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Figure 5.2 Pressure Distribution, bŷ  = 0.3 43

Figure 5.3 Load Support vs. Speed 44

Figure 5.4 Pumping Rate vs. Speed 45

Figure 5.5 Load Support vs. Average Film Thickness 46



 viii

Figure 5.6 Pumping Rate vs. Average Film Thickness 46

Figure 5.7 Load Support vs. Elasticity Parameter 47

Figure 5.8 Pumping Rate vs. Elasticity Parameter 48

Figure 5.9 Load Support vs. bŷ  49
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NOMENCLATURE 

 

1Â  dimensionless static undeformed film thickness, A1/σ non-dim 

E  elastic modulus Pa 

H  dimensionless average film thickness in x-direction, h/σ  non-dim 

1I  
dimensionless influence coefficient for normal (radial) 

deformation 
non-dim 

2I  
dimensionless influence coefficient for shear (circumferential) 

deformation 
non-dim 

xL  length of solution domain in x-direction M 

yL  length of solution domain in y-direction M 

P  dimensionless pressure, (p-pc)/(pa-pc) non-dim 

ap  ambient pressure Pa 

cp  cavitation pressure (set equal to zero) Pa 

sp  sealed pressure Pa 

sp̂  dimensionless sealed pressure, (ps-pc)/(pa-pc) non-dim 

contactp̂  
dimensionless contact pressure for deformation analysis, 

pcontact/E 
non-dim 

defp̂  
dimensionless pressure for deformation analysis, P(pa-

pc)/E+pc/E 
non-dim 

yQ̂  dimensionless pumping rate in y-direction, 12µQy/[(pa-pc)σ3
] non-dim 

xq̂  
dimensionless flow rate in the x-direction per unit length in the 

y-direction 12µ Lxqx/[(pa-pc)σ3
]  

non-dim 

yq̂  
dimensionless flow rate in the y-direction per unit length in the 

x-direction 12µ Lxqy/[(pa-pc)σ3
]  

non-dim 

Ŵ  dimensionless load support, W/(pa-pc)LxLy non-dim 

R̂  dimensionless seal radius, yLR /  non-dim 

U  surface speed of shaft m/s 



 xi

rV  
dimensionless variance ratio, (σ 1/σ)

2
 ( rV =1 for case with one 

smooth surface) 
non-dim 

X local x-coordinate used in asperity distortion analysis m 

x̂  dimensionless circumferential coordinate, x/Lx non-dim 

Y local y-coordinate used in asperity distortion analysis m 

ŷ  dimensionless axial coordinate, y/Ly non-dim 

by  
y-location of maximum circumferential lip surface 

displacement 
m 

bŷ  
dimensionless y-location of maximum circumferential lip 

surface displacement, yb/Ly 
non-dim 

z dimensionless statistical surface height, H/3 non-dim 

α  dimensionless parameter describing elasticity of lip non-dim 

δ̂  dimensionless circumferential displacement of lip surface, δ/Lx non-dim 

fφ , fssφ  

fppφ , fsΦ  
dimensionless shear stress factors non-dim 

cc.φ  dimensionless density flow factor non-dim 

xcs ..φ , ycs ..φ  dimensionless shear flow factors non-dim 

xxφ , xyφ  

yxφ , yyφ  
dimensionless pressure flow factors non-dim 

γ  dimensionless aspect ratio of asperity, λx/λy with θ = 0  non-dim 

Κ  dimensionless (aspect ratio of solution space)
2
, Lx

2
 / Ly

2 
non-dim 

xλ  autocorrelation length in x-direction  m 

yλ  autocorrelation length in y-direction  m 

µ  viscosity  Pa-s 

µ̂  dimensionless viscosity (µ/µref)  non-dim 

Π̂  dimensionless power consumption, Πµ/[E(2π)σ2
(pa-pc)Lx] non-dim 

θ  orientation angle of asperities radians 

σ  rms roughness of lip surface m 



 xii

σ̂  dimensionless rms roughness of lip surface, σ/σref non-dim 

avgτ̂  average dimensionless shear stress in the x-direction, τavg/E non-dim 

Ψ  dimensionless cavitation parameter, (µ|U|λx )/
2)( σcpp −  non-dim 

ζ  dimensionless shaft speed, (µULx)/[(pa-pc)σ2
] non-dim 

 

