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The reflection of an elastic wave by a rough stress-free surface with a periodic profile has been
investigated rigorously. The problem is formulated in terms of an integral equation for the particle
displacement at a single period of the boundary surface. Numerical results pertaining to the reflection of
either an incident P wave or an incident SV wave for a sinusoidal profile are presented.

PACS numbers: 43.20.Bi, 43.20.Fn

INTRODUCTION

In this paper the diffraction of elastic waves by a
stress-free surface with a periodic profile has been in-
vestigated. We present a rigorous theory in which the
boundary value problem at the surface is treated by an
elastodynamic extension of the Green’s function formu-
lation that has been introduced by Lippmann! in connec-
tion with the scalar theory of reflection gratings.? This
technique used in the present problem leads to a vecto-
rial integral equation for the unknown particle displace-
ment at a single period of the boundary surface. After
a numerical solution, results pertaining to the reflec-
tion factors of the different spectral waves are pre-
sented. To locate a point in space, we use the Carte-
sian coordinates x;, x,, and x;. It is assumed that the
configuration is independent of x,, The subscript nota-
tion for vectors and tensors will be used, Latin sub~
scripts are to be assigned the values 1, 2, and 3 while
Greek subscripts are to be assigned the values 1 and 2;
for repeated subscripts the summation convention holds.
Occasionally the boldface notation will be used to de-
note a two-dimensional vector; in particular x= (x;, %)
will denote the two-dimensional position vector.

Throughout the calculations, the complex time factor
expl-iwt), where i denotes the imaginary unit, 'w the
circular frequency, and ¢ the time, will be omitted in the
formulas, (ST units are used throughout. )

f. FORMULATION OF THE PROBLEM AND
METHOD OF SOLUTION

A homogeneous, isotropic, perfec'tly elastic solid oc~
cupies a semi-infinite domain with a spatially periodic
stress-iree boundary A (Fig. 1).

~ The mechanical properties of the material are char-
acterized by its mass density p and its stiffness coeffi-
_cients

Cipa =183 sBpq + 10505 + 010 - ()

in which A and p are the Lamé coefficients of the mate-
rial and §,; is the symmetrical unit tensor:
1=0,=033=1, 8;;=0 if i#j.
In the medium a two-dimensional wave motion is pres-
ent, of which the displacement u, =u,(x) and the stress
T = Tap(x) satisy the linearized equation of motion

1095 J. Acoust. Soc. Am., Vol. 62, No. 5, November 1977

aBTmB+pwzua=0’ (2)
and the linearized stress-—strain relation

Tas™ Capendulln : ()
where 9, denotes the partial derivative with respect to
X

A uniform, plane wave, having no x, dependence is in-
cident upon the boundary A of the elastic medium at an
angle 6, with the negative x, axis. Its dxsplacement and
stress are written as

ub (x)= U explik x), (4)
7o) =T explik - x). (5)

This wave is either a compressional wave (P wave) or a
vertically polarized shear wave (SV wave). The differ-
ent quantities agsociated with the two types of incident
waves are listed in Table I, Note that | U!| =1, In

Table I ¢,, denotes the antisymmetrical unit tensor:
€1=€2=0, €p=—€y=1,

" The elastodynamic quantities of the reflected field are
introduced as

r o ) - i
Uo =Ug— gy Tap™Tas™ Tag) ‘ (6)

PERIOD OF GRATING
0

)(1

Xzenax [N

D
/ W
/// \BOU‘QSURFACE/\

/
/

™

™,

\\\\\\ \\\\\\\\

%

FIG. 1, Periodic configuration and domains to which two-
dimensional elastodynamic representation theorems are applied. .
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TABLE I. Quantities associated with the incident plane wave.

Quantity

Incident P wave

Incident SV wave

Wave number
Wave speed
Wave vector
vl

i
Tas

intensity

RP oo, Cp

cp = L 2p)/ o}

k? = [k sin(08), — & cos(64)

ikt

The ~i0kARS Byp
v 2ukh kB R

Yutpe,

ki=wicy

cg=(p/A?

k= (k*sin(8)), — kS coa(6f))

oy iyl

Tgy= inlkgen bf
+hfEqy )/ RS

.},w'“'pcs

in which the total stress has to satisfy the boundary con-
dition of the stress-free surface

Tophs=0

on A,

(7)

where #, denotes the unit vector along the outward nor-
mal to the boundary. The periodicity of the boundary
surface A (with period D) entails a quasiperiodicity in
the reflected elastodynamic field, viz., expl- ikyx ),
and exp(~ ik,x;)77, are periodic in x;. In the domain
Fpmax < X< ©, WHEIe Xa,, denotes the maximum value
that x, can attain on the boundary surface A, the re-
flected elastodynamic field can be written as the guper-
position of plane waves (both P and SV waves), that are
either propagating or exponentially decaying in the posi-
tive x, direction (the so-called spectral orders).

