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Abstract
Elastography is a method that can ultimately generate several new kinds of images, called elastograms. As

such, all the properties of elastograms are different from the familiar properties of sonograms. While sonograms

convey information related to the local acoustic backscatter energy from tissue components, elastograms relate

to its local strains, Young's moduli or Poisson's ratios. In general, these elasticity parameters are not directly

correlated with sonographic parameters, i.e. elastography conveys new information about internal tissue structure
and behavior under load that is not otherwise obtainable. In this paper we summarize our work in the field of

elastography over the past decade. We present some relevant background material from the field of

biomechanics. We then discuss the basic principles and limitations that are involved in the production of

elastograms of biological tissues. Results from biological tissues in vitro and in vivo are shown to demonstrate

this point. We conclude with some observations regarding the potential of elastography for medical diagnosis.
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1. Introduction

The elastic properties of soft tissues depend on their

molecular building blocks, and on the microscopic

and macroscopic structural organization of these

blocks (Fung 1981). The standard medical practice of

soft tissue palpation is based on qualitative assessment

of the low-frequency stiffness of tissue. Pathological
changes are generally correlated with changes in

tissue stiffness as well. Many cancers, such as cancers

of the breast, appear as extremely stiff nodules

(Anderson 1953). However, benign tumors of the

breast may appear stiff as well, but possibly not quite

as stiff as the cancers. In many cases, despite the

difference in stiffness between the lesion and the

surrounding normal tissue, the small size of a
pathological lesion and/or its location deep in the

body make its detection and evaluation by palpation

difficult or impossible. In general, the lesion mayor

may not possess sonographic contrast that would

make it ultrasonically detectable. For example,

tumors of the prostate or the breast might be invisible

or barely visible in standard ultrasound examinations,
yet be much stiffer than the embedding tissue (Garra

et al. 1997). Diffuse diseases such as cirrhosis of the

liver are known to significantly increase the stiffness

of the liver tissue as a whole (Anderson 1953), yet
they may appear normal in conventional ultrasound

examination.
Since the echogenicity and stiffness of tissues are

caused by unrelated mechanisms and are thus

uncorrelated, it is expected that imaging tissue

stiffness, or a related parameter such as local tissue

strain, will provide new information that is related to

tissue morphology and architecture. This expectation
has now been confirmed in the breast (Garra et al.
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motions must be provided. Such means may include

ultrasound, MRI or other diagnostic imaging
modalities that can track minute tissue motion with

high precision. In the last fifteen years, interest has

been mounting in the ultrasonic imaging of tissue

elasticity or stiffness parameters. A comprehensive
literature review of this field can be found in Ophir et

al. (1996) and in Gao et al. (1996). Tissue elasticity

imaging methods based on ultrasonics fall currently

into two main groups: 1) methods where a quasi-
static compression is applied to the tissue and the

resulting components of the strain tensor are

estimated (Ophir et al 1991, O'Donnell et al. 1994) ;

and 2) methods where a low frequency vibration

( < 1 kHz) is applied to the tissue, and the resulting
tissue behavior is inspected by ultrasonic or audible

acoustic means (Krouskop et al. 1987, Lerner and

Parker 1987, Lerner et al. 1990, Yamakoshi et al.

1990, Alam et al. 1994, Fatemi et al. 1999, Walker et

al., 2000).
In this review, we concentrate on describing the

recent progress using the first approach that we call

elastography, which has been under development in

our laboratory since 1989. We first present a short

summary of the theory of elasticity as it pertains to

the quasi-static application of loads to biological
tissues. We then give some basic tissue stiffness results
that demonstrate the existence of stiffness contrast

among normal tissues, and between normal and

pathological tissues in the breast and prostate. We

proceed to describe the elastographic imaging process,

starting from the tissue elastic modulus distribution,
progressing through various algorithms for precision

time-delay estimation of echoes from strained tissues,

and culminating in the production of the elastogram,
or strain image. The use of ultrasound to acquire

tissue motion information results in certain basic

limitations on the attainable elastographic image
quality, which may be described by the theoretical

framework known as the Strain Filter (Varghese and
Ophir 1997b). The Strain Filter may be used to

predict and design important improvements to various

elastographic image attributes, such as dynamic range

expansion (Konofagou et al. 1997) and improvement

in in the elastographic signal-to-noise ratio (SNRe)
through multiresolution processing (Varghese et al.

1998) or compensation for undesired axial distortions

(Cespedes et al. 1993) and undesired lateral tissue

motion (Konofagou and Ophir 1998). In combination

with certain Contrast Transfer Efficiencies (CTE)

inherent in the conversion of modulus to strain

contrast (Ponnekanti et al. 1995, Kallel et al. 1996),

the Strain Filter formalism may be used to predict the

upper-bound as well as the practically attainable
Contrast-to-Noise-Ratio (CNRe) performance of

elastography and its tradeoffs with elastographic
resolution (Varghese and Ophir 1998, Righetti et al.

1997, Rosenthal et al. 2002) and in animal studies
(Merritt et al. 2002). In addition to pathology, we

now have new evidence that various normal tissue

components possess consistent differences in their

stiffness parameters as well. For example, in the ovine

kidney, the stiffness contrast between the cortex and

the medullary pyramids has recently been measured to

be only about 6 dB at low strains, and corresponding
strain images showing easily discernible strain

contrast have been made (Kallel et al. 1998). Similar

observations have been made in the normal canine

prostate, where consistent stiffness and strain contrast
has been demonstrated between the outer and inner

gland, and between the urethra, the verumontanum
and the normal prostatic tissue (Kallel et al. 1999).

