❰ ➓ ✒ ✔ , apparently without

numerical instability (A. Cochard, private communication,

1999), possibly due to the low rates of growth of the insta-

bility for the highest modes. However, the time stepping has

to be so small that long deformation histories are excluded

from consideration. Since our algorithm relies on using long

adaptive time steps during quasi-static loading periods, it can

be efficiently used only for the constitutive laws that exhibit

the experimentally verified positive direct effect as in (8).

On the basis of conditions (12), we choose parameters② ▲ , ➩✧✒Õ⑤✗✠ ✮ ✠ ➒❖➒➢➒ ✠ ❭ ❪❴❫ ❪ (used in selection of the evolution time

steps (11)) as

② ▲ ✒❹➹ ➬➢➮rÖ ❰ ➓▲❱✏➍ ▲ ✘ ✞✕Ï ➓▲ ✘ ❰ ➓▲ ✌ ✠
⑤✮⑨× (15a)

if Ð ▲ ✾ ✔ and

② ▲ ✒❹➹ ➬❖➮rÖ ⑤❸✘ Ï ➓▲ ✘ ❰ ➓▲❱✟➍ ▲ ✠ ⑤✮ × (15b)

if Ð ▲ ➑ ✔ , where

Ð ▲ ✒ ⑤➸ Ñ ❱✏➍ ▲❰ ➓▲ ✘ Ï ➓▲ ✘ ❰ ➓▲❰ ➓▲ Ó ❊ ✘ ❱✟➍ ▲
❰ ➓▲ ➒ (15c)

and subscript
➩

denotes the value of the corresponding quan-

tities for the cell ➩ and ❱ is the single-cell stiffness, ➲ ✬ ✸✰➭ .

The term 1/2 enters (15) to enforce the condition that for

each cell the slip in every time step is not larger than half of

the characteristic slip distance ➍ ▲ .
The time step selection criterion (11) and (15) captures

the essence of our variable time-stepping scheme, but in ac-

tual simulations we modify the criterion slightly to recon-

cile the variability in time steps with the necessity to com-

pute convolution integrals, uniformly discretized in time. To

store deformation histories in an efficient way, we introduce

a time parameter, ➱ ☛❴Ø❙Ù Ú , which is the minimum value of the
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evolution time step allowed (and also the discretization in-

terval for computing the convolution integrals, as explained

in section 6). It is selected as a fraction of the time ➱ ☛ → ❪❴❫ ❫
needed for elastic waves to traverse a spatial element, in the

form ➱ ☛❴Ø❙Ù Ú❮✒➀Û✄Ø❙Ù Ú ➱ ☛❴→ ❪❴❫ ❫ ✒❹Û✦Ø❙Ù Ú■➭✝✸ ✯ ➒ (16)

We insist that every time step we take be an integer multiple

of ➱ ☛❴Ø❙Ù Ú and not smaller than ➱ ☛❴Ø❙Ù Ú . That is, we first com-

pute the (tentative) time step ➱ ☛ ❪❐✃ using criterion (11) and

(15) and then convert it into a multiple of ➱ ☛❴Ø❙Ù Ú :❨ ❪❐✃ ✒ int ✇ ➱ ☛ ❪❐✃ ✸ ➱ ☛ Ø❙Ù Ú ③ ✠
(17)➱ÒÜ☛ ❪❐✃ ✒✤➹r➘✰➴ÞÝ ➱ ☛❴Ø❙Ù Ú✏✠ ❨ ❪❐✃✗➱ ☛❴Ø❙Ù Ú❤ß ➒

The parameter ➱ ☛❴Ø❙Ù Ú determines how fine our resolution

in time is. To understand how to choose ➱ ☛ Ø❙Ù Ú (or
Û Ø❙Ù Ú

from (16)), let us consider how the evolution time step ➱ ☛ ❪❐✃
during dynamic instability relates to ➱ ☛ → ❪❴❫ ❫ ✒❺➭✝✸ ✯ . We rec-

ognize from (1) that a characteristic slip velocity of order✯ ➱✿✛ ✸ ✬ is induced by an abrupt dynamic stress drop ➱✿✛ .

Hence, to resolve the characteristic slip distance
➍

of the

friction law, ➱ ☛ ❪❐✃ has to be of the order ➍ ✬ ✸ ✞ ✯ ➱✿✛ ✌ . At the

same time, using our constraints (10) on the grid spacing ➭ ,

we can express ➱ ☛❴→ ❪❴❫ ❫ ✒➯➭✝✸ ✯ ✒➯➭ ➓ ✸ ✞ ➶ ✯ ✌à✒❵➲ ✬ ➍⑨✸ ✞ ➶ ✯ ➱✿✛Ôá ✌ ,
where ➱❮✛➄á ✒❁✘➇➹r➘✰➴ ✇ ✱ ❦ ✛ ➃❇➃ ✞ ✱ ✌✹✸✺❦ ✱ ③ . From the above for-

mulae, ➱ ☛ ❪❐✃ ✸ ➱ ☛❴→ ❪❴❫ ❫ is comparable to ➶ ➱✿✛Ôá ✸➄➲ ➱❮✛ . The con-

stant ➲ is of order unity, ➶♥✒➐➭ ➓ ✸■➭ has to be tens or hundreds

in order to properly discretize the critical cell size ➭ ➓ , and the

ratio ➱✿✛Ôá ✸ ➱✿✛ can be considerably smaller than unity. This

suggests that the smallest required time step ➱ ☛ ❪❐✃ is compa-

rable to ➱ ☛ → ❪❴❫ ❫ .
We have found that if other parameters, most notably➶✷✒✵➭ ➓ ✸✰➭ , are chosen appropriately, the standard ”sam-

pling” choice Û✦Ø❙Ù Ú of ⑤▼✸ ✮ , giving ➱ ☛❴Ø❙Ù Ú❽✒ ➱ ☛❴→ ❪❴❫ ❫ ✸ ✮ , pro-

duces stable and satisfactory results for the cases we con-

sidered; Û✦Ø❙Ù ÚÒ✒➽⑤▼✸✺➸ can also be successfully used in most

cases. Note that (16) can be rewritten as➱ ☛❴Ø❙Ù Ú❮✒➀Û✄Ø❙Ù Ú■➭✝✸ ✯ ✒❹Û✦Ø❙Ù Ú■➭ ➓ ✸ ✞ ➶ ✯ ✌ ➒ (18)

If a better resolution in time is desired, it is often advanta-

geous, for better stability and faster convergence of the re-

sults, to keep
Û Ø❙Ù Ú ✒Õ⑤✺✸ ✮ or

⑤✺✸▼➸
and to increase

➶➅✒❺➭ ➓ ✸✰➭
(and hence ❭ ❪❴❫ ❪ ), rather than to keep

➶
and to decrease

Û Ø❙Ù Ú ,
even though increasing

➶
is more costly in terms of computa-

tional time and memory. If there are numerical oscillations

or other features in the simulation that point to an inade-

quate resolution, possibly in time, decreasing Û✄Ø❙Ù Ú without

increasing ➶ does not always solve the numerical problems

to the desired degree, whereas sufficient increase in
➶

does,

provided other parameters, such as elastodynamic time win-

dows, replication period, etc., are chosen appropriately.

5. Updating Scheme: Advancing One
Evolution Time Step

Let us consider how the values of field variables are up-

dated over one evolution time step. We will use the velocity

formulation without truncation in this section, for generality,

and consider truncation of the convolution integrals in sec-

tion 6. We continue the antiplane case with the domain
❬

discretized into cells ✇ ✁ ▲ ✚ ❣ ✠ ✁ ▲ ③ , ✁ ▲ ✒❁➩❉➭
,
➩❮✒✭⑤■✠ ✮ ✠ ➒❖➒➢➒ ✠ ❭ ❪❴❫ ❪ ,➭â✒ ❬ ✸ ❭ ❪❴❫ ❪ . Suppose that the discretized values of slip✎ ▲ ✞ ☛✍✌ , slip velocity ✱ ▲ ✞ ☛✍✌ , state variable
➁ ▲ ✞ ☛✍✌ , stress ✛ ▲ ✞ ☛✍✌ ,

and state rate ✴➁ ▲ ✞ ☛✍✌ at cell centers are known at time
☛

for all➩ã✒â⑤■✠ ✮ ✠ ➒❖➒➢➒ ✠ ❭❮❪❴❫ ❪ and that the slip velocity history is known

for all prior time ☛ ✼ , ✔ ➑ ☛ ✼ ➑ ☛ , where ☛➋✒ ✔ is the begin-

ning of the deformation process considered. When using the

spectral formulation, we also assume that the Fourier coeffi-

cients ❏ ● ✞ ☛✍✌ of the slip distribution are known at time ☛ and

note that the velocity history need only be available in the

Fourier domain, as the values of ✴❏ ● ✞ ☛ ✼ ✌ for ✔ ➑ ☛ ✼ ➑ ☛ . To

advance the field values by one evolution time step and to

determine all the quantities just mentioned at the end of that

step, we proceed in the spirit of a second-order Runge-Kutta

procedure as follows:

1. Determine the evolution time step ➱ ☛r✒ ➱ Ü☛ ❪❐✃ to be

made using criterion (11) and (15) - (17).

2. Make first predictions of the values of slip and state

variable at time
☛✜✩ ➱ ☛ , based on known values at

☛
, as

✎ ➓▲ ✞ ☛❅✩ ➱ ☛✍✌✢✒ ✎ ▲ ✞ ☛✍✌❅✩ ➱ ☛ ✱ ▲ ✞ ☛✍✌ä✠
(19)➁ ➓▲ ✞ ☛❅✩ ➱ ☛✍✌✢✒✤➁ ▲ ✞ ☛✍✌➧✩ ➱ ☛ ✴➁ ▲ ✞ ☛✍✌ ➒

3. Make a corresponding first prediction
✪ ➓▲ ✞ ☛✢✩ ➱ ☛✍✌ of

the functional, using slip prediction (19) and treating the

slip rates as if they were constant through the time step ➱ ☛
and equal to ✱ ▲ ✞ ☛✍✌ . To implement this in the spectral for-

mulation, we first compute the Fourier coefficients of ✱ ▲ ✞ ☛✍✌
and ✎ ➓▲ ✞ ☛❙✩ ➱ ☛✍✌ . To represent FFT operations, we shift the

coordinate origin so that the cell centers are at ✁➟å ✒çæ❤➭ ,æ✻✒❢⑤✗✠ ✮ ✠ ➒❖➒➢➒ ✠ ❭❮❪❴❫ ❪ , and define è ● å ✒❵❑ ✚ ❊☞é ▲ ● å ❈❐❃➧❄❇❆ ❄ ✸ ❭✳❪❴❫ ❪ andè ✚ ❣å ● ✒➌❑ ❊✹é ▲ ● å ❈❐❃➧❄❇❆ ❄ , where ➩✿✒✭ê ✘➋⑤ (unless used as sub-
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script), to get