 

superscripts 

^ dimensionless quantity  

  mean value ־
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SUMMARY 

 

 An elastohydrodynamic analysis of a rotary lip seal is performed numerically, 

incorporating both the fluid mechanics of the lubricating film and the elastic deformation 

of the lip, by solving the Reynolds equation with flow factors.  Asperities on the lip 

surface dominate the behavior of the flow field in the lubricating film and the elastic 

deformation of the lip.  Since previous analyses treated those asperities deterministically, 

they required very large computation times.  The present approach is much less 

computationally intensive because the asperities are treated statistically.   

Since cavitation and asperity orientation play important roles, these are taken into 

account in the computation of the flow factors.  An asperity distortion analysis is 

introduced to obtain a more realistic model of the complex variations in the asperity 

distribution on the surface of the seal.   

Results of the analysis show how the operating parameters of the seal and the 

characteristics of the asperities affect such seal characteristics as the thickness of the 

lubricating film, reverse pumping rate, power dissipation and load carrying capacity. 
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CHAPTER I 

INTRODUCTION 

 

To a casual observer, the manner in which a rotary lip seal retains liquid appears 

to be self-evident.  The interference fit between the rotating shaft and the lip, combined 

with the tension of the garter spring seems to form a flexible yet impenetrable impasse 

between liquid and air.  Upon closer inspection, however, questions regarding the sealing 

mechanism become apparent.  Is a lubricating film required at the interface to maintain 

the integrity of the lip and prevent excessive wear, and if so, why isn’t the oil leaking 

out?   

The rotary lip seal is the type of seal most widely used in industry today for 

rotating shaft applications (Horve, 1996).  For the better part of a century it has been 

analyzed largely by means of expensive and time consuming experimental testing.  The 

complex nature of its sealing mechanism has not been fully understood until recent years. 

In a previous study by Salant (1999), it was shown that the lip seal operates under 

normal conditions with a continuous lubricating film under the lip as depicted in Figure 

1.1.  In a successful seal, the microgeometry of the lip surface in the sealing zone makes 

two important contributions.  First, the asperities under the lip act as mini slider bearings, 

producing local pressure elevations as the rotating shaft pulls the fluid along, in between 

itself and the rubber.  This provides load support that keeps the lip lifted off of the seal.  

Secondly, as shown by Kammüller (1986) and Müller (1987), the asperity pattern 

deforms in such a way that it acts as a shear pump, inducing a reverse pumping action 

that pumps the fluid away from the air-side.  This is called reverse pumping because it 
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opposes the expected leakage flow that is being driven by the higher pressure on the 

liquid-side.    

LIP

L y

aP sP
air-side liquid-side

shaft x
y film

 
Figure 1.1  Sealing zone 

 In order to conduct a thorough analysis that encompasses the complex behaviors 

of a successfully functioning lip seal, the construction of an elastohydrodynamic model is 

necessary.  Such a model consists of a hydrodynamic analysis of the flow in the 

lubricating film, coupled with a deformation analysis of the lip material.  The 

hydrodynamic analysis provides solutions for the pressure and shear stress distributions, 

which determine the deformation of the rubber.  The deformation analysis produces the 

film thickness distribution which affects the hydrodynamic results.  An iterative 

computation procedure is required to solve this combination of dependent effects.  The 

procedure consists of a nested loop configuration in which the hydrodynamic analysis is 

conducted in an inner iteration loop, and then an outer loop performs the deformation 

analysis.  For the hydrodynamic analysis, a numerical scheme is used to solve the 

Reynolds equation with flow factors.  The deformation analysis is performed using data 

that is obtained from a finite element analysis of a lip seal.   