These observations provide the basis for elastographic
imaging the normal anatomy as well. Another

observation that has been made recently in vitro is

that some normal and pathological tissues may
possess nonlinear stress/strain behavior (Krouskop et

al. 1998). This means that their stiffnesses are a

function of strain. This property may be useful in

differentiating normal from abnormal tissues in the

future.
Over the past 20 years there have been numerous

investigations conducted to characterize the

mechanical properties of biological tissue systems

(Bakke 1973, Chen et al. 1996, D'Angelo 1975,
Fukaya et al. 1969, Galey 1969, Gao et al. 1996,

Harley et al. 1977, Malinauskas et al. 1989, Sarvazyan

1993, Yamada 1970), which have been often idealized

as homogeneous, isotropic elastic materials. Much of

the work has focused on bone, dental materials and

vascular tissue. There are articles that discuss
methods used to characterize these tissues, and there

is a large volume of experimental data on the

mechanical response of these tissues to various types

of loading (Gao et al. 1996, Demiray 1972, Krouskop
et al. 1987, Ophir et al. 1991, Ophir et al. 1996, Ophir
et al. 1997, Cespedes et al. 1993). However, there is a

near void in the literature regarding the mechanical
properties of tissue systems tested in vivo. There is

even less information available on the elastic

properties of pathological tissues. Yamada's book

(1970) presents a relatively broad range of data, but

much of the data are derived from experiments using
animal tissues and all of the information relates to

results from uniaxial tensile tests of the tissue, and not

from compressional tests. A recent article by

Krouskop et al. (1998) provides compressional
stiffness values for normal and pathological breast

and prostate tissues in vitro.
The stiffness parameter is a function of the elastic

modulus of the tissue and its geometry. It cannot be

measured directly. A mechanical stimulus of some

kind must be propagated into the tissue, and precision
means for detecting the resulting internal tissue

J Med Ultrasonics Vol.29 Winter (2002)156



2002 a, Righetti et al. 2002 b). We conclude with

some recent results that demonstrate that quality
elastograms may be produced both in-vitro and in-

vivo, with high contrast-to-noise ratios and at high

resolutions.

2. Basic Elasticity Theory for Static Compressions

For a large number of solids, the measured strain is

proportional to the load over a wide range of loads.

This linear relationship is known as Hooke's law,

which states that each of the components of the state

of stress at a point is a linear function of the

components Qf the state of strain at the point (Saada
1983). Mathematically, this is expressed as a

constitutive equation, which may be written in tensor

notation as:

Okl= Cklmnemn'

where the components of the matrix Cklmn are elastic

constants that are intrinsic properties of the material.

There are generally 81 (=34) such constants,
corresponding to the indices, k, 1, m, and n taking

values equal to 1,2, and 3. Since both the stress tensor

akl and the elasticity tensor Cklmn are symmetric, the

number of elastic constants reduces to 21. These

constants characterize a general anisotropic, linearly
elastic material. Since the elastic properties of an

isotropic material are independent of the orientation

of the axes, the number of elastic constant is further
reduced to 3 constants which may be expressed in

terms of only two independent parameters known as

the Lame's constants A and J1. These 3 elastic

constants are given by

C1122=A, C1111~A+2.u, C'2!' ..!--(Cml

2
OIl Lt

(2)
The constant 11, also known as G, is referred to as the

shear modulus.
The volume change per unit volume due to spherical

stress is dependent on the bulk compressional

modulus, K, which is related to the Lame's constants

bv
., r ,

3l'+2.u

~~
K= (3)

There are also two other engineering parameters
commonly used to characterize the mechanical

properties of solid materials: Young's modulus, E,
and Poisson's ratio, ]). These are related to K and G by

the following expressions:

14'
K= . and (4 a)

3(
-

21.1

In general, soft tissues are anisotropic, viscoelastic

and non-linear. However, it is usually assumed that
they behave as linear, elastic, isotropic materials in

order to simplify the analysis. These assumptions are

likely to be reasonable for small strains, rapid load

application and a spatial scale that is large compared

to the relative correlation length of the elastic

variability in the tissue sample (Krouskop et al.

1998).
Soft tissues contain both solid and fluid

components and therefore may have mechanical

properties that fall somewhere between those of both

materials (Sarvazyan et al. 1995). The ratio G/K is

close to a few tenths for solid materials, while it

equals zero for liquids (i.e. liquids are incompressible

and their Poisson's ratio equals 0.5, and from equation
1, K -+ 00). Many soft tissues are nearly

incompressible with Poisson's ratios ranging from

0.49000 to 0.4999, which make them mechanically

similar to liquids. For most solids, Poisson's ratios are
between 0.2 and 0.4. Note that from equation 4 b for

incompressible tissues (v=0.5), the relationship E=

3 G holds. This means that for incompressible

materials there exists a simple proportionality

between the shear and the Young's moduli.
The bulk modulus K may be estimated from the

propagation speed of bulk compressional waves c and
the material density (p,i.e. K == pc2. Since it is well

known from the literature that the dynamic ranges of

the speed of sound as well as the density in soft tissues

are small, the dynamic range of the bulk modulus of

tissues is small as well. Hence in traditional medical
ultrasound imaging, the speed of sound in tissue is

assumed to be a constant 1540 m/s. Thus, the ability
to create properly scaled sonograms of soft tissues is

in part due to this small variability in the speed of

sound. Recently, it has been shown that the shear

modulus of normal and abnormal soft tissues may

span much more than an order of magnitude

(Sarvazyan 1993, Krouskop et al. 1998). The graphs
of Fig. 1 summarize tissue shear modulus data

obtained by Krouskop et al. (1998) from different

breast and prostate tissues. As can be seen, a relatively

large dynamic range of the shear modulus exists in

normal and abnormal breast and prostate tissues. This

relatively large dynamic range of the shear modulus is

responsible for the increased interest in developing
new techniques for imaging information related to

this modulus. By contrast, attempts to image the bulk

moduli of tissues via their speeds of sound have

largely been unsuccessful in the past due to the small

dynamic range of this modulus and the concomitant

low contrast-to-noise ratios.
It is known that the force generated by the vertical

indentation of a piston into soft tissue is determined
by the shear modulus (Sarvazyan et al. 1995). To

illustrate this. consider the classical solution of the

E
(4 b)G

?(1
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Fig. 1 Tissue elastic moduli obtained from normal and abnormal breast and prostate tissues (Krouskop et al. 1998).

force generated by the vertical displacement W of a

circular piston of radius R into a semi-infinite elastic

medium with shear and bulk elastic moduli G and K.