✴❏ ● ✞ ☛✍✌✧✒ ❃➧❄❇❆ ❄❋ ▲ ❍ ❣ è ● ▲ ✱ ▲ ✞ ☛✍✌ä✠ (20a)❏ ➓● ✞ ☛✜✩ ➱ ☛✍✌✧✒ ❏ ● ✞ ☛✍✌➧✩ ➱ ☛ ✴❏ ● ✞ ☛✍✌ ➒
Then, using (4), we get the Fourier coefficients of the pre-

diction of the functional

❚ ➓● ✞ ☛✜✩ ➱ ☛✍✌✓✒✤✘ ✬ ❀ ❱ ● ❀✮ ↕ ❏ ➓● ✞ ☛❅✩ ➱ ☛✍✌ (20b)✘ ❛➎❜ ✖✜ë ❜ë ❜ ♠ ✞ ❀ ❱ ● ❀ ✯ ☛ ✼ ✌ ✴❏ ● ✞ ☛✜✩ ➱ ☛➧✘❥☛ ✼ ✌❉❦✗☛ ✼✘ ✴❏ ● ✞ ☛✍✌ ❛ ë ❜❞ ♠ ✞ ❀ ❱ ● ❀ ✯ ☛ ✼ ✌✍❦■☛ ✼ ➛ ➒
Within the brackets of (20b), the second term can be com-

puted since the slip velocity history is known. The third term

is an approximation of the convolution on the time interval

corresponding to the current time step. We then obtain the

prediction of the functional through an inverse FFT as

✪ ➓▲ ✞ ☛❅✩ ➱ ☛✍✌✢✒ ❃➧❄❇❆ ❄❉❈✹❊❋●✰❍ ✚ ❃✐ì➥íîì➥ï❐ð è ✚ ❣▲ ● ❚ ➓● ✞ ☛❅✩ ➱ ☛✍✌ ➒ (20c)

4. Find predicted slip rates ✱✿➓▲ ✞ ☛⑨✩ ➱ ☛✍✌ corresponding

to the predicted state ➁ ➓▲ ✞ ☛✓✩ ➱ ☛✍✌ from (19) and functional✪ ➓▲ ✞ ☛✧✩ ➱ ☛✍✌ from the last stage. This is done by equating

stress (1) to the strength (7a) to get✛✦★▲ ✞ ☛❅✩ ➱ ☛✍✌❅✩✫✪ ➓▲ ✞ ☛❅✩ ➱ ☛✍✌✐✘ ✬✮✰✯ ✱ ➓▲ ✞ ☛✜✩ ➱ ☛✍✌
(21)✒➀❿➔ñ ✱ ➓▲ ✞ ☛❅✩ ➱ ☛✍✌✲✠☞➁ ➓▲ ✞ ☛❅✩ ➱ ☛✍✌☞ò

and then solving (21) for ✱✿➓▲ ✞ ☛➧✩ ➱ ☛✍✌ . We find ✱❮➓▲ ✞ ☛❅✩ ➱ ☛✍✌
using Newton-Rhapson search with ✱ ➓▲ ✞ ☛✍✌ as the first guess.

Once ✱➔➓▲ ✞ ☛✳✩ ➱ ☛✍✌ are obtained, the corresponding state

rates can be readily found from (7b) as ✴➁ ➓▲ ✞ ☛❮✩ ➱ ☛✍✌➯✒➂ ✞ ✱✿➓▲ ✞ ☛❅✩ ➱ ☛✍✌✲✠✍➁ ➓▲ ✞ ☛❅✩ ➱ ☛✍✌✍✌ .
5. Calculate the final prediction of slip and state variable

at time ☛❩✩ ➱ ☛ by

✎ ➓◗➓▲ ✞ ☛❅✩ ➱ ☛✍✌✓✒ ✎ ▲ ✞ ☛✍✌❅✩ ➱ ☛✮ ✇ ✱ ▲ ✞ ☛✍✌❅✩ ✱ ➓▲ ✞ ☛❅✩ ➱ ☛✍✌ ③ ✠
(22)➁ ➓◗➓▲ ✞ ☛❅✩ ➱ ☛✍✌✓✒❹➁ ▲ ✞ ☛✍✌➧✩ ➱ ☛✮ ✇ ✴➁ ▲ ✞ ☛✍✌➧✩ ✴➁ ➓▲ ✞ ☛❅✩ ➱ ☛✍✌ ③❐➒

(The superscript double asterisks could be dispensed with at

this point, but is useful for comparison to other methods.)

6. Make a corresponding prediction ✪ ➓◗➓▲ ✞ ☛✳✩ ➱ ☛✍✌ of

the functional, using the ✎ ➓✹➓▲ ✞ ☛✧✩ ➱ ☛✍✌ and treating the slip

rates as if they were constant throughout the time step at✞ ✱ ▲ ✞ ☛✍✌✐✩ ✱➔➓▲ ✞ ☛✐✩ ➱ ☛✍✌✍✌✹✸ ✮ , consistently with updating slip in

stage 5. The specific steps are analogous to (20) in stage 3.

Note that the second term in the brackets of (20b) will be the

same in this stage, and hence it can be computed just once,

in stage 3, and stored for use here. This is computationally

very advantageous, since this term incorporates most of the

convolution evaluation.

7. Make final predictions ✱✿➓◗➓▲ ✞ ☛✰✩ ➱ ☛✍✌ and ✴➁ ➓◗➓▲ ✞ ☛✰✩ ➱ ☛✍✌ of

the slip rate and state rate, similar to stage 4, using the new

predictions ➁ ➓◗➓▲ ✞ ☛❅✩ ➱ ☛✍✌ for the state variable from (22) and

the result ✪ ➓✹➓▲ ✞ ☛✧✩ ➱ ☛✍✌ of the last stage for the functional.

That is, solve the equation like (21), but with superscripts

double asterisks, to find ✱❮➓◗➓▲ ✞ ☛❸✩ ➱ ☛✍✌ , and then compute✴➁ ➓◗➓▲ ✞ ☛✜✩ ➱ ☛✍✌ from (7b).

8. Declare the values of field quantities ✎ ▲ ✞ ☛✗✩ ➱ ☛✍✌ , ➁ ▲ ✞ ☛✗✩➱ ☛✍✌ , ✱ ▲ ✞ ☛◗✩ ➱ ☛✍✌ , ✴➁ ▲ ✞ ☛✲✩ ➱ ☛✍✌ to be equal to the predictions with

the superscript double asterisks. Compute the corresponding

values of stress ✛ ▲ ✞ ☛✙✩ ➱ ☛✍✌ , if needed, from (7a). Store slip

velocity history for the time interval ✇ ☛✲✠✍☛❂✩ ➱ ☛ ③ , to be used in

future convolution evaluations, as ✱ ▲ ✞ ☛ ✼ ✌✓✒ ✇ ✱ ▲ ✞ ☛✍✌❅✩ ✱✿➓▲ ✞ ☛❅✩➱ ☛✍✌ ③ ✸ ✮ for
☛ ✼ in ✇ ☛✲✠☞☛✟✩ ➱ ☛ ③ . In the spectral formulation, store

instead the history of the Fourier coefficients as ✴❏ ● ✞ ☛ ✼ ✌♥✒✞ ✴❏ ● ✞ ☛✍✌❸✩ ✴❏ ➓● ✞ ☛❸✩ ➱ ☛✍✌☞✌☞✸ ✮ for
☛ ✼ in ✇ ☛✲✠☞☛⑨✩ ➱ ☛ ③ , since they

are actually used in the convolutions, and set ❏ ● ✞ ☛✡✩ ➱ ☛✍✌✢✒❏ ➓◗➓● ✞ ☛✐✩ ➱ ☛✍✌ . Finally, return to stage 1 to advance through

the next time step.

This scheme is second-order accurate in ➱ ☛ for the slip

and state variable, assuming that the predictions of the func-

tional are computed accurately enough (N. Lapusta, Ph.D.

thesis in preparation, 2000). We use the midpoint integra-

tion scheme to compute the convolution integrals. Note that

while it is important to know the order of accuracy of an up-

dating scheme, the actual performance also depends on other

things, such as stability characteristics, balance of terms that

achieves most error cancellation, etc. Ultimately, the most

important thing is the ability of a scheme to produce nu-

merically stable simulations with results convergent through

space grid reduction and better time resolution, which can

often be checked only by actually doing the simulation.

Earlier studies used different updating schemes that pro-

vided a foundation for the development of the scheme de-

scribed here. The scheme used by Rice and Ben-Zion [1996]

and Ben-Zion and Rice [1997] proceeds through stages 1

to 4 and declares the values of the field variables at time☛✺✩ ➱ ☛✍✌ to be equal to the predictions ✎ ➓▲ ✞ ☛✺✩ ➱ ☛✍✌ , ➁ ➓▲ ✞ ☛✰✩ ➱ ☛✍✌ ,✱✿➓▲ ✞ ☛❅✩ ➱ ☛✍✌ , and ✴➁ ➓▲ ✞ ☛✜✩ ➱ ☛✍✌ , all of which are first-order ac-
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curate (N. Lapusta, Ph.D. thesis in preparation, 2000). The

only departure in this ”incomplete” scheme is in stage 2,

where the value of the state was computed using not (19),

but through exact integration of (7b) assuming that the slip

velocity was constant in time throughout the step. Another

updating scheme was originally developed by Morrissey and
Geubelle [1997] for the case of constant evolution time steps

and constitutive laws without state variables and described

by them as a ”semi-implicit velocity formulation”, ”with de-

lay”, ”discretized kernel”, and ”convolutions by trapezoid

rule”. It incorporates steps similar to stages 1-5, and then

uses predictions ✎ ➓◗➓▲ ✞ ☛Þ✩ ➱ ☛✍✌ , ➁ ➓◗➓▲ ✞ ☛Þ✩ ➱ ☛✍✌ , ✱➔➓▲ ✞ ☛à✩ ➱ ☛✍✌ ,
and ✴➁ ➓▲ ✞ ☛✓✩ ➱ ☛✍✌ as the values of the field variables at time✞ ☛■✩ ➱ ☛✍✌ . It also approaches differently the convolution eval-

uation, using a trapezoidal rule and delay in kernel. The de-

lay in kernel, discussed in detail by Morrissey and Geubelle
[1997], was introduced as an empirical step by Cochard and
Madariaga [1994] to smooth numerical oscillations in slip

velocity right behind the rupture front, but at the cost of re-

ducing the slip velocities at the tips of the propagating dis-

turbances.

The present scheme performs better than both of the

above mentioned schemes in the cases that we considered. It

does not use the delay, captures more accurately the (high)

slip velocities at the rupture tips, and has essentially the same

stability performance. However, it is more costly in terms of

the computational time (but not memory, which is often the

primary limitation), mostly because it uses another pair of

FFT transforms at the stage 6. Each of the FFT transforms

requires ó ñ ❭❮❪❴❫ ❪✟ô➢õ✗ö ❊ ✞✕❭❮❪❴❫ ❪ ✌ ò floating point operations. The

other time-consuming computation is the evaluation of con-

volution integrals, which, as considered in section 6, requires

from ó ñ ❭✳❪❴❫ ❪✟ô❖õ■ö ❊ ✞✕❭❮❪❴❫ ❪ ✌ ò to ór✞✕❭ ❊❪❴❫ ❪ ✌ operations, depending

on the truncation procedure used. Clearly, if the trunca-

tion scheme used requires ór✞✑❭ ❊❪❴❫ ❪ ✌ operations, then the extra

FFTs do not make much difference in terms of the cpu time.

However, if the more efficient truncation procedure can be

used in the problem at hand, then the number of operations

for the FFTs and for the convolutions can have comparable

orders of magnitude, in which case the advantage of the full

scheme 1-8 has to be weighted against the increase in the

computational time.