  In previous elastohydrodynamic studies (Salant and Flaherty, 1994, 1995; Salant, 

1996; Shi and Salant, 2000; Shi and Salant, 2001; Shen and Salant, 2003) the lip seal has 
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been analyzed deterministically, requiring the governing equations to be solved at every 

point in the sealing zone.  These models have produced a wealth of information and 

understanding about the physical mechanisms that govern lip seal behavior.  Their 

findings have confirmed data from previous conceptual models and corresponded 

qualitatively with past experimental results; however, the methodology requires a very 

large computation time.  Thus, while these deterministic models provide successful 

analyses of lip seal behavior, they are limited in their use as a design tool. 

 In this work, a statistical approach is used that greatly reduces the required 

computation time.  With this approach, it is not necessary to solve the governing 

equations for the flow field around each asperity.  Instead, the flow factor method (Patir 

and Cheng, 1978; Patir and Cheng, 1979) is used, which allows the Reynolds equation to 

be defined in terms of the average surface roughness on a macroscopic scale based on 

statistical data of the microscopic roughness.  This method, enhanced by the extended 

flow factor work of Harp and Salant (2001) provides the means for a more efficient study 

of lip seal performance.   

The original and modified flow factor methods mentioned above are limited in 

that they only consider asperities with the major axis parallel or normal to the direction of 

flow.  However, it is important to model the lip’s continuously varying asperity pattern as 

it is crucial to successful lip seal behavior.  This is made possible by the development of a 

method that transforms flow factors for parallel and normal asperity orientation to that of 

any arbitrary asperity orientation (Lo, 1992). 

As in the previous elastohydrodynamic studies in which the lip seal is analyzed 

deterministically, this approach consists of a fluid mechanics analysis of the flow field in 
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the lubricating film and a structural analysis of the lip deformations.  Additionally, an 

asperity distortion analysis is developed that calculates the change in surface 

characteristics when the surface is circumferentially displaced. 

A description of the background required to perform this work is provided in the 

following chapter.  Chapters three and four explain the configuration for and formulation 

of the model for this elastohydrodynamic analysis.  In the final chapter, results for 

different phases of the model are revealed and discussed as they apply to the application 

of a rotary lip seal.   
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CHAPTER II 

BACKGROUND 

 

2.1  Average Flow Model with Three-Dimensional Roughness 

 A new approach was developed by Patir and Cheng (1978, 1979) for the study of 

flow over isotropic or non-isotropic three-dimensional surface roughness.  They 

recognized the limitations of the stochastic average film thickness models (Tzeng and 

Saibel, 1967) that were currently in use and introduced a new method of deriving an 

average Reynolds equation that includes pressure and shear flow factors.  The flow 

factors are functions of surface characteristics that are obtained through flow simulations 

conducted using randomly generated or measured surface roughness.  This method can be 

used to analyze any type of roughness structure and can be extended to the partial 

lubrication regime (h/σ < 3) where the effect of roughness is critical.  This average flow 

model greatly improved computational efficiency; however it does not account for 

cavitation which is known to exist in the sealing zone of a rotary lip seal (Stakenborg, 

1988) and plays an important role in lip seal behavior. 

 

2.2  Cavitating Flow between Rough Surfaces 

 Harp and Salant (2001) recognized the need for a general flow model that 

numerically analyzes inter-asperity cavitation, a phenomenon that must be considered in 

order to accurately predict lubricant performance.  Cavitation is generated when a 

diverging surface moves relative to another and air, dissolved in oil, comes out of 

solution.  A diverging surface causes a drop in fluid pressure and the lubricant will 
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cavitate if the cavitation pressure is reached.  In the sealing zone of a lip seal it is the 

microscopic topography of the surface, specifically the valleys between the asperities, 

which provide the regions of divergent film that cause cavitation.  The general model that 

was developed to address this consists of an average Reynolds equation, modified with 

flow factors that simulate the combined effects of surface roughness and inter-asperity 

cavitation.       