This force is given by,

p= 8GR W

1+ G/K (5)

I+G/3K,

where the terms containing the ratio G/K nearly

vanish in soft tissues, and where G«K. Thus, the

relationship between the force P and the displacement
W is determined by the shear modulus and the

geometry. In other words, information from manual

palpation is independent of the bulk compressional

modulus K. Since the force P is also related to the

geometry, the stress/strain behavior measured in such

an indentation experiment is generally indicative of

the stiffness of the particular tissue/geometry setup,

and not necessarily of the pure shear modulus of the
tissue sample.

The equations describing the equilibrium-state of a

linear, isotropic elastic material is given in (Sarvazyan

1993) as

orthogonal stress tensor components. In principle, for
a given Poisson's ratio, any equation relating a given

strain distribution to a corresponding set of stress

distributions may be used to estimate the

corresponding Young's modulus distribution. For
example in the case of a plane-strain state problem,

the modulus distribution may be obtained using the

following relation

(1+1J) (l-1J)o=-1JOuu)
R= (7)

~ err "/

In general, however, only the strain distribution

may be directly estimated in practice, This strain

distribution is not an intrinsic tissue property, It is

dependent on both internal and external boundary

conditions, as well as on the distribution of shear
moduli in the tissue. The external boundary

conditions depend on the three-dimensional shape and
relative size of the compressor compared to the tissue,

as well as on the degree of friction between the

internal and external contact surfaces. The shape arid

type of the tissue components determine the internal

boundary conditions. Therefore, a map of the strain
distribution in tissue reveals not only information
about tissue shear modulus distributions, but also

about tissue connectivity (interfaces between tissue

components) and other geometrical considerations.

Alternatively, the map may be designated as a
stiffness distribution, which includes the effects of the

modulus and the geometry. An incorrect

interpretation of the stiffness distribution as being the

shear modulus distribution may in some cases result
in some known image artifacts due to stress

concentrations that may be misinterpreted as areas of
low modulus. However, we have previously

1 1+11

el/l/=E[ul/I/-lI(UX1/+uzz)], e~=~u~

(6)

1 1+1.1
eZZ=E[O'ZZ-1.I(O'zx+ 0'",,)] , ezz=-yO'zz

where err, eYYI ezz etc. are the orthogonal strain tensor

components and err, eyy, ezz etc. are the corresponding
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demonstrated (Kallel et al. 1998) that for low

modulus contrast and simplified geometrical
boundary conditions, the stiffness distribution may be

a relatively good representation of the underlying

modulus distribution.

Pre-compression RF line

3. Elastography-Imaging Tissue Strain

When a constant uniaxial load deforms an elastic

medium, all points in the medium experience a

resulting level of longitudinal strain whose principal
component is along the axis of compression. If one or

more of the tissue elements has a different stiffness
parameter than the others, the level of strain in that

element will generally be higher or lower; a stiffer

tissue element will generally experience less strain

than a softer one. The longitudinal axial strain is

estimated in one dimension from the analysis of

ultrasonic backscattered signals obtained from

standard diagnostic ultrasound equipment. This

means that ultrasonic speckle may be used for this

purpose, and no discrete resolvable targets must be

present. This estimation is accomplished by acquiring
a set of digitized radio-frequency echo lines from

scatterers contained in the tissue region of interest;

compressing the tissue with the ultrasonic transducer

(or with a transducer/compressor combination)
along the ultrasonic radiation axis by a small amount

(generally about 1 % or less of the total tissue depth),
and; acquiring a second, post-compression set of echo

lines from the same region of interest. Congruent

echo lines are then subdivided into small temporal

windows that are compared pair-wise by using one of

a variety of possible known time-delay estimation

techniques such as cross-correlation, from which the

change in arrival time of the echoes before and after

compression can be estimated. Due to the small

magnitude of the applied compression, there are only

small distortions of the echo lines, and the changes in

arrival times are also small. The local longitudinal

strain under the assumption of constant speed of

sound is estimated as the gradient of the displacement,

viz.

Post-compression RF line

Fig. 2 A schematic showing the process of computing the
strain in a tissue segment. Congruent windowed
segments of the pre-compression and post-compression
signals are compared by crosscorrelation. While the
early windowed segments exhibit virtually no delay, a
finite delay (designated del (t)) is detected between the
later segments. The strain is computed as the gradient
of the time delay (or displacement), i.e. strain=del (t)
IT, where T is the initial (pre-compression) separation
between the windowed segments.

(t1b-t1) - (t2b-'-'t2a)
"II,local t - t ' (8)

Ib la

where tla is the arrival time of the pre-compression

echo from the proximal window; tlb is the arrival

time of the pre-compression echo from the distal

window; t2a is the arrival time of the post-

compression echo from the proximal window; and

t2b is the arrival time of the post-compression echo

from the distal window. Fig. 2 shows a schematic

representation of the time delay and strain

computation process. The windows are usually

translated in small overlapping steps along the

temporal axis of the echo line, and the calculation is

repeated for all depths. The fundamental assumption

0 - -= -! ,

made is that speckle motion adequately represents the

underlying tissue motion for small uniaxial

compressions. This assumption appears to be

reasonable as long as the distributions of the scatterers

before and after compression remain highly

correlated. We have shown recently (Konofagou and

Ophir 1998) that the lateral motion of the scatterers

due to tissue compression may also be estimated with

high precision using novel interpolation techniques
operating on signals obtained from two partially

overlapped beams. This allows the generation of

elastograms that depict the lateral tensor components

of the strain and at least partial re-correlation of the

signals prior to the computation of the axial strains,

resulting in better elastographic image quality, and/or
the generation of elastograms depicting the local