6. Evaluation of the Truncated Convolution
Integrals

Let us consider the evaluation of the truncated convolu-

tion integrals in the velocity formulation (1), (2), and (6).

The elastodynamic window ⑩❩❶ (introduced in section 2) can

be selected the same for all Fourier modes, or it can be

mode-dependent. We have studied both approaches. Let

⑩ ❶ ✞ ❨ ✌Ò✒➆⑩ ❶ ✞ ❀ ❨ ❀ ✌ denote the length of the elastodynamic

time window for mode
❨

. Keeping the window the same

for all Fourier modes simplifies the procedure, but it is not

a very efficient choice, for the following reason. The ar-

gument of the convolution kernel,
❀ ❱ ● ❀ ✯ ➁❁✒ ✮✺❳✜✯ ❀ ❨ ❀ ➁❂✸ ❬

,

depends on the mode number
❨

and varies in the ranges✇ ✔ ✠ ✮✺❳✜✯ ⑩✝❶ ✞ ⑤▼✌☞✸ ❬ ③ for the lowest (spatially nonuniform) mode❀ ❨ ❀✡✒↔⑤ and ✇ ✔ ✠ ❳ ❭❮❪❴❫ ❪ ✯ ⑩❩❶ ✞✕❭✳❪❴❫ ❪ ✸ ✮ ✌☞✸ ❬ ③ for the highest mode❀ ❨ ❀■✒ ❭✳❪❴❫ ❪ ✸ ✮ . We call the length of these ranges kernel win-

dows ÷ ❶ ✞ ❨ ✌ , so that÷ ❶ ✞ ❨ ✌✢✒➨❀ ❨ ❀ ✞ ✮✺❳✜✯ ✸ ❬ ✌❴⑩❩❶ ✞ ❨ ✌ ➒ (23)

If ⑩✝❶ ✞ ❨ ✌ is the same for all
❨

, then ÷ ❶ for the highest mode

is ✞✕❭❮❪❴❫ ❪ ✸ ✮ ✌ times longer than for the lowest mode. Since

the convolution kernel decays (Figure 1) and ❭✳❪❴❫ ❪ is usually

a large number (spanning values from 512 to 65536 in the

simulations we have done), much of the computation for the

highest modes has negligible contribution.

To save computational time and memory, we examined

use of time windows
⑩ ❶ which are mode-dependent and sig-

nificantly shorter for the higher modes. In the current im-

plementation, two parameters determine the window sizes.

One of them is ⑩✝❶ ✞ ⑤▼✌ , the time window for the lowest mode❀ ❨ ❀à✒ø⑤ , and the other is ù ❶ , the ratio of the ÷ ❶ for the

highest and the lowest modes. Once these parameters are

selected, the ÷ ❶ for all the modes are determined as÷ ❶ ✞ ⑤▼✌✢✒ ✞ ✮✺❳✜✯ ✸ ❬ ✌❉⑩✝❶ ✞ ⑤➄✌✲✠ ÷ ❶ ✞✑❭✳❪❴❫ ❪ ✸ ✮ ✌❙✒ ù ❶ ÷ ❶ ✞ ⑤➄✌ä✠
(24)÷ ❶ ✞ ❨ ✌✓✒ ÷ ❶ ✞ ⑤➄✌✜✩ ÷ ❶ ✞✑❭✳❪❴❫ ❪ ✸ ✮ ✌✙✘ ÷ ❶ ✞ ⑤▼✌❭ ❪❴❫ ❪ ✸ ✮ ✘➵⑤ ✞ ❀ ❨ ❀▼✘➵⑤➄✌

✒ ✞ ✮✺❳✜✯ ✸ ❬ ✌❉⑩ ❶ ✞ ⑤➄✌ Ñ ⑤✧✩ ù ❶❽✘➵⑤❭✳❪❴❫ ❪ ✸ ✮ ✘➵⑤ ✞ ❀ ❨ ❀▼✘➵⑤➄✌ Ó ➒
That is, the kernel window ÷ ❶ ✞✑❭ ❪❴❫ ❪ ✸ ✮ ✌ for the highest mode

is ù ❶ times longer than the window ÷ ❶ ✞ ⑤➄✌ for the lowest

mode, and the kernel windows for the modes in between

vary linearly with
❀ ❨ ❀

. The corresponding time windows
⑩ ❶

can be found from (23). Note that for ù ❶❝✒ ❭✳❪❴❫ ❪ ✸ ✮ , this ap-

proach is equivalent to the one with the constant ⑩❩❶ . The ad-

vantage arises from the fact that far smaller ù ❶ can be used;

acceptable values can be as low as 4 for some problems, in-

cluding our implementation examples in section 7.

We determine the parameters
⑩ ❶ ✞ ⑤▼✌ and ù ❶ by trial and

error, starting with an educated guess and then comparing

the results with the ones for smaller and larger values of both

parameters, until convergence is reached. A useful parame-

ter for making the initial ⑩❩❶ ✞ ⑤➄✌ guess is the time ⑩❩ú for elas-

tic waves to propagate through the domain of size
❬

treated
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in the spectral formulation. In general,
⑩ ❶ ✞ ⑤▼✌Ò✒➻⑩ ú is a

good initial guess. We select
⑩ ❶ ✞ ⑤▼✌ in the form⑩ ❶ ✞ ⑤➄✌✢✒✤➶ ❶ ⑩ ú ✒❹➶ ❶ ❬ ✸ ✯ ✠ (25)

where, from our experience,
➶ ❶ of 1 to 4 are sufficient values

for most problems.

In order to use standard procedures for computing the

convolution integrals, we discretize ⑩❩❶ ✞ ❨ ✌ using the (con-

stant) time interval ➱ ☛ Ø❙Ù Ú introduced in (16). Computing

the field values using evolution time steps ➱ Ü☛ ❪❐✃ from (17),

which are multiples of ➱ ☛ Ø❙Ù Ú , we store the field values

needed for convolution evaluation on a uniform time grid

of spacing ➱ ☛ Ø❙Ù Ú , repeating each value ➱ Ü☛ ❪❐✃ ✸ ➱ ☛ Ø❙Ù Ú times.

The lengths of elastodynamic time windows ⑩❩❶ ✞ ❨ ✌ deter-

mine how many values have to be stored from the current

value back in time for each Fourier mode. This array of

the stored deformation history contains the values needed

for the discretized convolution in the useful format (spaced

by ➱ ☛❴Ø❙Ù Ú ), which simplifies and speeds up the computation.

At each evolution time step, the array of stored history is up-

dated by writing newly computed values over the values that

have moved outside the elastodynamic time windows
⑩ ❶ ✞ ❨ ✌ .

Hence only a fraction of the array is typically updated at each

time step, and the assignment for each value in the array is

done only once. In earlier implementations [Zheng et al.,
1995; Rice and Ben-Zion, 1996; Ben-Zion and Rice, 1997],

the field values were stored at (variable) evolution time steps,

and then time-consuming search and mapping routines were

employed in every time step to transfer values from the set

of the evolution time steps to the uniformly spaced array re-

quired for the calculation of the convolution integrals. Ob-

taining this array was the most expensive part of the compu-

tation, being up to 10 times more time-consuming than the

multiplications needed to evaluate convolutions. The cur-

rent procedure reduces the cpu time for updating the array

of the stored history by orders of magnitude, so that the cpu

time for computing convolution integrals is essentially deter-

mined by the cpu time required to perform multiplications.

Let us estimate the order of magnitude of this latter cpu

time. When the time windows ⑩❩❶ are the same for each

Fourier mode, they are taken to be of the order of the time ⑩✜ú
for elastic waves to propagate through the domain of interest.

In this case, the convolution evaluation, at each time step,

requires ór✞✕❭ ❪❴❫ ❪ ✌ floating point operations for each Fourier

mode and ór✞✕❭ ❊❪❴❫ ❪ ✌ operations altogether (for all modes). In

the case of
⑩ ❶ dependent on the Fourier modes according

to (23)-(24), an upper bound on the number of operations

for the mode
❨

scales as ór✞✑ù ❶ ❭✳❪❴❫ ❪ ✸✟❀ ❨ ❀ ✌ , and the number

of operations for all modes is at most ó ñ ù ❶ ❭✳❪❴❫ ❪✦ô ➮ ✞✕❭❮❪❴❫ ❪ ✌☞ò .
Since the typical values for ❭❮❪❴❫ ❪ are thousands to tens of

thousands, and ù ❶ can be as small as 4, the reduction in the

overall cpu time due to the mode-dependent
⑩ ❶ is very sig-

nificant. The analogous reduction arises in memory require-

ments, as much less deformation history has to be stored for

higher modes.

7. Implementation Example

7.1. Formulation of 2-D Model and its Response

To demonstrate how the ideas outlined in the previous

sections are combined to produce long-duration simulations,

let us consider elastodynamic response of a 2-D depth-

variable fault model (Figure 2), to which earlier implemen-

tations of related procedures have already been applied [Rice
and Ben-Zion, 1996; Ben-Zion and Rice, 1997]. In this

model [Rice, 1993], a vertical strike-slip fault with depth-

variable properties is embedded in an elastic half-space. The

fault is driven below depth û❙ü ❪❴ýäþ✑ÿ ✒ ✮ ➸
km with a plate rate

of ✱ ýÔ❫ ✒✁�✄✂ mm/yr. In the shallower zone, governed by a

constitutive law, the slip ✎✏✞✑✁ ✠☞☛✍✌ is calculated as a function of

depth ✁ and time
☛

(variations with along-strike distance
�

are not included in this 2-D model).

This model can be mathematically described as the an-

tiplane problem discussed in previous sections. It proves

convenient to express the formulae in terms of variables✞✕✎✏✞✕✁ ✠✍☛✍✌⑨✘ ✱ ýÔ❫ ☛✍✌ and ✞ ✱ ✘ ✱ ý➟❫ ✌ , in which case ✛ ★ ✞✑✁ ✠☞☛✍✌ , the

stress which would act if the plane
✂➇✒ ✔ were constrained

against any slip, becomes independent of time and equal to

the initial stress ✛ ★ ✞✕✁ ✌ . Hence, following relations (1) and

☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎
✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ x

✝
y
✞

z
✟

24 k
✠
m

Slip  constrained to vary

with depth only, δ = δ (z,t)

         -24 km < z < 0:

        Fault zone with

 depth-variable
✡

 properties;

 rate-  and state-dependent

      friction  law  applies

   -96 km < z < -24 km:

     Moving substrate;
        slip imposed at

uniform rate of 35 mm/year

Figure 2. A vertical strike-slip fault in an elastic half-space

(like in the work by Rice [1993]).
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(2), we write✛✜✞✑✁ ✠☞☛✍✌✢✒ ✛ ★ ✞✕✁ ✌❅✩✽✪ ✞✑✁ ✠☞☛✍✌➧✘✭✬✮■✯ ✞ ✱ ✞✑✁ ✠☞☛✍✌✙✘ ✱ ý➟❫ ✌✝✠ (26)

✎✏✞✑✁ ✠☞☛✍✌✙✘ ✱ ý➟❫ ☛✢✒ ❃❅❄❇❆ ❄❴❈✹❊❋●✰❍ ✚ ❃ ❄❇❆ ❄ ❈✹❊✦❏ ● ✞ ☛✍✌✍❑ ▲❯◆◗P■❘ ❈ ú ✠
(27)✪ ✞✑✁ ✠☞☛✍✌❙✒ ❃❅❄❇❆ ❄❴❈✹❊❋●✰❍ ✚ ❃ ❄❇❆ ❄ ❈✹❊✦❚ ● ✞ ☛✍✌✍❑ ▲❯◆◗P✰❘ ❈ ú ✠

with the relation between ❏ ● ✞ ☛✍✌ and ❚ ● ✞ ☛✍✌ given by (6). We

use ✬ ✒☛� ✔ GPa and
✯ ✒☞� km/s.