 

2.3  The Effects of Roughness Orientation 

 The studies described above are limited to asperities with the major axis parallel 

or perpendicular to the direction of motion.  In the lip seal, the asperity orientation varies 

continuously over the sealing zone, and that varying pattern is crucial to the load carrying 

capacity and pumping mechanisms for a successful seal.  A method of transforming the 

parallel and perpendicular flow factors to those for any arbitrary orientation was 

developed by Lo (1992).  The method is capable of dealing with the change in roughness 

orientation and introduces a modified Reynolds equation with flow factors that are 

functions of an initial parallel or perpendicular configuration that has been transformed to 

an orientation angle, θ.   
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CHAPTER III 

PROBLEM FORMULATION 

 

3.1 Configuration 

The configuration for the analysis is contained in Figure 3.1a, which shows two 

surfaces separated by a fluid film.  The upper surface represents the seal lip, while the 

lower surface represents the shaft.  The x-direction represents the circumferential 

direction, while the y-direction respresents the axial direction (see Figure 1.1).  Ly is the 

axial width of the sealing zone, while Lx is chosen to be of the same order as Ly.  Thus, 

the analysis considers a small section of the sealing zone that spans its axial width.  The 

same pressure is applied on both of the y boundaries while cyclic conditions are applied 

on the x boundaries.  The upper surface is rough and stationary and the bottom surface is 

smooth and moving at a non-zero velocity in the x-direction.  Figure 3.1b shows an 

approximation of the known asperity orientation for an operating lip seal consisting of an 

arc shaped formation that reaches its peak at a point about 70% of the distance in the y-

direction and is repetitive in the x-direction.  This approximation is used in the 

preliminary hydrodynamic analysis.  The dashed lines schematically illustrate the 

orientation of the major axes of the asperities that lie on the lip surface. 
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Figure 3.1  Boundary Conditions and Asperity Orientation Pattern 

 

 

 

 
3.2 Fluid Mechanics Analysis 

A modified Reynolds equation was derived by considering the flow in the x and y 

directions, with sliding only in the x direction (Harp and Salant, 2001; Salant and Rocke, 

2004), resulting in the following flow rates for the flow factor method, 

 

xcsccxyxxx
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h

U

y

p

x

ph
q ...

3

2
)(

2
)(

12
σφσφφφ

µ
+−+

∂
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∂
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x
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The first term on the right hand side of Equation 3.1 is the flow in the x-direction 

due to the pressure gradients in the x- and y-directions, and the remaining terms are the 

flow in the x-direction due to the motion of the shaft.   The first term on the right hand 

side of Equation 3.2 is the flow in the y-direction due to the pressure gradients in the x- 
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and y-directions, and the remaining term is the flow in the y-direction due to the motion 

of the shaft.  φxx, φxy, φyy and φyx are the pressure flow factors, φs,c,x and φs,c,y are the shear 

flow factors, and φc,c is the density flow factor.   

 

Substituting Equations 3.1 and 3.2 into the steady flow continuity equation, 
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Introducing the dimensionless variables, 
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Equation 3.4 can be written as,  
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3.2.1 Flow Factors 

Lo (1992) developed a method capable of dealing with the change of surface 

roughness orientation that calculates the following “skewed” flow factors: 
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The skewed flow factors are calculated using the flow factors for θ = 0 and 90º, 

developed by Harp and Salant (2001), Figures 3.12 – 3.17, which assume Gaussian 

distributions of surface height with some interpolation.  The pressure flow factors, φxx, 

φxy, φyy and φyx are functions of the average film thickness H, the aspect ratio of the 

asperities γ, and the asperity orientation angle θ.  The density flow factor φc,c and the 

shear flow factors, φs.c,x and φs.c,y are dependent on the cavitation parameter, Ψ as well as 

on H and γ  (Harp and Salant, 2001).  The coefficients c1, r, m, c2, a1, b1, a2 and b2 are 

given in Tables 3.1 – 3.4.  