ratios of the lateral-to-axial strains (effectively, the

Poisson's ratio)
The general process of creating elastograms is

shown in Fig. 3, showing a block diagram of the

process. The first block of the process corresponds to

an example of a uniform target containing a simple
circular pattern of higher tissue modulus. The

intermediate block corresponds to the ideal strain
distribution in the target due to the behavior of this

target under a compressive load. The transformation

from modulus contrast (first block) to strain contrast

T Mpti TTltr".nni,.. Vnl ?Q Wintpr (?M?) 159



Fig. 3 The general block diagram process of creating an elastogram. The modulus contrast distribution is

converted to a strain contrast distribution using the Contrast-Transfer Efficiency (CTE). The ideal
strain contrast distribution is estimated from ultrasonic strain estimates by the ultrasound system,
whose performance is controlled by the derated Strain Filter (SF) for particular acoustic,

instrumentation and algorithmic parameters. The result is an estimated strain contrast distribution
(elastogram), which is a somewhat corrupted version of the ideal strain image.

(second block) involves a certain loss of efficiency.
This may be computed for such simple targets by the

Contrast Transfer Efficiency (CTE) function. The

output image corresponds to the strain (axial and/or

lateral) image (elastogram) , which is a corrupted
(noisy) version of the ideal strain image. The noise
and contrast properties of the elastogram are

computed from the Strain Filter (SF), which takes

into account the engineering, signal processing and

acoustical parameters that corrupt the ideal strain

image and limit the ultimate quality of the attainable

elastogram. The block describing the instrument

incorporates the Strain Filter (Varghese and Ophir
1997 b), which embodies the selective filtering of the

tissue strains by the ultrasound system and signal

processing parameters. The SF predicts a finite

dynamic range and respective elastographic signal-to-
noise ratio (SNRe) at a given resolution in the

elastogram, limited by noise and/or decorrelation.
The contributions of the signal processing and

ultrasound system parameters and other algorithms

are indicated as inputs into the SF. Combining the

CTE and the SF formulations leads to the description

of the elastographic contrast-to-noise ratio (CNRe)

in the elastogram. All these blocks are described later
in this article. A complete description may be found

in Ophir et al (1999).

indeed what is desired. The CTE is defined as the

ratio of the observed (axial) strain contrast ratio Co

measured from the strain elastogram, and the

underlying true modulus contrast ratio Ct, using a

plane-strain state model. Expressed in decibels, the
ratio becomes a difference that is given by:

CTE(dB) = I Co (dB) I-I Ct(dB) I, (9)

where the magnitude is used iff order to have CTE

normalized to the zero dB level; i.e. the maximum

efficiency is reached at 0 dB for both hard and soft

inclusions. This behavior has been verified by finite-
element simulations and was also corroborated

theoretically, using models of simple geometry
(Ponnekanti et al. 1995, Kallel et al 1996). Fig. 4

shows the behavior of the CTE parameter over an 80

dB dynamic range of modulus contrast as measured

from simulated data (data points), and as predicted

using an analytical model (smooth curve). It is clear

from the Figure that for low modulus contrast levels

(a high level of target modulus homogeneity), the

elastographic strain contrast is relatively close to the

modulus contrast (the contrast transfer efficiency
CTE;:::; 1, or 0 dB). This is a very important

observation, since it suggests that for tissues that have
structures that possess low modulus contrast, the

simply computed axial strain elastogram itself is very
similar to the inverse of the true shear modulus

distribution in the tissue. This expected result has

been verified experimentally using actual indentation

measurements and elastograms, using ex-vivo ovine

kidneys and phantoms (Kallel et al. 1998). Hard
inclusions embedded in softer background have a

relatively high level of contrast-transfer efficiency
(CTE;:::; 0 dB). However, soft inclusions that are

4, Contrast-Transfer Efficiency (CTE)

Using ultrasonic techniques, it is only possible to
measure some of the local longitudinal components of

the strain tensor in the tissue. The local components
of the stress tensor remain largely unknown. The

strain elastogram is all that is available to represent

the distribution of tissue elastic moduli, if this is

160 J Med Ultrasonics Vol.29 Winter (2002)



True Modulus Contrast (dB)

Fig. 4 The behavior of the Contrast Transfer Efficiency function for a plane-strain-state circular inclusion. Note
that the strain contrast is close to the modulus contrast (and hence the efficiency is high, i.e., CTE= 1, or 0

dB) for low «<0 dB) modulus contrast lesions. Note also that the function is asymmetric, demonstrating
high efficiency for stiff inclusions, and low efficiency for soft inclusions.

completely surrounded by harder background
material have low contrast-transfer efficiency (CTE

«0 dB), and thus may not be well visualized by

elastography. The reason for this limitation lies in the

fact that due to the incompressible nature of many

soft tissues (Poisson's ratio-O.S), the soft inclusion
will be constrained so that it will be unable to deform

under load, as it might otherwise do without

constraints. It will thus assume instead effective

elastic properties that are closer to those of the

embedding, stiffer material.

First, random noise introduces errors in the TDE,

which are especially disruptive at small time delays.

Second, since the tissue needs to be compressed to

produce elastograms, this very same compression of

the tissue also distorts the post-compression signal

such that it no longer is an exact delayed version of

the pre-compression signal. This decorrelation
increases with increasing strain and is independent of

the signal-to-noise ratio of the echo signals. Any

phenomenon (such as lateral and elevational motion)

that degrades the precision of the time-delay estimates

will also degrade the strain estimates, thus

introducing additional noise into the elastogram.