We select the replication distance
❬

in the ✁ direction in

the following way. In addition to the region ✇ ✘ û✐ü ❪❴ýäþ✕ÿ ✠ ✔✺③
where we wish to simulate slip, we include in

❬
the sub-

strate (mantle) region ✇ ✘❸➸ û❙ü ❪❴ý➟þ✕ÿ ✠Ô✘ û✐ü ❪❴ýäþ✕ÿ ③ , where a plate

velocity of ✱ ✒ ✱ ýÔ❫ ✒✌�✄✂ mm/yr is imposed. That means✎✏✞✕✁ ✠✍☛✍✌✧✘ ✱ ý➟❫ ☛➈✒ ✔ there, so FFT sample points in that part

of the domain create zero padding. Finally, to model the

free surface at ✁ ✒ ✔ , we map the slip and slip velocity

from the region ✇ ✘❸➸ û ü ❪❴ý➟þ✕ÿ ✠ ✔✺③ to the region ✇ ✔ ✠✍➸ û ü ❪❴ý➟þ✕ÿ➟③ as

even functions. Hence, the spatial domain to consider is✇ ✘❸➸ û ü ❪❴ýäþ✕ÿ ✠✍➸ û ü ❪❴ýäþ✕ÿ➄③ in the ✁ direction, and
❬ ✒✎✍ û ü ❪❴ýäþ✑ÿ

or 192 km for û ü ❪❴ý➟þ✕ÿ ✒ ✮ ➸ km. As noted before, because

of the Fourier series representation (27), we actually solve a

problem where this domain is periodically repeated along ✁ ,

but the zones of potential rapid slip accumulation, which co-

incide with the steady-state velocity-weakening regions of✏➅✘✒✑ ➑ ✔ , are separated enough (by at least ✓❤û✐ü ❪❴ýäþ✕ÿ ) to

prevent significant influence of spatial replications on each

other.

For our examples here, we take the constitutive law in one

of the standard laboratory-derived forms of rate- and state-

dependent friction (7) with the Dieterich-Ruina version of

state variable evolution✛✜✞✑✁ ✠☞☛✍✌✓✒✕✔✣ ✞✕✁ ✌ ↕❇✪ ★ ✩✖✏ ✞✕✁ ✌ ô ➮ ✱ ✞✑✁ ✠☞☛✍✌✱ ★ ✩✗✑ ✞✑✁ ✌ ô ➮ ✱ ★ ➁ ✞✑✁ ✠☞☛✍✌➍ ✞✑✁ ✌ ➛ ✠
(28a)✶✡➁ ✞✕✁ ✠✍☛✍✌✶✡☛ ✒❺⑤❸✘ ✱ ✞✕✁ ✠✍☛✍✌❉➁ ✞✕✁ ✠✍☛✍✌➍ ✞✕✁ ✌ ✠ (28b)

except that we regularize the first of these near ✱ ✒ ✔
as discussed below and, to allow ✱ of either sign, replace✱ ✞✑✁ ✠☞☛✍✌ with

❀ ✱ ✞✕✁ ✠✍☛✍✌Ô❀ in (28b). In (28),
✔✣

is the effective

normal stress,
✪ ★ ✒ ✔✦➒ ✓ is the value of friction coefficient at

the reference velocity ✱ ★ ✒❵⑤ ✬ m/s, ✏ and ✑ are frictional pa-

rameters, and ➍ , as before, is the characteristic slip distance.

As (28) indicates, ✔✣ , ✏ , ✑ , and ➍ vary with depth but not

with time. Examples of dynamic modeling with addition of

power law creep at depth and other features are given by Rice
and Ben-Zion [1996] and Ben-Zion and Rice [1997]. The as-

sumed variation of
✏

and
✑

with depth, like in the work by

Rice [1993], is shown in Figure 3a. This is consistent with

the experimentally determined temperature dependence of✞ ✏➅✘☞✑ä✌ by Blanpied et al. [1991, 1995] for granite under

hydrothermal conditions, as mapped by them into a depth

variation based on a San Andreas fault geotherm. Variation

of ➍ with depth is discussed below. The effective normal

stress ✔✣ is assumed in this example to vary with depth in a

way that incorporates high fluid over pressurization at depth,

according to ✔✣Ò✒❹➹ ➬❖➮ ✇ ✮ ➒ ✍❩✩ ✞ ⑤✘✍ ✁ ✸✰❱✚✙➇✌ä✠✛✂ ✔✰③ MPa. In this dis-

tribution (shown in Figure 3b), ✔✣ is equal to overburden mi-

nus hydrostatic pore pressure at shallow depth (up to about

2.6 km), with transition to lithostatic pore pressure gradient

with 50 MPa offset at depth. Figure 3b also shows the initial

stress, which is the same for all the cases considered here.

Since the friction law (28) is a particular (and widely

used) version of (7), all our conclusions from sections 3

and 4 hold with ❰ ➓ ✒✜✏✢✔✣ , Ï ➓ ✒✜✑✣✔✣ . The critical stiff-

ness (9a) becomes ❱✰→❴➣➔✒✜✔✣ ✞ ✑➈✘✤✏❤✌✹✸✺➍ . To find the critical

cell size
➭ ➓ corresponding to (10), we need to determine the

coefficient
➲

for our present model in the expression for the

single-cell stiffness
❱❽✒➯➲ ✬ ✸✰➭ . As mentioned in section 3,➲❵✒ ❳ ✸▼➸➵➊ ✔✟➒✦✥★✧ . That

➲
was determined by performing

the static elastic spectral analysis of unit slip at a single FFT

sample point (and all its replications) and equating the re-

sulting stress reduction there to ➲ ✬ ✸✰➭ . When we ignore the

presence of a free surface, the calculation is straightforward

and gives ➲❾✒ ❳ ✸✺➸✿✩ ✮ ✸ ❭❮❪❴❫ ❪ (where
✮ ✸ ❭❮❪❴❫ ❪ , which arises

from the periodic replication, can be ignored for the large

values of ❭✳❪❴❫ ❪ we consider). A full calculation, which we

did numerically, also includes unit slip in the mirror cell and

in all its periodic replicates. It resulted in values of ➲ very

close to
❳ ✸✺➸ for all the cells except for the one adjacent to the

free surface, where
➲❥✒ ✔✦➒ ➸ ✥ . Using

➲❥✒ ❳ ✸✺➸
, we estimate

the critical cell size by➭ ➓ ✒ ❳ ➸ ✬ ➍✔✣ ✞ ✑⑨✘✩✏❤✌ ➒ (29)

A drawback of the logarithmic form (28a) is that the

stress is not defined for ✱ ✒ ✔ . The logarithmic form

was derived from purely empirical considerations to match

experimental observations [Dieterich, 1979, 1981; Ruina,
1983]. However, it has a theoretical basis, in that such a

form would result if the direct velocity effect is due to stress

biasing of the activation energy in an Arrhenius rate pro-

cess at contact junctions, at least in the range for which for-

ward microscopic jumps, in the direction of shear stress,

are overwhelmingly more frequent than backward jumps.

Such interpretation seems implicit in the work by Chester
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Figure 3. (a) Depth-variable distribution of frictional parameters ✞ ✏✿✘✬✑➟✌ and
✏

(like in the work by Rice [1993]), consistent

with the measured temperature and inferred depth variation of ✞ ✏✻✘☞✑ä✌
of Blanpied et al. [1991, 1995] for granite under

hydrothermal conditions. (b) Depth-variable distribution of the effective normal stress
✔✣

(solid line) and initial shear stress✛ ★ ✞✕✁ ✌ (dashed line).

and Higgs [1992] and Chester [1994] and is more explic-

itly proposed by Brechet and Estrin [1994] and Baumberger
[1997]. To account in a simple way for backward jumps,

which could not be neglected near ✱ ✒ ✔ , we solve (28a)

for ✱ , identifying the factor ✭ ➴✚✮ ✞✕✛ ✸★✏✯✔✣❅✌ , which then appears

as the stress biasing of forward jumps, and replace it by✇ ✭ ➴✚✮ ✞❇✛ ✸✰✏✢✔✣❅✌✝✘ ✭ ➴✚✮ ✞ ✘ ✛ ✸★✏✯✔✣✜✌ ③ to account for backward jumps

too. This procedure, used by Rice and Ben-Zion [1996] and

Ben-Zion and Rice [1997], replaces (28a) with the regular-

ized form✛✜✞✑✁ ✠☞☛✍✌✓✒ ✏✯✔✣ ✞✑✁ ✠☞☛✍✌
(30)✱ ➘✰✲✴✳ ➷☞➬➢➮✶✵ ↕ ✱✮ ✱ ★ ✭ ➴✚✮ Ñ ✪ ★ ✩✗✑ ô ➮ ✞ ✱ ★ ➁❤✸✺➍✧✌✏ Ó❸➛ ➒

During forward sliding at rates of order ✱ ★ the modifica-

tion to ✭ ➴✚✮ ✞❇✛ ✸✰✏✢✔✣❅✌ is of order ✭ ➴✷✮ ✞ ✘ ✮ ✪ ★ ✸★✏✏✌ or less, where✪ ★ ✸★✏✿➊✤➸ ✔ , and so this is a negligible change from (28a).

As discussed before, the critical cell size
➭ ➓ from (29)

is a very important parameter, both for the physics and nu-

merics of the problem. In principle,
➭ ➓ can vary with depth,

since it is determined by the depth-variable frictional prop-

erties and stress. In all our examples, however, we attempt to

make ➭ ➓ uniform throughout the velocity-weakening depth

range. The motivation is that we have a uniform computa-

tional grid and wish to keep
➭ ➓ ✸■➭ uniformly high for good

numerical resolution. As is well known, it is not presently

feasible to do computations with values of ➭ ➓ chosen in con-

sistency with laboratory values of ➍ (which are typically in

the few micron range and give ➭ ➓ in the range of 1 m). We

thus take larger ➍ and ➭ ➓ but do keep ➭ ➓ small compared

to other feature sizes in the model, such as the seismogenic

depth, which in our model corresponds to the steady-state

velocity weakening region, extending over ➊①⑤ ✮ km. We

prescribe
➭ ➓ in the simulations, using values approximately

equal to 0.94 km and ✔✦➒ ✧ ➸❤✸✺➸Ò✒ ✔✟➒ ✮ �✄✂ km in the examples

shown.

The distribution of the characteristic slip distance ➍ is

assigned from (29) based on the desired ➭ ➓ for cells with

steady-state velocity weakening. For the above values of ➭ ➓ ,
this results in ➍ of order of millimeters to tens of millime-

ters, much larger than laboratory values but, as explained,

needed to keep the size of
➭ ➓ possible to resolve. Such selec-

tion of
➍

has to be adjusted in the regions close to transition

from the velocity-weakening to the velocity-strengthening

friction, where, owing to near-zero values of ✞ ✑à✘✸✏❤✌ , it re-

sults in very small values of
➍

. Resolution of these values

would require extreme refinement of time stepping during

dynamic rupture, when slip velocities are large, as follows

from the time selection criterion (11). Thus we increase ➍
in those regions, effectively changing (increasing) the nucle-
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Figure 4. (a) Depth-variable distribution of the characteristic slip distance ➍ of the friction law, for the two cases considered.