Let us write the corresponding expression as

)= 3 Foym Rt explind, )

iad s
+ Z Eg';%nﬂR;exP(im'x): Komax < ¥2< %, @)

where kj,= (kﬁ.ma kpe,m): k= (ki.m, k;,m)? kﬁ.m =kl m=Ri,m
=hy+2mm/D, B, =%~ k2 )2, B = (o5t = B )2,
with Re(#}, ,,, k5, )= 0 and Im(k}, ,, %5, ,)= 0. For the
propagating P and SV waves the wave numbers 4} , and
k3 are real, They are finite in number and for them
angles of reflection can be defined, being the angles in-
cluded between the x, axis and the direction of propaga-
tion of the wave (cf. Table II and Fig. 2). :

Our principal aim is to calculate the reflection factors

R: and RS,
sentation for uy.

They follow from a suitable integral repre-
The latter is obtained from the two-di-

mensional form of the elastodynamic representation the-
orem™* to the domain S* inside the closed contour con-
sisting of the straight lines parallel to the x, axis, a pe-
riod D apart, together with the curve L corresponding

TABLE II. Quantities agsociated with a propagating reflected
wave of gpectral oxder m.

Quantity

Reflected P wave

Reflected SV wave

Wave vector
Intensity

Grating
formula

Snell’s law

kP = (k* aln(6%), k? cos(64)]

56t pe, I RY 12

sin(@%,) = sin(0%) + 2nm/k?D

Ky = [R48in(82), k% coa(8 )]
$elpe I RS 12

8tn(@ ) =sin(@f) + 2wm/kD

k? sin(@3) = k5sin(8§)
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FIG. 2. The geometrical construction of the directions of re-
flection of the reflected waves (incident Pwave, two reflected
propagating P waves, and four reflected propagating SV waves)
of the different spectral orders from. the grating formula and

Snell's law, in case of anincident P wave, The modifications

in cage of an incident SV wave are obvious,

with a single period of the grating profile, and the
straight line parallel to the x; axis at %> ¥pnax (see Wig.
1), To carry out this program, we have to employ suit~
able Green’s tensors. For the present case they are
straightforward extensions of the scalar Green’s func-
tion. in grating theory? to the one for the elastodynamic
state.? Its displacement u%,=uf, {x;x') and its stress
T8,5= Tios(X; %) are given by

ut = (1/pw?)[820", (G° = G?) +8,,k*G*] , -

X 9

I4 - [T 4
TraB—CuﬂinaEu'/Tf ’

where 8/, denotes the partial derivative with respect to
., and :

6= (i 2R3, D) e;«:p[ila‘{,-,,,(x1 AL AP AN

- (10)
6=, (8/2k5, ,u D) expliks, (6 = 27) + k3, | 2 = 23] 1.
m=neo

The Green’s tensor represents the elastodynamic re-
sponse to a concentrated force, subject to quasiperiodic
boundary conditions at vertical sides parallel to the x,
axis, a period D apart, such that the phase shift in the

quasiperiodicity of the elastodynamic field quantities is
counterbalanced.

Using Egs. (9), (10), and the elastodynamic reciproc-
ity theorem leads to

fz, [ e %" )77 x') - oy ()78 ol Xy’ ) ds(x’)
~{0,4, 1hi ) L)

where, if necessary, a Cauchy principal value of the
relevant integral has been understood,

when xe{s, L, §*},

When xeS*, Bq, (11) is an integral representation for
the particle displacement of the reflected field. On ac-
count of the boundary condition on L, however, we pre-
fer an.integral representation with 7;n, instead of
Tes®p In the integrand. The latter is obtained by apply~
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FIG. 3. The normalized intensities in the
%, direction of zero spectral order 7* and
I%[see Eq, (19)] as a function of the angle

of incidence 64 for a sinusoidal profile with
a Poigson ratio »=0,19, for an incident P
wave; (a) kD=3, (b) kD=6, and (c) ESD=9.
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ing the elastodynamic representation theorem to the do-
main §°, shown in Fig, 1, and the incident field.

We then obtain
f,-, L1503 %) 7 0K") = e (0778 3 % Vgl ) ds ')

=-{1,%,0ki(x) when xe{s",L,5% .
Addition of Egs. (11) and (12) and using Eqs. (6) and
(7) yields

j 2 (K75 5 ;X I gx) s (')
L X
= [t (x), — 320, (6) +up (), — )

when xe[S", L, . From Egs. (8), (9), (10), and (13)
when xeS*, and noting that 7£,, consists of a superposi-

(12)

(13)

tion of P and SV waves, we obtain the following. expres-
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sions for the reflection factors R?, and

R Zpu)zkzz D f Uy &’ )TaB.m”ﬂ(x )exp(- k% +x') ds(x')
(14)
T ), 1

)T, 0, mna') exp(=ik$, - x) ds(x’)
in which we use for T4, ,, and T%, , the same expres-
sions as the ones pertaining to the incident field listed
in Table I, but with replacement of k® and k* by k}, and
kS, respectively.