Echo signal decorrelation is one of the major

limiting factors in strain estimation and imaging. For

small strains, it has been shown that temporal

stretching of the post-compression signal (or temporal

compression of the pre-compression signal) by the

appropriate factor can almost entirely compensate for

signal decorrelation. When the post-compression echo
signal is stretched, it in effect realigns all the

scatterers within the correlation window. Global

uniform stretching was found to significantly improve

the elastographic signal-to-noise ratio (SNRe) and

expand the strain dynamic range in elastograms

(Alam and Ophir 1997). Moreover, this step is

computationally simple. Thus, a global uniform

stretching of the post-compression A-line prior to the

displacement estimation is highly advisable, unless the

applied compression is very small «< 1 %) and thus

5. Time Delay Estimation (TDE) in Strained Tissues

Time delay estimation is a very important aspect of

elastography. The literature on TDE is extensive.

Tissue strain is typically estimated from the axial

gradient of tissue displacements. The local tissue

displacements are estimated from the time delays of

gated pre-compression and post-compression echo

signals. Time delays are classically estimated from the
lag of the peak of the crosscorrelation function

between the pre- and post-compression gated echo

signals. It is also possible to use other estimators of

time delay, such as the frequency shift of the cross-

spectrum (Konofagou et al. 1999), or the point of
zero phase of the crosscorrelation function (Pesavento

et a11999, Lorenz et al. 2001).

The quality of elastograms is highly dependent on

the optimality of the TDE estimation procedure. TDE

in elastography is mainly corrupted by two factors.

T Mpti TTltr".nni". Vnl ?Q Wintpr (?M?, 11;1



results from the unintended stretching of the

transducer point-spread function (PSF) when the

post-compression signal is stretched (Alam et al.

1998 a).

stretching may not be necessary. In low contrast

targets and/or low strains, this is a very effective

procedure. In these situations, it produces quality
elastograms without significantly adding to the

computational load. However, in high contrast
targets, there will be significant over-stretching in the

areas of low strains, which by itself can significantly
degrade elastograms in these areas. For these

situations, an adaptive axial stretching algorithm
(Alam et al. 1998 b, Brusseau et al. 2000) may be

necessary. If high strains are applied, significant
decorrelation occurs, which cannot effectively be

compensated by stretching. Axial stretching is

mandatory in the presence of intermediate strains;
otherwise the elastograms become so noisy that they

are practically useless. It must be remembered that

axial stretching can only recover most of the

decorrelation suffered due to scatterer motion in the

axial direction; decorrelation due to lateral and

elevational motions, as well as other sources of

decorrelation, cannot be compensated this way.
Konofagou and Ophir (1998) have demonstrated that

decorrelation due to lateral motion may be

compensated with high accuracy by using a signal
interpolation technique. This technique, when

applied alternately with axial stretching, was shown to

result in large improvements in elastographic image
quality. A deconvolution filtering approach may be

useful in reducing the remaining decorrelation that

6. The Strain Filter (SF)

The SF (Varghese and Ophir 1997 b) describes the

important relationship among the resolution, dynamic
range (DRe), sensitivity (Smin) and e1astographic
SNRe (defined as the ratio of the mean strain to the

standard deviation of the strain in the elastogram),
and may be plotted as a graph of the upper bound of

the SNRe vs. the strain experienced by the tissue, for

a given elastographic axial resolution (as defined by
the data window length (Righetti et al. 2002 a). The

SF is a statistical upper bound of the transfer

characteristic that describes the relationship between

actual tissue strains and the corresponding strain

estimates depicted on the elastogram. It describes the

filtering process in the strain domain, which allows

quality elastographic depiction of only a limited range
of strains from tissue. This limited range of strains is

due to the limitations of the ultrasound system and of

the signal processing parameters and algorithms. The

SF is obtainable as the ratio between the mean strain

estimate and the appropriate lower bound on its

standard deviation. On a logarithmic scale, this ratio
is seen as a difference (Fig. 5). The SF is based on

well-known theoretical lower bounds on the TDE

100 mean
strain
estimate

5

t
r
a

1.0

1

s.d. of

strain
estimate

1

.01

.001n
.0001

10 100.001 ,01 1 1,0001

Tissue strain
Fig. 5 Mean strain estimate and standard deviation of the strain as a function of the applied strain. Observe that while

the mean estimate is proportional to the tissue strain, the behavior of the standard deviation (s.d.) is highly
nonlinear. At low strains, the s.d. is constant and low, and is determined by the Cramer-Rao Lower Bound
(CRLB). At higher strains, phase ambiguities in the signal cause a sharp increase of the s.d. The ratio of the
mean to the lower bound of the s.d. of the strain estimate, as a function of tissue strain, is defined as the Strain
Filter. In logarithmic units, the ratio is simply the difference between the two curves. Hence it is expected that
the Strain Filter will have a bandpass characteristic, where the SNRe is low at low and high strains, and high

at intermediate strains between the crossover points.
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Fig. 6 Typical appearance of the strain filter. Observe that the
SNRe has a bandpass characteristic in the strain
domain, and the magnitude of this bandpass
characteristic is diminished at higher (smaller valued)
axial resolutions. Hence, for a given strain, there is a
tradeoff between SNRe and axial resolution.
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Fig. 7 A typical appearance of a family of Strain Filters at a
fixed axial resolution. The member Strain Filters have
been derated to account for attenuation in tissue at 3
cm and 6 cm depths. Note the axial nonstationarity of
the strain filters due to attenuation, and the systematic
erosion of the sensitivity (lowest measurable strain)
and dynamic range (width of the Strain Filter) of the
strain in the elastogram.

variation in the SNRe . Both the SNRe and the

dynamic range are reduced with an increase in lateral

decorrelation. As long as any stationary or

nonstationary additive noise source can be described,
its effect may be incorporated into the Strain Filter

formalism, resulting in a more realistic, derated (sub

optimal) Strain Filter. An example of a successively

derated Strain Filter due to increasing tissue

attenuation at larger depths (in two dimensions only

(at a fixed resolution)) is shown in Fig. 7.