(b) Modification in the critical cell size ➭ ➓ caused by the adjustments (increases) to ➍ in the regions next to the transition

from the velocity-weakening to the velocity-strengthening friction; ➭ ➓ is defined only for the velocity-weakening part of the

fault zone.

ation size there. As for the velocity-strengthening regions,

keeping a particular value of
➭ ➓ is not of a concern, since

nucleation cannot happen there. However, it is the reso-

lution of
➍

in the velocity-strengthening regions that usu-

ally controls the size of time steps during essentially quasi-

static phases of deformation. This is not surprising since

during the quasi-static phases the velocity-weakening re-

gions are stuck with near-zero velocities, while the velocity-

strengthening regions are creeping with (much larger) slip

velocities close to the plate velocity. Hence, while assign-

ing ➍ in the velocity-strengthening regions, it is practical to

take into consideration time step constraints (12). Keeping

in mind the restrictions discussed and aiming for a simple

and continuous distribution of ➍ , we use, for the examples

in this paper, the distribution of
➍ ✞✕✁ ✌ shown in Figure 4a.

Such an assignment of
➍

keeps
➭ ➓ constant and unmodified

from 13.5 to 4 km depth. Figure 4b demonstrates the modi-

fication of
➭ ➓ caused by the adjustments in

➍
.

Before we consider choices of numerical parameters, let

us have a look at the response this model produces and our

simulations are able to capture. Figures 5 and 6 show parts

of the slip accumulation ✎ for the cases ➭ ➓ ✒ ✔✟➒ ✧ ➸ and 0.235

km, respectively. Figure 7 shows the maximum slip velocity

histories for these two cases. From the data, as well as from

the assorted slip velocity output, we notice that the velocity-

strengthening region at the bottom of the fault is creep-

ing, with roughly the plate velocity of 35 mm/yr, whereas

the velocity-weakening region accumulates slip through dy-

namic failure events. The velocity-strengthening region near

the free surface is thin and gets broken by strong ruptures

coming from the bottom of the fault segment, but it also ex-

hibits some creeping. Even on these plots, nucleation zones

can be distinguished (especially for the case ➭ ➓ ✒ ✔✟➒ ✧ ➸ km),

corresponding to several dashed lines plotted on top of each

other. The slip accumulates quasi-statically at those regions

for a long time, then the slip accelerates and dynamically

expands from there. Notice that the nucleation size scales

with ➭ ➓ , and in both cases the nucleation size is ➊✻� ➒ ✂ times

larger than ➭ ➓ . The model earthquakes generally nucleate

at the bottom transition between the velocity-weakening and

velocity-strengthening regions, because it is there that the

creeping region transfers stresses to the seismogenic depth,

loading it up. By looking at the distance between the tips of

the dashed lines, which are 1 s apart in time, we can estimate

the rupture propagation velocities. These range from slower

ones right after the nucleation up to almost the shear wave

speed of 3 km/s further in the rupture development. Many of

the model earthquakes are large and reach the free surface,

sending a wave of slip back to depth.

The provided examples show that our simulation algo-

rithm deals very well with slow loading of the fault with

the equivalent of the millimeters per year plate rate, slow
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Figure 5. Accumulation of slip versus depth for the case ➭ ➓ ✒ ✔✟➒ ✧ ➸ km, ➭ ➓ ✸■➭➪✒❹➸ ✔ . The solid lines are plotted every 5 years.

The dashed lines are plotted above 18 km depth every second if the maximum velocity anywhere on the fault exceeds 0.001

m/s. The model response consists of large, essentially periodic events rupturing the whole fault. The nucleation size is ➊✻� ➒ ✮
km.
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Figure 6. Accumulation of slip versus depth for the case ➭ ➓ ✒ ✔✟➒ ✮ �✣✂ km, ➭ ➓ ✸■➭❒✒❢➸ ✔ . The solid lines are plotted every 5

years. The dashed lines are plotted above 18 km depth every second if the maximum velocity anywhere on the fault exceeds

0.001 m/s. The model response consists of a repeated pair of larger and smaller events. The nucleation size is ➊ ✔✟➒ ✍ km. In

comparison with Figure 5, note the difference in the system behavior and the change in the nucleation size as ➭ ➓ is changed.
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Figure 7. Maximum slip velocity on the fault as a function of time for (a) ➭ ➓ ✒ ✔✟➒ ✧ ➸ km and (b) ➭ ➓ ✒ ✔✦➒ ✮ �✣✂ km. Individual

rupture events collapse onto a straight line on this timescale of hundreds of years. The maximum slip velocities reached during

dynamic ruptures are of the order of 10 m/s for larger events and 1 m/s for smaller events in the Figure 7b. The maximum

slip velocity in between the dynamic events is ➊❺⑤ ✔ ✚❃❂ m/s, which corresponds to the plate velocity of 35 mm/yr. Read 1e-05

as ⑤ ✔ ✚❃❄ .
event nucleation, and dynamic slip with kilometers per sec-

ond rupture velocities and meters per second slip velocities.

The results shown are well-resolved numerically. We now

discuss the choices of numerical parameters that produce

these simulations.

7.2. Parameter Selection for Well-Resolved Simulations

As explained in sections 3 and 4, the choice of the pa-

rameter ➶➇✒❺➭ ➓ ✸■➭ is crucial for the simulation stability, ac-

curacy, and tractability. Together with the selection of ➭ ➓
and

❬
, this parameter determines the number ❭❮❪❴❫ ❪ of the dis-

cretization points required (and hence the problem size) and

the cell size ➭ through ❭✳❪❴❫ ❪ ✒ ❬ ✸■➭❷✒❹➶ ❬ ✸✰➭ ➓ and ➭❷✒❧➭ ➓ ✸✺➶ .
If Û✄Ø❙Ù Ú from the expression for the minimum time step (16)

is kept unchanged, the parameter ➶ can also be considered as

controlling the smallest time discretization allowed. For the

examples here, we find that
➶❒✒â➭ ➓ ✸✰➭➎✒❢➸ ✔ produces sta-

ble results that are closely matched by the results obtained

with
➶✽✒❅✍ ✔ (hence convergence through grid reduction is

achieved).
➶ ✒ ✮ ✔ provides less satisfactory resolution. As

an illustration, consider Figure 8, where the slip rate his-

tory during a part of the second event of the sequence with➭ ➓ ✒ ✔✟➒ ✧ ➸ km is shown for the point at 3 km depth. Al-

though in a different problem the value of ➶ required may

be different, the above consideration illustrates how to ap-

proach selection of ➶➪✒✤➭ ➓ ✸■➭ .

We use
Û Ø❙Ù Ú of 1/2, giving ➱ ☛ Ø❙Ù Ú ✒ ➱ ☛ → ❪❴❫ ❫ ✸ ✮ . For the

convolution truncation, we choose the elastodynamic time

windows by specifying ⑩❩❶ ✞ ⑤➄✌ ✒ ✮ ⑩❩ú or ⑩❩❶ ✞ ⑤➄✌ ✒Õ⑩✜ú with⑩❩ú➎✒ ❬ ✸ ✯ , and ù ❶➨✒♦➸ , confirming these values by vary-

ing the parameters to make sure the results do not depend

on their choice. Note that since the replication period in our

model is much larger than the region failing dynamically,⑩✝❶ ✞ ⑤▼✌✢✒ ✮ ⑩✜ú is quite a large window for this model, and al-

most identical results can be obtained by using ⑩✝❶ ✞ ⑤▼✌✓✒➀⑩✜ú .
Larger values of the elastodynamic time windows in this

model tend to increase the maximum velocities achieved, by

a small amount, but do not noticeably influence other fea-

tures, such as the amount and distribution of slip or the rup-

ture velocities.

The fact that ù ❶ can be chosen as small as 4 in this

problem provides a huge computational gain. Let us illus-

trate that for our example with ➭ ➓ ✒ ✔✟➒ ✧ ➸ km. To achieve➶ ✒Õ➭ ➓ ✸■➭❽✒➨➸ ✔ , we need ❭❮❪❴❫ ❪ ✒✕✍✟⑤ ✧ ✮ elements along the

replication period. This is also the number of Fourier modes

for which we have to compute the convolution integrals at

each time step (and hence to store slip velocity history suffi-

ciently back in time). For mode
❨ ✒↔⑤

, with
⑩ ❶ ✞ ⑤➄✌ ✒ ✮ ⑩ ú
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Figure 8. Slip velocity history at 3 km depth as a function of time for the second event in the sequence with ➭ ➓ ✒ ✔✦➒ ✧ ➸
km. Zero time is chosen arbitrarily for plotting convenience. The resolution ➭ ➓ ✸✰➭➅✒❧➸ ✔ gives essentially the same results as➭ ➓ ✸■➭➪✒☞✍ ✔ . The case ➭ ➓ ✸✰➭➪✒ ✮ ✔ is less sufficiently resolved.

and Û✄Ø❙Ù Ú❧✒ ⑤✺✸ ✮ , the number of values stored at spacing

of ➱ ☛❴Ø❙Ù Ú is ❭❮❪❴❫ ❪ ⑩❩❶ ✞ ⑤➄✌✹✸ ✞ ⑩✜ú■Û✦Ø❙Ù Ú■✌✻✒✭➸ ❭✳❪❴❫ ❪ ✒❇� ✮ ✠ ✥★✓ ✍ . If

a constant window were used for all modes, this would be

the number of required values for each Fourier mode, and

we would need two arrays of the size ✇ � ✮ ✠ ✥✰✓ ✍ ✱ ✍✟⑤ ✧ ✮ ③ , one

for the Fourier coefficients and the other for the values of

the discretized kernel. At each time step we would have to

use these arrays to compute the convolution integrals. Withù ❶ ✒➼➸
and mode-dependent time windows, the number

of values needed to be stored and used at each time step

decreases significantly for higher Fourier modes. We pack

more than one mode into most columns of the arrays, get-

ting, for this particular example, the size of the arrays down

to ✇ � ✮ ✠ ✥★✓ ✍ ✱ ✮ ✓✺③ , which results in a very substantial reduc-

tion, by more than a factor of 300, of memory and cpu time

for doing convolutions. This is consistent with our order-of-

magnitude considerations in section 6.

Our evolution time step selection follows criterion (11)

and (15)-(17). With the choice of other parameters dis-

cussed, the minimum evolution time step allowed, ➱ ☛❴Ø❙Ù Ú ,
is ➊ ✔✦➒ ✔✗✔ ➸ s for the case ➭ ➓ ✒ ✔✟➒ ✧ ➸ km and ➊ ✔✟➒ ✔■✔ ⑤ s for

the case ➭ ➓ ✒ ✔✟➒ ✮ �✣✂ km. We can understand why such small

values are needed by recognizing, as we did establishing cri-

terion (11), that slip in one time step must be comparable

(and preferably smaller) than the characteristic slip distance➍
of the friction law, to resolve the state variable evolution.