 

( ) ( )rHcHx −−= exp1, 1γφ      1)(for ≤γ                                                         (3.12)                         

( ) ( )-r

11, HcHx +=γφ      1)(for >γ                                                           (3.13) 

( ) 






=
γ

φγφ 1
,, HH xy                                                                                     (3.14)                         

( ) ( ) 2

-2

. c,, +Ψ−=Ψ HmHcs γφ    ( ) 3.4) in tablelimit    (for 
-2 <Ψ H                (3.15) 

( )
2

11

.
)(

1
,, −Ψ+

=Ψ
Hba

Hcs γφ    ( ) 3.4) in tablelimit   (for 
-2 ≥Ψ H            (3.16)                       

( )
0.65.1

22 )(

1
,,

Hba
Hc −Ψ+

=Ψγφ                                                                 (3.17) 
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When plotted against Ψ(Η)−2
, the shear flow factors for each film thickness 

remain distinct, Equation 1.15, up to unique points at which they join a unified curve, 

Equation 1.16.  An example of this for γ = 1 and coefficients from Table 3.4 for specific 

values of H is shown in Figure 3.2. 

 

γ=1

0.15

0.25

0.35

0.45

0.55

0.65

0 1 2 3

Ψ(H)
-2

φs
c

H=2

H=3

H=4

H=5

H=6

Unified Curve

 
 

Figure 3.2  Shear Flow Factors in Distinct Form 

and Unified Curve Fit (Harp and  Salant, 2001) 

 

 

 

 

    Table 3.1  Coefficients            Table 3.2  Coefficients             Table 3.3  Coefficients 

    of Equations 3.12, 3.13                 of Equation 3.16                      of Equation 3.17 

    (Harp and Salant, 2001)          (Harp and Salant, 2001)           (Harp and Salant, 2001) 

  γ    c1   r    γ   a1   b1    γ   a2   b2 

 1/9 1.714 0.43   1/9 0.896 2.121   1/9 0.926 0.005

 1/3 1.284 0.44   1/3 0.990 1.706   1/3 0.686 0.019

1 0.611 0.54  1 1.334 1.400  1 0.657 0.081

3 0.186 1.33  3 1.936 1.554  3 0.730 0.503

9 1.078 1.64  9 4.762 1.443  9 0.927 3.704
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Table 3.4  Coefficients of Equation 3.15 

(Harp and Salant, 2001) 

γ H m c2 Range 

 1/9 2 0 1.10 Ψ(H
-2

) < 0.01 
 1/9 3 0.4715 0.95 Ψ(H

-2
) < 0.1 

 1/9 4 0.4164 0.74 Ψ(H
-2

) < 0.4 
 1/9 5 0.2053 0.55 Ψ(H

-2 
)< 0.8 

 1/9 6 0.1227 0.45 Ψ(H
-2

) < 1.0 
 1/3 2 0 0.98 Ψ(H

-2
) < 0.02 

 1/3 3 0.5051 0.80 Ψ(H
-2

) < 0.4 
 1/3 4 0.2291 0.60 Ψ(H

-2
) < 1.0 

 1/3 5 0.1217 0.47 Ψ(H
-2

) < 1.3 
 1/3 6 0.0782 0.39 Ψ(H

-2
) < 1.7 

1 2 0 0.68 Ψ(H
-2

) < 0.1 
1 3 0.1295 0.51 Ψ(H

-2
) < 0.8 

1 4 0.0593 0.38 Ψ(H
-2

) < 1.5 
1 5 0.0363 0.31 Ψ(H

-2
) < 2.1 

1 6 0.0239 0.26 Ψ(H
-2

) < 2.7 
3 2 0 0.37 Ψ(H

-2
) < 0.5 

3 3 0.0341 0.26 Ψ(H
-2

) < 2.3 
3 4 0.0110 0.18 Ψ(H

-2
) < 3.2 

3 5 ..0084 0.15 Ψ(H
-2

) < 4.5 
3 6 ..0046 0.12 Ψ(H

-2
) < 5.6 

9 2 0 0.21 Ψ(H
-2

) < 0.1 
9 3 0.0059 0.11 Ψ(H

-2
) < 6 

9 4 0.0029 0.08 Ψ(H
-2

) < 12 
9 5 0.0015 0.06 Ψ(H

-2
) < 21 

9 6 0.0010 0.05 Ψ(H
-2

) < 27 
 

 

 

The Peklenik number γ describes the shape and directionality of the surface 

asperities by using the ratio of asperity length in the x-direction to that in the y-direction 

as shown in Figure 3.3.  A Peklenik number of 1 describes an isotropic surface that is 

symmetric and has no directionality.  Surfaces possessing Peklenik numbers greater than 
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one or less than one contain asperities that are longer in the x- or y-direction, 

respectively. 