6.2 Contrast-to-noise Ratio in Elastography

The contrast-to-noise ratio (CNRe) in elastography

is an important quantity that is related to the

detectability of a lesion. The properties of the

ultrasound imaging system and signal processing

algorithms described by the SF can be combined with
the elastic contrast properties (CTE) of tissues with

simple geometry, enabling prediction of the

elastographic contrast-to-noise ratio (CNRe)
parameter. This combined theoretical model enables

prediction of the elastographic CNRe for simple

geometry such as layered (l-D model) or circular

lesions (2-D model) embedded in a uniformly elastic
background. An upper bound on the CNRe may be

obtained using the Fisher discriminant statistic, viz.:

2(s -s )2
I'"'1\TD-l02 {In\...,lVl\'e- 2 i \~V)

Usl + Us2

The CNRe for specific geometry that possess an

analytic or experimental CTE description can be

obtained (Varghese and Ophir 1998) by substituting

the strains obtained using the elasticity model and

their respective variances from the SF into Eq. (10).

variance, available in the literature. The low-strain

behavior of the SF is determined by the variance as

computed from the Cramer-Rao Lower Bound

(CRLB) (modified for partially correlated signals).

The high-strain behavior of the SF is determined by

the rate of decorrelation of a pair of congruent signals

due to tissue distortion as shown in Fig. 5, 6 illustrates

the general appearance of the SF in three dimensions,

demonstrating the tradeoffs between SNRe and strain

at all resolutions. An important extension to the SF is

its combination with the CTE formalism to produce

elastographic Contrast-to- Noise (CNRe) vs. strain

curves. This allows the description of the CNRe of

simple elastic inclusions or layers in terms of both the
mechanical strain contrast limitations in the target,

and the noise properties of the apparatus.

6.1 Nonstationarity of the Strain Filter

Estimation of tissue strains is inherently a

nonstationary process, since the pre- and post-
compression RFecho signals are jointly nonstationary

(due to signal deformation caused by straining

tissue). However, the pre- and post-compression
signals can be approximated to be jointly stationary, if

the tissue strain is estimated using small windowed

data segments in conjunction with temporal re-

stretching of the post-compression signal. Frequency

dependent attenuation causes additional (axial)
nonstationarity into the strain estimation process vs.

depth (Varghese and Ophir 1997 a), while lateral and

elevational signal decorrelation introduce

nonstationarities in the strain estimation process

along the lateral and elevational directions

respectively (Kallel et al. 1997). The SF can be
derated by these corrupting processes to predict the

effect of these nonstationarities on the elastogram.
For example, The effect of lateral decorrelation

contributes predominantly to the nonstationary
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generally a number between I and 2. This limit is not

always achieved (Alam et al. 2000) due to noise

considerations.. The practically attainable resolution
for a given system, however, is generally limited by

the choice of window size and overlap, as long as the

window size is larger than the PSF of the system.
This bodes well for the feasibility of micro-
elastographic imaging at high frequencies (Righetti et

al. 2002 a). The lateral resolution of elastography has

also been investigated in detail, and it was shown to be

proportional to the beamwidth of the transducer

(Righetti et al. 2002 b). Hence the best achievable
spatial resolutions of elastography and sonography are

similar, which means that comparisons between

sonograms and elastograms may be made on a similar

scale and with good registration.

Fig. 8 A typical upper bound on the elastographic Contrast-to
Noise ratio (CNRe) as a function of modulus contrast
and strain. This function (nicknamed the "Opera
House") is obtainable by combining the CTE and SF

formalisms.

7. Applications of Elastography

In principle, elastography may be applied to any
tissue system that is accessible ultrasonically and

which can be subjected to a small static (or dynamic)
compression. The compression may be applied

externally or internally. Any physiological
phenomena, such as pulsating arteries or respiration,
may be used as a source of tissue compression. In this

section a summary of results from some of these

applications is presented.
A typical example of the elastographic visualization

of a canine prostate in vitro is shown in Fig. 9. In the

elastograms, the white (stiff) rim, depicted in both

the transverse and sagittal views and in each slice,

corresponds to the outer gland that surrounds a softer

(gray) inner gland. In the center of the prostate, the
verumontanum is elastographically demonstrated as a

small stiff (white) ridge along the urethra. The lumen

of the urethra is depicted as a soft (black) inverted

"V" or "U" shaped area. By comparison, the

companion sonograms do not provide a clear

visualization of the aforementioned anatomical
structures in the prostate. It should be noted that the

each elastogram was derived from two of very similar

sonograms, one of which is shown.
The first in vivo application of elastography was to

the imaging of the breast and skeletal muscle

(Cespedes et al. 1993). An example of the

visualization of breast carcinoma is given in Fig. 10.

Both the B-scan and the corresponding elastogram
show a large lesion at 3 o'clock. The size of this lesion

on the elastogram is larger compared to its size on the

corresponding sonogram. The elastogram also depicts
a second, much smaller lesion at 11 o'clock, which is

not demonstrated in the sonogram. Both lesions were

pathologically confirmed. Further work has

demonstrated that unlike benign breast tumors,

cancers were consistently larger on the elastogram
compared to their corresponding size on the

sonogram. This size discrepancy was hypothesized to

Fig. 8 illustrates the general appearance of the

upper bound on the CNRe, demonstrating the

tradeoffs among CNRe and modulus contrast for all

applied strains. Note from Fig. 8 and Eq. (10) that

the highest values of the CNRe are obtained where
two conditions are satisfied; firstly, the differences in

mean strain values must be large, and secondly the

sum of the variances of the strain estimates should be

small. The improvement of the CNRe at low modulus

contrasts is primarily due to the small strain
variances, while at high modulus contrasts the

improvement in the CNRe is due to the large

difference in the mean strains. Note from the 3-D

visualization of the CNRe curves in Fig. 7, that when

the differences in the mean strain values are small (in
the region around the middle of the graph at low

contrasts), the CNRe value obtained is close to zero.