Since the simulated
➍

is of order millimeters (Figure 4a) and
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Figure 9. Values of evolution time steps (in seconds) plot-

ted as a function of the simulated time in years for the case➭ ➓ ✒ ✔✟➒ ✧ ➸ km. Variable time stepping works well, making

the time step span more than 8 orders of magnitude in this

simulation, consistently with the changes in the slip velocity.
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the largest slip velocities are of order meters per second, it

is clear that the smallest time steps should be of the order

of one thousandth of a second, as we have here. Note that

once the dynamic propagation begins, large slip velocities

at the rupture fronts determine the time step size, and it is

almost always equal to the minimum time step ➱ ☛ Ø❙Ù Ú , so

that the rapid event propagation is essentially modeled using

constant time steps. Preventing the time step from becom-

ing smaller than ➱ ☛❴Ø❙Ù Ú may also mean that the state vari-

able evolution is occasionally not ideally resolved right at

the rupture peak, but in all the cases we have checked, not

resolving ➍ only occasionally at the very tip of the rupture

does not change the results in any significant way.

For the slow deformation periods in between dynamic

rupture events, the time steps taken are quite large. Fig-

ure 9 shows the values of evolution time steps for the case➭ ➓ ✒ ✔✟➒ ✧ ➸ km. We see that the time steps span more than

eight orders of magnitude in this simulation. Conditions (12)

or (14) do a very good job restricting the time steps during

slow deformation. If they are violated, the computation be-

comes corrupted. We can show this by relaxing the condi-

tions several times, that is, by selecting the time step using

(11) and (15) - (17) as before, but with coefficients ② ▲ in-

creased by a certain factor, although still insisting that ② ▲ is

not larger that 1/2. Figure 10a shows the maximum velocity

for the case
➭ ➓ ✒ ✔✟➒ ✧ ➸ km and a factor of 2 increase, and

Figure 10b for a factor of 5 increase, of the time steps in

the sense discussed above. Comparing to Figure 7a, which

shows the well-resolved response, we see that numerical in-

stabilities start to appear at slow sliding velocities for mod-

estly increased time steps (Figure 10a), while for the factor

of 5 increase the response looks very complex, with numer-

ous events of different maximum velocities (Figure 10b), all

of which are artifacts of the improper time discretization.

Figure 11 shows slip accumulation for a factor of 3 increase,

with some small ”events” appearing (like the one at
➊❺⑤ ✧ m

slip) and aperiodic large events. Those features are caused

by the improper resolution in time; the true response in this

case is the periodic sequence of large events shown in Fig-

ure 5. Improper space discretization also produces artificial

complexification of the model response, as discussed by Rice
[1993] and Ben-Zion and Rice [1995, 1997].

8. Discussion

As the considered examples show, the algorithm pre-

sented here is capable of rigorous treatment of long-duration

deformation histories with continuing aseismic creep slip-

page in velocity-strengthening fault regions throughout the

loading period, with gradual nucleation of model earth-

quakes followed by dynamic propagation of ruptures, and

with rapid post seismic deformation after such events. The

algorithm is formulated for general rate- and state-dependent

friction laws, and the positive direct effect observed exper-

imentally and represented by such laws is decisive for its

success during long intervals with essentially quasi-static re-

sponse and aseismic slip.

The algorithm employs a number of important ideas.

Separation of the stress transfer functional into static and

dynamic parts localizes the effects of the prior deformation

history in convolution integrals on slip velocity with rapidly

decaying kernels. Truncation of these convolutions is justi-

fied by rapid decay in time of the convolution kernels and

allows us to simulate long processes without the necessity

to deal with all prior deformation history at each time step.

Variable time stepping makes the number of time steps dur-

ing slow deformation periods numerically manageable while

still capturing the details of both the nucleation and dynamic

propagation phases. Proper space and time discretization en-

sures reliability of the results which can be verified through

space and time grid refinement. The methodology has been

presented using the 2-D antiplane spectral formulation. The

described procedures can be readily extended to the 2-D in-

plane and 3-D spectral formulations. They can also be ap-

plied at least in part to discretized models based on space-

time boundary integral formulations, as we briefly discuss

in Appendix B, where we further suggest that such formu-

lations could be founded on kinematic modeling input from

more versatile methods like finite difference, possibly being

practical in cases for which the spectral diagonalization of

convolutions does not apply.

The numerically most challenging parts of the algorithm

are calculations of the convolution integrals and, in the spec-

tral formulations, fast Fourier transforms (FFTs). If the

elastodynamic time windows used to truncate the convolu-

tions are long and truncation according to the mode does not

shorten much the time windows for higher modes, then the

convolution evaluations take most of the computational time

and even minor optimizations of convolution evaluations can

be very beneficial. If, on the other hand, the time windows

are much shorter for higher modes, as we have been able to

use for our depth-variable example here, then the FFTs start

to use a comparable fraction of the computational time, and

an efficient FFT routine can make a significant difference.

It is important to ensure that the results of the simulation

do not depend on the discretization and other numerical pa-

rameters. For example, we could conclude that the model

response is complex (Figure 10b) or that the events are ape-

riodic (Figure 11), whereas better resolution in time leads,

in this case, to a periodic sequence of large events (Figures 5

and 7a). The verification of the independence of the results

on numerics can be done through establishing convergence
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Figure 10. Maximum velocity on the fault for ➭ ➓ ✒ ✔✦➒ ✧ ➸ km and insufficient resolution in time. (a) ② ▲ increased by a factor

of 2, (b) ② ▲ increased by a factor of 5 (in both cases, ② ▲ is not allowed to exceed 1/2). In Figure 10a, numerical instabilities

start to show; Figure 10b shows seemingly very ”complex” behavior, which is actually just a numerical artifact.
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Figure 11. Accumulation of slip versus depth for the case
➭ ➓ ✒ ✔✟➒ ✧ ➸ km with insufficient resolution in time ( ② ▲ increased

by a factor of 3). The solid lines are plotted every 5 years. The dashed lines are plotted above 18 km depth every second

if the maximum velocity anywhere on the fault exceeds 0.001 m/s. The response differs from that of the properly resolved

run in Figure 5. Nonperiodic large events and even some smaller events appear, all of which are, in this case, artifacts of the

inadequate time discretization.
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of the results (or at least of their qualitative features) as the

parameters of the simulation are refined. This is often nec-

essary even when the output looks smooth and plausible, as

it can still be qualitatively different from the true response

of the model (e.g., Figure 11 versus Figure 5). Usually, the

plots of slip velocity or stress reveal much more about the

numerical stability and convergence than their slip counter-

parts.

The examples presented are based on a rather simple

model, with the fault properties uniform throughout the seis-

mogenic (steady-state velocity-weakening) zone. The re-

sponse consists of periodic sequences of events (Figures 5

and 6), and such a regular response has allowed us to concen-

trate on developing a rigorous and efficient numerical proce-

dure. We verify, under the conditions of much better resolu-

tion and wider parameter range, the result of Rice and Ben-
Zion [1996] and Ben-Zion and Rice [1997] that the dynamic

effects alone are not sufficient to produce event complexity.

Moreover, we find periodic response in some cases where

the earlier studies have found, evidently due to insufficient

numerical resolution, chaotic sequences of large events.

In our consideration, the characteristic slip distance ➍
of the rate- and state-dependent friction is taken to be

much larger than the laboratory values to achieve numer-

ical tractability. To predict the model behavior with the

laboratory-derived values of ➍ , it is important to observe

trends as we decrease ➍ . Comparing Figures 5 and 6, with➍ in the case of Figure 6 being 4 times smaller than that

of Figure 5, we see that the reduction in the characteristic

slip distance introduced small events at the base of the seis-

mogenic zone. Further twofold reduction in
➍

produces a

sequence of one large and one small event much like Figure

6 (although with smaller slip per event), but it is possible

that still much smaller values of
➍

would introduce more

elaborate sequences, with more small events.

To produce realistically complex behavior, additional fea-

tures have to be introduced. We would expect that adding

strong fault heterogeneities in the form of (highly) nonuni-

form normal stress and/or frictional properties would natu-

rally complexify the model response. Accounting for shear

heating is also very important. It would introduce pore

pressure development, which would add a second weaken-

ing mechanism due to the evolution of the effective nor-

mal stress. Interaction of two weakening mechanisms has

complexified events sequences for a model studied by Shaw
and Rice [2000], in a certain parameter range for the ad

hoc type of friction law with two slip-weakening distances

used. Another consequence of the shear heating would be

temperature-induced time variations in the frictional proper-

ties, which may also contribute to event complexity. These

problems, as well as other important problems such as the

earthquake nucleation process or patterns of rupture propa-

gation in events nucleated naturally as a part of a sequence,

can be studied within the methodology presented in this pa-

per.

Comparison of the larger and the smaller events for the

case ➭ ➓ ✒ ✔✟➒ ✮ �✄✂ km supports the view that large events are

just small events that run away and shows how the runaway

can be prevented by prior stress release. Let us consider

the 3-D plots of slip and slip velocity for individual events

shown in Figures 12 and 13. The distribution of slip before

each of the shown model earthquakes (Figure 12) reflects the

slip in previous events, the creeping velocity-strengthening

regions on both ends of the fault segment, and a clear nucle-

ation zone, which actually extends long back in time. The

slip velocity plots (Figure 13) show how the dynamic events

develop. Once an event nucleates, two rupture fronts prop-

agate in the opposite directions. One of them is arrested in

the velocity-strengthening region at the bottom of the fault.

In the case of the larger event (Figure 13a), the other rupture

front reflects off the free surface and runs down, rerupturing

the seismogenic depth, with dynamic waves of slip propagat-

ing on the surface of the rupture. The spikes on the rupture

front are an artifact of the outputting and plotting procedure;

for a given space location as a function of time and for a

given moment in time as a function of space, the slip veloc-

ity profiles are smooth. The plotting procedure also reduces

the maximum slip velocities achieved, owing to insufficient

resolution of the image surface. In the case of the smaller

event (Figure 13b) the rupture gets arrested long before it

reaches the free surface. From the slip distribution in Fig-

ure 12b we notice that the smaller event fails to advance into

the region of larger slip (and hence higher stress release) left

by the previous (larger) event. Comparing Figures 12a and

12b, as well as Figures 13a and 13b, we notice that the slips

and slip velocities during and right after the nucleation of

the smaller event look just like the ones for the beginning of

the larger event. This means that observing signals from the

nucleation and beginning of such an event, we would not be

able to tell whether the final size of the event will be large or

small.

We can use the developed methodology, which incorpo-

rates both truly slow tectonic loading and all dynamic ef-

fects, to evaluate simplified approaches. Let us consider two

such approaches: (I) a procedure with truly slow tectonic

loading but with a part of the dynamic effects (namely, dy-

namic stress transfers) ignored, and (II) a procedure with all

dynamic effects incorporated but much faster loading.