 

 

y

x

asperity

flow path in x-direction
 

 

Figure 3.3  Various Asperity Orientations as defined by γ. 

γ > 1 

γ = 1 

γ < 1 
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The parameter Ψ aids in the prediction of cavitation based on the observation that 

the effects of cavitaion increase with increasing fluid viscosity, increasing sliding speed, 

increasing asperity width, decreasing roughness, and decreasing pressure relative to the 

cavitation pressure.  It is defined by, 

 

2)( σ
λµ

c

x

pp

U

−
=Ψ                                                                                                           (3.18) 

 

Where λx is the autocorrelation length in the x-direction, and p  is an estimate of 

the pressure midway between two neighboring grid points, found by taking the average of 

the pressure values at those points.  The shear and density flow factors are functions of 

Ψ; as the cavitation number increases, the shear flow factors decrease and the density 

flow factors increase. 

 

3.2.2 Interpolation and Extrapolation of Shear Flow Factors 

As shown in Table 3.4, the coefficients of Equation 3.15 are not constant.  These 

coefficients were determined in past numerical experiments and are available as data for 

this study for the twenty-five values of H and γ specified in the table. 

For the full extent of this study, the evaluation of flow factors for any value of H 

is necessary, therefore, an interpolation program was written to calculate the unknown 

shear flow factor coefficients for all film thicknesses that fall between the values listed in 

Table 3.4.  Cubic spline interpolation proved to be the most accurate method of finding 

the two coefficients for each equation.  Additionally, the point in which the distinct linear 
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equation joins the unified curve in the Ψ(H)
-2

 range must be determined in order for the 

proper equation for φs.c to be utilized.  This is also accomplished in the interpolation 

program.  Figure 3.4 shows an example of several interpolated flow factor curves for film 

thickness values between 3 and 4 and the points at which they intersect the unified curve. 

 

γ=1/9
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H=3.6(int)

H=3.7(int)

H=3.8(int)

H=3.9(int)

 

 

Figure 3.4   Interpolated Shear Flow Factor Values between H = 3 and 4 

For γ = 1/9, Showing Points of Intersection with the Unified Curve. 
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 Additionally, the shear flow factor equations from Harp (2001) were determined 

for a range of film thicknesses 2.00 ≤  H ≤  6.00.   In this present work, the range of 

values of H is extended to include 1.00 ≤  H < 2.00, and an extrapolation program was 

written to facilitate this for the calculation of the shear flow factors.  The relevant 

equations for the changes are shown in Equations 3.19 – 3.21.  The coefficients for these 

equations are shown in Tables 3.5 – 3.7. 

 

( ) ( ) 2

-2

. c,, +Ψ−=Ψ HmHcs γφ ( ) 3.5) Tablein  range (for 
-2

HΨ                                     (3.19) 

                                                              

( )
5.02

33

.
])([

1
,, −Ψ+

=Ψ
Hba

Hcs γφ ( ) 3.6) Tablein  range (for 
-2

HΨ                             (3.20) 

( )
2

11

.
)(

1
,, −Ψ+

=Ψ
Hba

Hcs γφ ( ) 3.7) Tablein limit upper     (for 
-2 ≥Ψ H                      (3.21) 

 

 

Table 3.5  Coefficients of Equation 3.19 

  γ H m c2 Range 

 1/9 1 0 1.247 Ψ(H
-2

) < 7.03x10
-9 

 1/3 1 0 1.172 Ψ(H
-2

)
 