The expressions in (14) show that R%, and R;, can be
calculated as soon a8 u, on L is known.

8
Bm= prk

This as yet unknown vector function is determined
from Eq. (13) when xeL; which represents.a vectorial
integral equation of the second kind for u, on L.,
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1. NUMERICAL RESULTS

So far, the method explained in the preceding section
applies to the elastodynamic diffraction by a periodic
boundary of arbitrary profile, In the present section,
we report about the computations that have been per-
formed for the sinusoidal boundary x,= (#/2) sin{27x,/D),
in which  is the distance from top to valley (Fig, 3).
For this type of boundary, a numerical solution of the
integral equation based upon the method of cubic-spline
approximation with point matching is to be preferred
{cf. Refs. 2 and 5),

In this method the integration interval is subdivided by
a mesh of points.. The unknown components of the parti-
cle displacement are each approximated by a cubic
spline (i.e., a polynomial of the third degree on each
subinterval, continuous together with its first- and sec-
ond-order derivatives at the chosen mesh points of the
integration interval). As a result, the integral equation

T Anniet Can Awa VAl 89 NMa K Ao w10

is replaced by a system of linear algebraic equations.
The integrals in the relevant matrix elements are com-
puted using the trapezoidal rule with two integration
points between two successive mesh points of the chosen
cubic-spline approximation. The series representation
of the Green’s tensor 7%, is truncated, in combination
with a technique for accelerating the convergence.

As first test we verify the power relation

Zc,,[R‘,’,,f 2cos((9’,’,,)-x~§:cslz‘zfnlz-cos(f)fn)

propagating P waves propagating SV waves

¢, cos(6y), for an incident P waye

¢, cos(6%), for an incident SV wave, " (18)

A second test makes use of the I’eclproclty relation
for propagating waves, in which we distinguish two
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cases (a) and (b), Case (a) refers to an incident wave
and case (b) refers to an incident wave with a direction
of propagation opposite to the reflected wave of the
spectral order m of case (a), Then we can write

c,R% @ cos(h®) = c RS cos(65?) ,

with

with

with

cage {a): incident SV wave,

case (b): incident P wave,
R‘,’,;"cos(B’,’,;“)=Rf,,’”‘Cos‘(9‘,’,;”) ,
ciase (a); incident P wave,
case (b): incident P wave,
Ri%cos(859) = R%? cosl68?) ,
case (a): incident SV wave,

case (b): incident 8V wave,

J. Acoust. Soc. Am,, Vol. 62, No. 5, November 1977
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(18)

The numerical results are presented for two different
values of the Poisson ratio, viz., v=0, 19 and v =0, 38,
For each of them three different values of 4/D, viz.,
h/D=0.1, 0.8, and 0.5 are investigated for both an in-
cident P wave and an incident SV wave. The values per-

taining to a plane boundary (/D=0) are presented for
comparison. In Figs. 3-8 the normalized intensities in
the x, direction of zero spectral order I* and J? are plot-
ted as a function of the angle of incidence. - The normal-
ized intensity in the x, direction of zero spectral order
is obtained by dividing the intensity of the reflected field
of zero spectral order in the ¥y direction by the intensity

of the incident field in the x, direction.
Hence
»=|my,
(19)

1*=[c,cos(69)/c, cos(64)]| R3| 2 ,
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for an incident P wave, and
I°= |R3| 2,

I* =[c, cos(6h)/c, cos( SO)” Rf)l 2 (20)

; for an incident 8V wave.

Figures 3 and 5 show the results pertaining to a Pois-
son ratio v=0,19 characterized by £°D=3, 6, and 9 with
k*D=1,86, 3,71, and 5,57 for an incident P wave and an
incident 8V wave, respectively, Figures 4 and 6 show
the results pertaining to a Poisson ratio v=0, 38 charac-
terized by £°D=3, 6, and 9 with #’D=1, 32, 2,64, and
3.96 for an incident P wave and an incident SV wave, re-
spectively.