To get a procedure of type I, we take ⑩✝❶ ✞ ⑤➄✌ ✒➯⑩❩❶❹✒ ✔ ,
which coincides with the quasi-dynamic approximation used

by Rice [1993] and Ben-Zion and Rice [1995]. Figure 14

shows the results for the case
➭ ➓ ✒ ✔✟➒ ✧ ➸ km. Comparing
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Figure 12. Slip in individual events from the sequence in Figure 6, ■❃❏▲❑☛▼✶◆P❖✰◗✄❘ km, for (a) a larger event and (b) the following

smaller event. The time axis spans 20 seconds, with zero time chosen arbitrarily for plotting convenience. The slip axis spans

6 m in both cases. Notice the clear nucleation zone that extends much further back in time. The smaller event in Figure 12b

looks just like the beginning of the larger event in Figure 12a; it stops by not being able to advance into the higher slip/lower

stress region in the middle of the fault. This supports the idea that large events are small events that run away due to favorable

stress/strength conditions on the fault.
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Figure 13. Slip velocity in the same events as in Figure 8, ■❙❏❚❑☞▼❯◆ ❖❱◗✣❘ km, for (a) a larger event and (b) the following smaller

event. The spikes on the rupture front are artifacts of the outputting and plotting procedures; the slip velocity is actually

smooth, as confirmed by plots of slip velocity at particular depths as a function of time and at particular times as a function

of depth. Notice the dynamic effects in the form of waves, including the one reflected from the free surface. As in Figure 12,

the smaller event in Figure 13b looks just like the beginning of the larger event in Figure 13a.
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Figure 14. Accumulation of slip versus depth for the case ■❙❏❚❑✻▼✶◆ ❳✰❨ km with ❩❭❬❪❑✻▼ (i.e., the ”quasi-dynamic” approxima-

tion). The solid lines are plotted every 5 years. The dashed lines are plotted above 18 km depth every second if the maximum

velocity anywhere on the fault exceeds 0.001 m/s. There is no reflected front of slip from the free surface which is present

when the wave-mediated stress transfers are included (Figure 5). The slip per event and the slip and rupture velocities are

smaller.
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Figure 15. Accumulation of slip versus depth for the case ■❃❏❚❑✻▼✶◆ ❳✰❨ km with the much larger loading velocity ❴✶❵✘❛❃❑☛◗✄❘❝❜ ⑤ ▼✣❞
mm/year. The solid lines are plotted every ❘❡❜ ⑤ ▼✚❢❙❞ years. The dashed lines are plotted above 18 km depth every second

if the maximum velocity anywhere on the fault exceeds 0.001 m/s. (The initial conditions could be tuned so that the slip in

the middle of the lower velocity strengthening region is roughly the same as at its bottom. The qualitative features of the

simulation are independent of the initial conditions.) Notice that, compared to the case of tectonic loading ( ❴ ❵✘❛ ❑✌◗✄❘ m/s,

Figure 5), the nucleation phase is very different and the slip per event is more than twice smaller.
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with Figure 5, we see that the wave effects disappear as they

should (there is no slip wave reflecting off the free surface),

the rupture velocities are slower (the tips of the dashed lines

are closer to one another), and the slip velocities are smaller

too, as is the accumulated slip per event. We have examined

the possibility that the quasi-dynamic calculations ❣❤❩ ❬ ❑☞▼✣✐
might approximately reproduce the slip per event as in Fig-

ure 5 if we could make the slip velocities faster during dy-

namic events. To that end, we did a series of studies in which

the numerical value of ❥❧❦❱❖✰♠ in the radiation damping term

of elastodynamic relation (26) was varied in size. Reduc-

tion to approximately half the proper value did give rupture

propagation and slip velocities during events that tend to be

of comparable order to those of the proper dynamic simu-

lation (Figure 5), but there was very little effect on the slip

per cycle, which remained much as in Figure 14. This sug-

gests that the greater slip in Figure 5 is significantly due to

the discussed reflected wave effect at the free surface, a fea-

ture which could not appear in the quasi-dynamic simula-

tion. However, there is no qualitative difference in the sys-

tem behavior, probably due to the relative simplicity of this

model’s response. If the dynamic effects were more com-

plex, their elimination may have made a more significant

difference.

Finally, we consider a procedure in which the plate load-

ing rate is only a few orders of magnitude less than represen-

tative seismic slip rates, which allows to use standard elas-

todynamic numerical methodology throughout (like in the

work by Shaw and Rice [2000]). To this end, we change the

loading velocity from ❴✶❵✘❛♥❑♦◗✣❘ mm/yr in our implementa-

tion example above to ❴✶❵✘❛♣❑✕◗✄❘q❜ ⑤ ▼❱❞ mm/yr, for the case■❙❏✸❑✎▼✶◆ ❳✰❨ km, keeping other parameters the same. The

resultant slip accumulation is shown in Figure 15, which is

very different from the model response with the tectonic-like

loading velocity (Figure 5). The increase in loading velocity

has totally altered the nucleation process and location and

resulted in more than twice smaller slip per event ( r ⑤ ◆ ❨ m

slip per event, compared to r✻◗✶◆ s m slip per event in the case

of ❴ ❵t❛ ❑✻◗✣❘ mm/yr). The loading velocities ❴ ❵✘❛ ❑☞◗✄❘✉❜ ⑤ ▼❱✈
mm/yr and ❴ ❵✘❛ ❑✇◗✄❘①❜ ⑤ ▼✰② mm/yr also give quite altered

(although, naturally, less so) nucleation, and slips per event

of r ⑤ ◆ ③ and 2.3 m, respectively.

The evaluation of the simplified approaches shows that

while accounting for the proper dynamic response can be

very important, simulating slow tectonic loading is also cru-

cial for uncovering the true model response. The results also

demonstrate that even though simplified approaches may be

unavoidable in some cases, they have limitations that can

be uncovered and remedied only within a more general ap-

proach like the one presented here.

Appendix A: Derivation of Critical Stiffness
and Time Discretization Constraints Dictated
by Constitutive Law

To derive expression (9) for the critical stiffness ④❱⑤⑦⑥ in

quasi-static slip, let us consider a spring-slider system mov-

ing steadily at rate ❴ ❏ , with state ⑧ ❏ ❑❇⑧⑩⑨❶⑨t❣❷❴ ❏ ✐ and fric-

tional resistance ❸❹❏❺❑✻❸ ⑨❶⑨ ❣❷❴✉❏✘✐ . If we impose a perturbation❻❴ on the sliding velocity and use
❻❸ ,
❻⑧ , and

❻❼
to denote the

corresponding perturbations of other quantities, then from

the friction law (7) we can write the linearized constitutive

response to the perturbation as❻❸❽❑☛❾ ❏ ❻❴❴ ❏➀❿✸➁ ❏ ❻⑧❯➂
(A1a)➁ ❏❙➃❻⑧➄❑➆➅ ❴ ❏➇➉➈ ➁ ❏ ❻⑧ ❿➋➊ ❏❴ ❏ ❻❴➀➌✬➂

where ❾❺❏ , ➊ ❏ , ➁ ❏ , and
➇

are used to denote the partial

derivatives of the functions in (7): ➍❃➎▲❣➏❴♣➂➐⑧✣✐➐❦✰➍❭❴➑❑☞❾➒❏➓❦✰❴➔❏ ,➍❹➎❺❣❷❴→➂➣⑧✣✐✛❦★➍❃⑧↔❑ ➁ ❏ , ➍❙↕➙❣❷❴→➂➣⑧✣✐✛❦★➍❭❴✇❑➛➅ ➊ ❏✘❦ ➇ ➁ ❏ , with the

derivatives evaluated at steady state, and
➇

given by (9b).

The definitions of ❾❺❏ and ➊ ❏ are equivalent to the more fa-

miliar ❾➒❏q❑➛➜ ❴➀➍❃❸✢❣❷❴→➂➣⑧✣✐✛❦★➍❭❴➒➝❶➞❧➟❧➞➡➠t➢ ➤➐➟❧➤➦➥➧➥➏➨➩➞➫➠➣➭ , ❾❺❏▲➅ ➊ ❏➯❑➜ ❴➔➲❱❸➳⑨❶⑨t❣❷❴➄✐➐❦★➲✷❴➒➝ ➞❧➟❧➞ ➠ .
At steady state ❣ ➃❻⑧①❑➵▼✣✐ we have

❻❸❪❑➸❣❶❾➒❏▲➅ ➊ ❏⑩✐ ❻❴✉❦✰❴➔❏ ,and thus the sign of ❣ ➊ ❏❽➅➋❾❺❏⑩✐ determines whether the

system exhibits steady-state velocity weakening or strength-

ening. ❾❺❏ and ➊ ❏ can, in general, depend on the steady-

state velocity ❴➔❏ , but in the most commonly used Dieterich-

Ruina logarithmic forms of the rate- and state-dependent

friction laws, they are chosen as constants times effective

normal stress (as we do in our implementation example) and

are often denoted by ❾ and ➊ . The (quasi-static) elastic re-

sponse to the perturbation is given by❻❸❽❑➆➅➺④ ❻❼ ➂ (A1b)

where ④ is the spring stiffness. Eliminating
❻❸ by combin-

ing (A1a) and (A1b), substituting
❻❴➻❑ ➃❻❼ , and defining,

for simplification, nondimensional quantities ➼ ❑ ❻❼ ❦ ➇ ,➽ ❑ ➁ ❏ ❻⑧✄❦ ➊ ❏ , and ❩➛❑❇❴➄❏➳➾➐❦ ➇ , we obtain the following

simple system of two linear differential equations:➚ ➲✣➼❡❦✰➲❱❩➲ ➽ ❦★➲✣❩➶➪ ❑☞➹ ➚ ➼ ➽ ➪ ➂ (A2a)

➹➘❑➷➴ ➅➺④ ➇ ❦★❾❺❏ ➅ ➊ ❏⑩❦★❾➒❏④ ➇ ❦✰❾❺❏ ❣ ➊ ❏➬➅➮❾➒❏t✐✛❦★❾➒❏✃➱ ◆ (A2b)
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Qualitative behavior of such systems depends on the

eigenvalues of the matrix ➹ . If the real parts of all the

eigenvalues are negative, the solution vanishes with increas-

ing time, and if at least one eigenvalue has a positive real

part, the solution grows without limit. When the largest real

part is zero, long-time periodic motion results. In the system

(A2), the perturbation grows (exponentially) for ❐❪❒➋▼ and

decays (exponentially) for ❐❰❮✤▼ , where❐✉❑ ➇❾ ❏ ➴ ④✉➅ ➊ ❏Ï➅✩❾❺❏➇ ➱ ◆ (A3)

For velocity strengthening friction, ❣ ➊ ❏❧➅❡❾❺❏✘✐Ï❒Ð▼ , we have❐✌❮✜▼ and the perturbation always decays. For velocity

weakening friction, ❣ ➊ ❏✶➅➀❾➒❏t✐Ï❮✤▼ , the behavior depends on

the sign of the expression in brackets of (A3), which defines

the critical stiffness④✰⑤⑦⑥♣❑ ➊ ❏ ➅✩❾ ❏➇ ❑➷➴⑦➅ ❴➀➲✣❸ ⑨❤⑨ ❣➏❴➔✐✛❦★➲✷❴➇ ➱ ➞✢➟➡➞ ➠ ➂ (A4)

and the perturbation grows in time for ④✗❒✕④ ⑤⑦⑥ and decays

in time for ④❡❮☛④ ⑤⑦⑥ , as claimed in (9a).

To derive the constraint (12) on the evolution time step-

ping, we analyze, as a simple model case, explicit integration

(with a constant time step Ñ➄❩✻❑☞❴✉❏tÑ➄➾➐❦ ➇ ) of the governing

system for the perturbation (A2). In the system (A2), inertia

effects are ignored, but they are negligible at low slip rates.