 < 7.61x10

-8 
   1 1 0 0.867 Ψ(H

-2
)

 
 < 1.26x10

-11 
   3 1 0 0.478 Ψ(H

-2 
)

 
< 0.10 

   9 1 0 0.331 Ψ(H
-2

)
 
 < 2.18x10

-9 
 

Table 3.6  Coefficients of Equation 3.20 

  γ H   a3 b3 Range 

 

1/9 1 0.802 0.899 7.03x10
-9 ≤ Ψ(H

-2
) < 0.03 

 

1/3 1 0.853 0.968 7.61x10
-8 ≤ Ψ(H

-2
)

 
 < 0.07 

   1 1 1.153 1.007 1.26x10
-11 ≤ Ψ(H

-2
)

 
 < 0.12 

   3 1    
   9 1 3.021 3.171 2.18x10

-9 ≤ Ψ(H
-2

)
 
 < 1.15 
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Table 3.7  Coefficients of Equation 3.21 

γ a1 b1 

 1/9 0.896 2.121

 1/3 0.990 1.706

   1 1.334 1.400

   3 1.936 1.554

   9 4.762 1.443

 

 

 Since this work includes computation of shear deformations, it was necessary to 

compute the viscous shear stress. This was done using the shear stress flow factor 

calculations from Patir and Cheng (1979), neglecting the effect of cavitation.  The 

average dimensionless shear stress in the x-direction is given by, 

 

( )
x

ca

fppfssf

avg

avg
Lx

ppP

E

H

EH

U

E ˆ

)(

2
ˆ

∂
−∂

++== σφφφ
σ

µτ
τ                                                  (3.22) 

 

 The fφ  term results from averaging the sliding velocity component of the shear 

stress.  It is obtained from the previous studies of Patir and Cheng (1979) through 

integration for any given frequency density of roughness heights with the following two 

equations, 

 

for 3≤H : 

( ) [ ]{ } ++−= )1(300ln1
32

35 32 zzzfφ

[ ]






 ++−+−+++−

60

)))))14760(405(160(345(132(55

32

35 zzzzzz
z                                  (3.23)  
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for 3>H : 

( ) [ ]






 −++

−
+−= )8030(66

151

1
ln1

32

35 2232 zz
z

z

z
zzfφ                                                   (3.24) 

 

 

 The φfp term is a correction factor for the mean pressure flow component of the 

shear stress and is a function of H and the surface pattern parameter, γ.  All φfp values 

approach 1.0 asymptotically as H increases and are higher for longitudinally oriented 

surfaces and lower for transversely oriented surfaces.  Data obtained from Patir and 

Cheng (1979) through simulation and fitted into empirical relations for θ = 0 and 90º are 

of the form,  

      

sH

fp De−−=1φ                                                                                                              (3.25) 

 

 

and for any arbitrary angle θ,  

90fp
2

0fp
2

fpp )(sin)(cos == ⋅+⋅= θθ φθφθφ                                                                  (3.26) 

 

with the coefficients D and s given in Table 3.8 as functions of γ. 

 

 

Table 3.8  Coefficients of Equation 3.25 

 γ   D   s 

1/9 1.51 0.52

1/3 1.47 0.58

1 1.40 0.66

3 0.98 0.79

9 0.73 0.91
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 The term φfs is another correction factor that results from the combined effect of 

roughness and sliding, similar to the shear flow factors from the hydrodynamics analysis.  

φfs and Φfs are related by data obtained from Patir and Cheng (1979) through simulation 

and fitted empirically for θ = 0 and 90º as follows, 

( ) ( )2211 ,, γγφ HVHV fsrfsrfs Φ−Φ=                                                                               (3.27) 

 

and for any arbitrary angle θ,  

])()[(cossin 090 == −⋅= θθ φφθθφ fsfsfss                                                                          (3.28) 

 

with, 

Φfs 
2765

4

HAHAA eHA +−=                                                                                                 (3.29) 

 

for two surfaces of different roughness.  For the case of one smooth surface, there is no 

second term in Equation 3.27, Vr = 1.0, and therefore φfs = Φfs.  The coefficients of 

Equation 3.29 are given in Table 3.9 as functions of γ.  