In Table III the angles of incidence are listed for which
the x; component of the wave vector of the reflected field

J. Acoust. Soc. Am., Vol. 62, No. 5, November 1977

of spectral order m, ky ,, coincides with kE, the x,
component of the wave vector of Rayleigh waves along a
plane, stress-free boundary. The latter follows from
k* and k*,°

TABLE III, The angle of incldence (inc) in degrees at &y,
=k® (k® =wave number of Rayleigh waves along a plane, stress-
free boundary).

kD =6 BD =9 RD=6 kD=9
k*D=3.71 rPD =5, 57 k*D=2, 64 #?D=3.96
. k*D=8.6 #*D=9.9 ERD =6, 39 k¥®D =9, 58
ine? :inc SV inec P inc SV inc P inec SV incP inc SV
m=1 4.9 3 40.5 23.7 2.3 2 56.4 21,5
m=-2 28,6 = 17.2 48,9 19,4

£
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TABLE IV. The intervals of the angles of incidence in degrees, in which the reflected wave of spectral order m is propagating
for a Poisson ratio ¥=0,19, The angle of incidence varies between 0° and 90°,

kD =3 kD =0 kD=9
k*D=1,86 ) k?D=3,71 ¥D=5,57

Spectral . .
order ine P ine 8V ine P in¢ SV ing P ine SV
m refl P refl 8V refl SV refl P refl P refl SV refl SV refl P refl p refl 8V refl SV refl P
-2 . 39, 8°~90° 23.3°-90° §51°-90°
-1 43, 8°~90° 4,4°-90°  2,7°-80° 25,4°-90° T.4°=90° 0°—90° 0°~90° 4.6°—90°

0 0°-90° 0°~90° 0°~90° 0°-38, 2° 0°—90° 0°--90° 0°-90° 0°~38, 2° 0°—-90° 0°—90° 0°-.80° 0°~38, 2°

1 0°—-29,2° 0°-17,6°

TABLE V. The intervals of the angles of incidence in degrees, in which the reflected wave of spectral order m is propagating for
a Poisson ratio ¥=0, 38, The angle of incidence varies between 0° and 90°,

kS=3 kD=6 kD=9
" k?D=1,52 kD=2, 64 k*D =3,98

Spectral ne P ine SV ine P ine 8V inc P ino 5V
order
m refl P refl 8V refl SV refl P refl P refl 8V refl SV refl P refl P refl 8V refl SV refl P
-2 64, 2°-90° 23, 3°~90° 73°--90°
-1 6,2°80° 2,7°-90° 37,4°-90° 35. 9°-90° 0°—90° 0°-90° 15°-90°

0 0°=90° 0°=90° 0°-90° 0°-26, 1° 0°=90° 0°-90° 0°-90° 0°~26, 1° 0°-90° 0°—90° 0°=90* 0°-26,1°

1 0°—43, 3° 0°—17, 6°

From the figures we first conclude that anomalies in
the intensity curves appear when %, =k" and 1/D=0, 1.
Especially when &, .= Fk® the effect is most pronounced
and decreases at greater values of /D.

" The anomalies at other values of the angle of incidence
are due to the effect thata reflected wave of spectral or-
der m change from propagating to evanescent or vice ver-
sa. For reference, the corresponding data are listed in
Tables IV and V (for the Poisson ratios v=0, 19 and v
=0, 38, respectively). This effect is the more pro-
nounced the greater the depths of the grooves. Further
we notice that the intensity curves of I° in Fig, 3 and the
intensity curves of I’ in Fig. 5 are of equal shape, but
on a different scale. The same analogy we observe for
I from Fig. 4 and I’ from Fig. 6. This also directly
follows from the reciprocity relation (16) in conjunction
with the symmetry of the geometry. Since in the con-
figuration of Figs. 3(a), 4(a), 5(a), and 6(a) only the
zero spectral orders are propagating, the energy con-
servation [Eq. (15)] follows directly from these figures.
Further we remark that in Figs., 5{a) and 6(a) a cutoff
occurs beyond a certain angle of incidence; this is a
consequence of the fact that in this range we have no
propagating P wave of zero spectral order.

The computations have been performed on the IBM
370/158 of the Computing Center of the Delft University
of Technology. The computing time to calculate the
quantities I° and I? for a single value of the angle of in~
cidence is 8, 14, and 19 sec for #/D=0.1, 0.3, and
0. 5, respectively, when #*D=9,

We have found that round-off errors are not signifi-
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cant, It turned out that the error is due to the numeri-
cal discretization of the integral equation, the numerical
evaluation of the integrals in the matrix elements, and
the truncation of the series representation of the Green’s
tensor. An estimate of these errors has been made by
increasing the number of linear equations (to approxi-
mate the integral equation), the number of integration
points to evaluate the integrals in the matrix elements,
and the number of terms to represent the Green’s ten~
sor. The estimated accuracy is then better than one
percent,

The intensities of the plane boundary have been calcu-
lated with the aid of the formulas given in Ref. 6,
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