The discretized system is given by➚ ❣❷➼➯Ò✰Ó❧Ô♥➅✩➼✉Ò✶✐✛❦✰Ñ➄❩❣ ➽ Ò✰Ó❧Ô♥➅ ➽ Ò✶✐➐❦✰Ñ➄❩Õ➪ ❑✒➹ ➚ ➼➯Ò➽ ÒÖ➪ ➂ (A5a)

or ➚ ➼➯Ò✰Ó❧Ô➽ Ò✰Ó❧Ô ➪ ❑✻× ➚ ➼➯Ò➽ Ò ➪ ➂ (A5b)

with×➆❑Ø➴ÚÙ ➅✩④ ➇ Ñ➄❩▲❦★❾❺❏ ➅ ➊ ❏✘Ñ➄❩▲❦★❾❺❏④ ➇ Ñ➔❩➺❦✰❾❺❏ Ù ❿ ❣ ➊ ❏➙➅✩❾❺❏✘✐➣Ñ➄❩❚❦★❾➒❏ ➱ ◆(A5c)

We would like this discrete dynamic system to have the

same stability behavior as the continuous (in time) system

(A2) does. The behavior of such discrete dynamic systems

as (A5) can be understood by finding the eigenvalues of the

governing matrix × and comparing their absolute values to

unity. The eigenvalues of matrix × are given byÛ Ô ➢ Ü ❑ Ù ❿➸Ý ➅ Ù❖ ❐❺Þ☞ß Ù❨ ❐ Ü ➅ ④ ➇❾ ❏❯à Ñ➄❩❚➂ (A6)

with ❐ defined by (A3).

Considering eigenvalues (A6), we conclude the follow-

ing. If ❐á❒â▼ , which corresponds to the situation with

steady-state velocity weakening ❣ ➊ ❏❹➅➄❾❺❏✘✐Ï❮Ð▼ and improp-

erly sparse grid (giving ④➡➅❰❣ ➊ ❏✶➅➀❾➒❏➳✐✛❦ ➇ ❑☞④➡➅➔④❱⑤⑦⑥Ï❒Ð▼ ), the

eigenvalues have absolute values larger than unity, and the

perturbation grows, consistently with the continuous case,

regardless of the chosen time step Ñ➄❩ . For ❐✤❮Ö▼ , which

corresponds to either steady-state velocity strengthening, or

steady-state velocity weakening with a sufficiently dense

grid, the continuous case predicts decay of the perturbation.

Indeed, the discretized case follows this stable behavior if

the time step Ñ➄❩➑❑➵❴➄❏✘Ñ➔➾➐❦ ➇ is sufficiently small. That is,

in the case ❐✩❮➋▼ , the absolute values of the eigenvalues is

less than unity, and hence the perturbation decays, if the (di-

mensional) time step Ñ➄➾ satisfies the conditions written in

the text as equations (12).

Appendix B: Remarks on Extension of
Methodology to Cases With No Translational
Invariance

Our methodology can be extended to general cases which

lack translational invariance, to accommodate problems

such as a fault oblique to the free surface or heterogeneity

of bulk material properties (like a layered Earth structure).

If a boundary integral equation is discretized with ã➀⑨❤❵ sam-

ple points (nodes) over the fault domain, the stress transfer

functional will still be related to the slip by an expression

which can be put in the velocity formä★å ❣❤➾➣✐♣❑➋➅➮æ ➥➧çèé ➟ Ô ➜ ê å é ❼ é ❣❤➾➣✐❝➅✬ë✖ìí ➁ å é ❣❤➾➫➅➮➾➦î➧✐ ➃❼ é ❣❶➾➦î➩✐➣➲❱➾➦îï➝Ú➂ (B1)

where subscripts ð and ñ denote values discretized in space.

Here ➜ êò➝ is the static elastic stiffness matrix, and ➜ ➁ ❣❶➾➣✐Ú➝is a matrix of convolution kernels. These could emerge as

the result of discretizing a boundary integral formulation, or

could be determined by standard elastodynamic finite differ-

ence or finite element calculations. The calculations would

be purely kinematic, imposing a step in slip at each node

singly (say at node ñ ), over a single elastodynamic time step,

and calculating the stress histories ❸ å ❣❶➾➣✐ at all other nodes ð .
By analyzing the ❸ å ❣❶➾➣✐ using (1) and (B1), the ê å é could

be extracted numerically as the long-term limit of the stress

changes and the ➁ å é ❣❤➾➣✐ determined from the transient re-

sponse and tabulated.

The relation (B1) is analogous to (2) and (4), and most

ideas of the presented algorithm may be directly applied, in-

cluding the truncation of convolutions, the schemes to ad-

vance through a time step, and the time step selection pro-
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cedure. One exception is the notion of shorter truncation

windows for higher mode numbers, which naturally arises in

the spectral formulation and greatly reduces storage require-

ments and execution time compared to a uniform truncation

window for all modes, as discussed in section 6. Unfortu-

nately, there is no directly similar notion for the general case

(B1).

The following concept may, however, provide the exten-

sion of the spectral formulation to the general case (B1),

enabling the possibility of shorter truncation windows for

some time convolutions in (B1). We expect that even in

the absence of translational invariance, if we read into (B1)

a step-in-time slip distribution which varies spatially likeó➬ô ❣❶õ å➧ö➳÷ ✐ , or like
ó➬ô ❣❶õ å ➨ öø÷ Ó✢ù➙ú ➭ ✐ in 3-D modeling of a fault

which spans two space dimensions û and ü , then for highý ④ ý , or þ ④ Ü ❿✖ÿ Ü , there would generally be rapid decay of

the transient stress in approach to the static limit. In such

a case, the convolution could be truncated earlier than for

lower
ý ④ ý or þ ④ Ü ❿✖ÿ Ü . Hence, the following procedure

can be explored, illustrated further for the 2-D case. Theã➀⑨❶❵ slips
❼ å ❣❤➾➣✐ can be represented as a linear combination

of ã ⑨❶❵ independent basis functions, each with progressively

higher wave number features. While some wavelet expan-

sion may turn out to be a preferred way of accomplishing

that, a simple illustration is provided by using the Fourier

sum like in (3) for the
❼ é ❣❤➾➣✐ and

ä é ❣❶➾➣✐ . Using the � notation

of section 5 for this representation and its inversion, with❼ é ❑✂✁ ù � ❢ Ôé ù ➼ ù and ✄ Ò ❑✂✁ å � Ò å❷ä★å , we can transform the

relation (B1) to

✄❧Ò❭❣❶➾➣✐→❑☞➅ è ù ☎✝✆ê❰Ò✰ù❺➼➯ù➄❣❶➾➣✐
(B2)➅✬ë✖ìí ✆➁ Ò✰ù ❣❤➾➫➅➮➾ î ✐ ➃➼ ù ❣❶➾ î ✐➣➲❱➾ î✟✞ ➂

where➜ ✆ê❽Ò✰ù➔➂ ✆➁ Ò✰ù➄❣❶➾➣✐Ú➝✢❑ è å è é �❺Ò å ➜ ê å é ➂ ➁ å é ❣❤➾➣✐⑦➝✠� ❢ Ôé ù ➂
summations on ð and ñ extend over ➜ Ù ➂✛ã➀⑨❤❵➓➝ and on ÿover ➜ ➅❚ã➀⑨❶❵✣❦✰❖✚➂✛ã➀⑨❤❵✣❦❱❖➓➝ . One may hope that truncation times❩❭❬♥❣☛✡❝➂ ÿ ✐ for

✆➁ Ò❱ù ❣❶➾➣✐ can be chosen shorter for the higher

wave numbers represented by, say, the maximum of
ý ✡ ý orý ÿ ý .

In implementing such an approach, one can determine✆ê❰Ò✰ù and
✆➁ Ò✰ù✉❣❤➾➣✐ directly, without determining ê❰Ò❱ù and➁ Ò✰ù ❣❤➾➣✐ first. The response to the slip history

❼ é , which is a

step function in time and Fourier mode ÿ (or mode ÿ of the

wavelet expansion used) in space, would be determined, and

hence values corresponding to
ä✰å ❣❤➾➣✐ would be known. Then

fast transforms would be done on these computed values, to

convert them to histories ✄❧Ò✢❣❶➾➣✐ . From (B2), components of✆ê❰Ò✰ù and
✆➁ Ò❱ù➄❣❶➾➣✐ would be given as

✆ê❰Ò✰ù➑❑✕➅☞✄➡Ò❭❣✍✌✸✐ and✆➁ Ò❱ù➄❣❶➾➣✐➒❑✎✄❧Ò✢❣❶➾➣✐♥➅✏✄❧Ò✯❣✍✌✸✐ , for the value of ÿ used in the

slip history selected. The procedure would have to be re-

peated for all values of ÿ .

For cases without translational invariance, there is no

simple transformation to diagonalize the matrix ➜ ➁ ❣❤➾➣✐⑦➝ from

(B1), and the matrix ➜ ✆➁ ❣❤➾➣✐Ú➝ from (B2) will generally not be

diagonal. For the problems that have translational invari-

ance (or can be mapped to such by addition of a mirror im-

age), the matrix ➜ ➁ ❣❶➾➣✐Ú➝ in the space-time formulation (B1)

is still nondiagonal, even though it acquires a special form

with ➁ å é ❑ ➁✒✑
å ❢ é ✑ . However, in this case the spectral for-

mulation considered in section 2 diagonalizes the matrix of

the convolution kernels. This translates into substantial re-

duction in the number of time convolutions and makes the

spectral formulation of a translationally invariant problem

(such as (2) and (4)) computationally much more efficient

than the space-time formulation of the same problem, or than

any formulations of problems that lack translational invari-

ance. This is true despite the additional cost of the spectral

formulation, which needs more degrees of freedom. Sup-

pose that the replication distance
Û

of the spectral formu-

lation is ✓ times larger than the domain which we would

like to simulate (so that ã✕✔ ❛ ✔❪❑✖✓★ã ⑨❤❵ ), and that the time

for computation of one truncated time convolution integral

scales linearly with the number of space elements involved

(as is true when all truncation windows are comparable to

the time for the elastic waves to propagate through the simu-

lated region). In a formulation with a nondiagonal matrix of

convolution kernels, we need ã Ü⑨❤❵ time convolutions to com-

pute the values of the (discretized) functional
ä

for all nodes.

This requires the number of floating point operations pro-

portional to ã Ü⑨❤❵ ❜òã➀⑨❶❵➯❑➆ã✘✗⑨❤❵ . In the spectral formulation,

such as (3) and (7), due to the diagonalization, we need onlyã✕✔ ❛ ✔Ï❑✙✓★ã ⑨❤❵ time convolutions, one per each Fourier mode.

This translates into the number of operations proportional

to ✓ Ü ã Ü⑨❤❵ . The FFTs used in the spectral formulation add

the number of operations proportional to ✓★ã ⑨❤❵✛✚✢✜✤✣ Ü ❣✥✓★ã ⑨❤❵ ✐ ,
so that the overall number of operations in the spectral for-

mulation is still proportional to ✓ Ü ã Ü⑨❤❵ . Since ✓ is usually

small number, such as 4 to 8, and typical values for ã➀⑨❤❵ are

512 to 65536, comparing ã ✗⑨❤❵ and ✓ Ü ã Ü⑨❤❵ immediately shows

that the spectral representation of a translationally invariant

problem is computationally much more efficient.
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