In addition, the regions with large strains

(corresponding to large variances in the strain

estimate due to signal decorrelation) also contribute

to low CNRe values. Knowledge of the theoretical
upper bound on the CNRe in elastography is crucial

for determining the ability to discriminate between
different regions in the elastograms. The CTE for the

elasticity models and the elastographic noise

characterized by the SF determine the CNRe in

elastography. The 3-D visualization of the CNRe

curves illustrate the strain dependence of the

elastographic CNRe . The 3-D plot provides a means
of maximizing the CNRe in the elastogram for the

given ultrasound system and signal processing

parameters.
6.3 Resolution in Elastography
It has recently been demonstrated (Righetti et al.

2001) that the upper bound on the elastographic axial

resolution is proportional to the length of the point-
spread-function (PSF) of the transducer. The

constant of proportionality depends on the exact

definition that is used for the axial resolution, but is
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sonograms

elastograms
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sonograms

Fig. 9 Matching elastograms and sonograms obtained from I mm equally spaced parallel transverse

and sagittal cross-sections of a typical canine prostate at 5 MHz. The prostate size is
approximately 3 X 3 X 3 cm'. The elastograms are displayed using a reversed gray-scale map

where white means stiff and black means (Kallel et al. 1999). Note the clear depiction of the
urethra, consistently stiffer outer gland and softer inner gland, the soft acini and the stiff
verumontanum in the corresponding elastograms.

Fig. 10 From left to right, matching sonogram and elastogram of breast carcinomas obtained
in vivo in the erect position at'S MHz (Ophir et aI1996). Note the demonstration of
two hard nodules and the torturous soft subcutaneous fat layer on the elastogram.
Note also that the sonogram demonstrates only one hypoechoic nodule and that a size
discrepancy exists between the sonographic and elastographic appearance of the large
nodule (presumably due to desmoplasia). (Courtesy of Dr. Nabil Makled).

be associated with desmoplasia surrounding the

cancerous lesion.

The earliest breast images were obtained in a sitting

position, which limited the number of accessible
cancers for elastographic imaging. More recently,

breast elastograms were obtained in the supine

position, which allowed the imaging of cancers that

were close to the chest wall. An example of

elastograms and corresponding sonograms of a

fibroadenoma and a carcinoma (Garra et al. 1997)
obtained in the supine position is shown in Fig. 11.

Observe the size discrepancy between the sonographic

and elastographic appearance of the carcinoma.

Another example of the visualization of normal

J Med Ultrasonics Vol.29 Winter (2002) 11;~



Fibroadenoma

Sonograms Elastograms

Infiltrating Ductal
Carcinoma

Fig. 11 Sonogram and elastogram pairs from fibroadenoma and infiltrating ductal carcinoma (Garra et at. 1997) of the breast

(Courtesy of Dr. B. Garra) in vivo at 5 MHz. Observe the clear depiction of the carcinoma on the elastogram (including
the distal margins), as well as the size discrepancy between the sonographic and elastographic appearance of the carcinoma,

as shown also in Fig. 10.

-

Sonogram Elastogram Photograph
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Fig. 12 From left to right, longitudinal sonogram, elastogram and gross pathological specimen from an ovine
kidney in vitro. The elastogram demonstrates structures that are consistent with a stiff (black) renal
cortex and medullary pyramids (of which at least seven are seen), softer (white) columns of Bertin and
very soft fatty areas at the base of the columns in the renal sinus. Areas of sonographic echo dropouts
outside the kidney and in the acoustically shadowed areas distal to the renal sinus are intentionally
blanked in the elastogram. Note that the renal sinus is hypoechoic and is not well visualized on the

sonogram (Katlel et al. 1998).



tissue stiffening due to thermal ablative procedures.
An example of the visualization of HIFU lesion

induced in a canine liver in vitro is shown in Fig. 13,

where the lesion appears as a hard nodule. It is noted

that the sonogram does not demonstrate the lesion.

An example of prostate trans-rectal elastography in

vivo incorporating HIFU effects (Souchon et al.

2001) is shown in Fig. 14, where an ablated area is

tissue architecture is shown in Fig. 12. The panels

show an ovine kidney in-vitro as seen in a sonogram

(left), elastogram (center), and gross pathological
slice. It is evident that elastography may be able to

demonstrate normal tissue structures, such as the

pyramids and columns of Bertin, that are not well

visualized on the sonogram.

Elastography has shown promise for monitoring

elastogram T2 MRI Sonogram Pathology

Sonogram Elastogram

MRI
Fig. 14 Matching sonogram, elastogram and MRI image of the transverse prostate in vivo. The prostate has undergone HIFU

ablation in the lower half of the gland. The rectangular ablated region is visible as a stiff region in the elastogram, and is also

well shown in the MRI image. The red regions in the elastograms have been automatically added to mask out extra-prostatic

regions of high decorrelation noise due to undesired tissue motions. No echo contrast between the ablated and normal parts

of the prostate is shown on the sonogram (Souchon et al. 2001, unpublished).
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Fig. 13 From left to right: elastogram, sonogram, coronal T2-weighted-MR image and gross (stained) pathological specimen of a

HIFU lesion induced in a canine liver in vitro. Note that the sonogram does not demonstrate the HlFU lesion (Righetti et

al. 1999).



Fig. 16 shows the appearance of a 6 mm VX2

carcinoma in a rabbit liver. Note again the clear

appearance of the tumor as a stiff region, and the lack

of tumor contrast in the corresponding sonogram.

shown as a stiff (darker) area in the peripheral

proximal area of the gland, and is confirmed by MRI

imaging.
Some work in animals in vivo is shown in Fig. 15,

16 (Merritt et al. 2002). Fig. 15 shows the appearance
of a 3 mm thermal lesion created in the liver of a

rabbit. Note the clear visualization of the lesion as a

stiff (dark) region in the elastogram, and the

corresponding isoechoic appearance on the sonogram.

8. Discussion and Conclusion

The assumption driving the development of

elastography has been that significant soft tissue

modulus (and hence strain) contrast exists, especially

0 1 2 3

I I I I I I I

cm

elastogramsonogram

Fig. 15 Rabbit liver in vivo, bearing a 3 mm thermal lesion. Note the good contrast between the stiff
lesion and the embedding normal liver in the elastogram, and the lack of echo contrast in the
sonogram. The sonograms were taken with a Philips/ A TL HDI -1 ()()() scanner at 7.5 MHz
(Merritt et al., 2002).

0 1 2 3

I I I I I I I

cm

sonogram elastogram
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Fig. 16 Rabbit liver in vivo, bearing a 6 mm VX2 carcinoma.
Note the good contrast between the stiff carcinoma and
the embedding normal liver in the elastogram, and the
lack of echo contrast in the sonogram. The sonograms
were taken with a Philips/ ATL HDI-lOOO scanner at
7.5 MHz (Merritt et al.. 2002).



correcting for lateral displacements and linear axial

distortions. Given further that axial or lateral

elastograms display the distributions of the respective
strains and not of the moduli, a contrast-transfer-

efficiency (CTE) metric has been defined and
calculated. This metric adds a description based on

elasticity theory of the efficiency with which actual
modulus contrast is converted to elastographic axial

strain contrast under known conditions. We have

shown that for low contrast situations such as in the

normal ovine kidney, the strain image is a reasonable

representation of the actual inverse modulus image.
We have also shown that elastography holds promise
in the evaluation of breast and prostate masses in vivo.

Many interesting challenges remain in the
development of this new field. In principle, it should
be possible to generate elastograms in real-time,

perhaps by reducing the cross-correlation
computations to I-bit hardware operations, which
have been shown to be effective, or by using fast

Digital Signal Processing (DSP) chips. The ultimate
limitation on speed is the speed of sound and the

speed of propagation of the elastic wave in tissue

(which is on the order of 1-10 m/s). The current need
for a transducer holding apparatus is another major

limitation. This could be overcome by increasing the
frame rate of elastographic image acquisition to

maintain better inter-frame coherence, by estimating

the (Doyley et al. 2001), and correcting the axial-

elastogram appropriately so that quality images can be
generated. Another solution may involve the use of

incoherent strain estimators that are less sensitive to

jitter and other undesired motions. A "stress meter" in
the form of an elastic layer attached to the transducer
or the target may be used in conjunction with a hand-

held device to allow automatic nonstationary image

calibration for uneven compressions. The optimal

elastographic protocols that are to be followed when
imaging certain tissues are as yet unknown. These
include the amount of pre-compression, the applied

imaging compression, the number of sonographic
frames and the (adaptive) algorithm(s) to be used for

image optimization, and the relationship of these
protocols to the specific elastic properties (such as

contrast and nonlinear stress/strain behavior) of most

tissues. While elastographic artifacts are fairly well

understood, their possibly ambiguous role as
detractors or facilitators of lesion detection and/or

diagnosis remains unknown. Related techniques, such
as high frequency, high-resolution methods applied

intravascularly may also develop as useful adjuncts to
the current sonographic methods. Another important

area that could greatly benefit from the incorporation

of elastographic techniques is the area of thermal or

cryogenic tissue ablation monitoring. It is known that
standard sonographic techniques are not well suited

for monitoring such procedures due to their poor

between normal and abnormal tissues. Perhaps not

surprisingly, it has been recently demonstrated that

modulus contrast exists not only between normal and

pathological tissues, but also generally to a lesser
degree also between and within normal tissues. The

existence of this lower contrast could be ascertained

only after recent vast improvements in the

elastographic image quality due to a better
understanding of the theory of elastographic image
formation that led to the development of better

algorithms. These observations, together with some
initial clinical data showing the ability of

elastography to detect and characterize

sonographically occult breast cancers (Garra et al.
1997), are providing the catalyst for continuing the

vigorous development and application of
elastographic methods to medical imaging problems.

The estimation and imaging of tissue strains is by

definition a three-dimensional problem. When the

tissue is compressed, the near incompressibility of

most soft tissues means that finite strain tensor

components are generated in all directions

simultaneously. Until recently, workers in the field
had assumed that single-view ultrasonic methods

could not be used for precision lateral displacement

and strain estimates. As a result, they were essentially

limited to displacement and strain estimations in the

axial direction only. It has recently been demonstrated

(Konofagou and Ophir 1998) that it is in fact possible
to make precision estimations of lateral displacements

and produce images of lateral strain and Poisson's

ratio distributions in tissues, if proper overlap between

adjacent ultrasonic beams is maintained. With 1.5-0
arrays, or by using a 1-0 array and measuring the

residual elevational decorrelation after correcting for
the other two components, it should be possible to

precisely estimate all three longitudinal components
of the strain tensor in tissues using clinical array

scanners. Poisson-elastograms may be important in
the imaging of poroelastic, edematous and viscoelastic

tissues (Konofagou and Ophir 1998).
Given the fortunate existence of significant

modulus contrast in many normal and abnormal

tissues, and the ability to estimate some of the

components of the strain tensor, the noise

performance of these estimations becomes the

important parameter that dictates the achievable
contrast-to noise ratio in elastograms. The Strain
Filter framework has been developed to describe the

tradeoffs among all the technical parameters of the

ultrasound instrumentation in terms of their influence
on the elastographic image parameters. Using this

formalism, it has been demonstrated that axial-

elastograms with high CNRe, wide strain dynamic
range and good strain sensitivity can be achieved at

resolutions that are on the order of the ultrasonic

pulse width. These can be further improved by
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contrast. We have recently shown that elastography
offers high contrast and precision in monitoring laser

and High Intensity Focused Ultrasound (HIFU)
applications (Righetti et al. 1999). This has now been

demonstrated in vivo as well from the work of

Souchon et al (Fig. 14).
In conclusion, we believe that while elastography

has progressed rapidly in the past several years, much

progress has yet to be made in order for elastography
to become a viable clinical and investigational tool.

Even at this early stage, however, it is evident that

there exists a fortunate set of favorable biological,
mechanical, statistical and acoustical circumstances
that, when combined, will inevitably allow the

attainment of this goal.
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