 

 

Table 3.9  Coefficients of Equation 3.29 

γ A4 A5 A6 A7 

1/9 14.1 2.45 2.30 0.10

1/3 12.3 2.32 2.30 0.10

1 11.1 2.31 2.38 0.11

3 9.8 2.25 2.80 0.18

9 8.7 2.15 2.97 0.18
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3.3 Deformation Analysis 

 In a preliminary hydrodynamic study, a constant film thickness was used in the 

Reynolds equation and the circumferential displacement of the lip surface was modeled 

(Salant and Rocke, 2004) with the following expressions, 

 

b

bb

yyfor
y

y

y

y
ˆˆ                        

ˆ

ˆ

ˆ

ˆ2ˆ
2

2

≤







−= αζδ                                                                 (3.30) 

[ ]
( ) b

b

bb yyfor
y

yyyy
ˆˆ        

ˆ1

ˆˆˆ2ˆ21ˆ
2

2

>
−

−+−
= αζδ                                                                 (3.31) 

 

Figure 5 shows the resulting pattern on the lip surface and how the major axes of 

the asperities would be tangent to the displacement curve under dynamic conditions. 
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Figure 3.5  Distorted Asperity Pattern 

 

δ
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 In the full elastohydrodynamic study, the film thickness and shear deformation are 

calculated. The latter is used in the asperity distortion analysis to compute the deformed 

asperity characteristics.  

 To compute the normal deformation of the lip, the influence coefficient matrix I1 

is utilized such that the average film thickness (averaged in the x-direction) H, can be 

expressed in discretized form (at the i axial node) as, 

 

kcontactdefik

n

k

ppIAH )ˆˆ()(ˆ
1

1

1 −+= ∑
=

                                                                               (3.32) 

 

 The dimensionless pressure defp̂  is related to the dimensionless pressure P in the 

fluid mechanics relations through, 

 

EpEppPp ccadef //)(ˆ +−=                                                                                        (3.33) 

 

 To compute the shear deformation of the lip, an influence coefficient method 

characterized by the influence coefficient matrix I2 is utilized.  Thus, the circumferential 

displacement of the lip surface δ can be expressed in discretized form (at the i axial node) 

as, 

 

kavgik

n

k

i I )ˆ()(ˆ
2

1

τδ ∑
=

=                                                                                                    (3.34)  
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 The influence coefficients I1 and I2 and the contact pressure contactp̂  are obtained 

from a finite element analysis of a seal.  This influence coefficient method has been used 

in previous lip seal studies (Salant and Flaherty, 1994; Shen and Salant, 2003).  

 

3.4 Finite Element Analysis 

 A cross-section of the rubber material on a lip seal was measured and its 

dimensions and material properties were used to construct a model for the finite element 

analysis.  Figure 3.6 shows the cross-section used for a two-dimensional axisymmetric 

analysis in ANSYS.  The elastic modulus of the rubber is 3MPa and Poisson’s ratio is 

0.49.  The interference fit between the lip and the 38.3794 mm diameter shaft is 1.40mm. 
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3.6 Detailed Cross-Section of Lip Seal Rubber (millimeters) 
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 Figure 3.7 shows the deformed results of the contact model.  When the seal is 

mounted onto the shaft the angles formed on each side of the contact area are changed.  

These angles play an important role in successful lip seal behavior.  The angle facing the 

air-side of the seal must be smaller than the angle facing the liquid-side.  The difference 

in these angles and the location of the garter spring determine the contact pressure 

distribution under the lip and the deformation characteristics of the lip, which in turn, 

strongly affect lip seal behavior. 

 

 

 

3.7  Deformed Results from Contact Model 
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 Initially, the model was constructed with a 0.01mm radius in the area of the 

sealing zone, as it was not possible to obtain a precise measurement of that point.  The 

resulting contact pressure for that model is shown in Figure 3.8.  It is believed that during 

the run-in period, a small portion of the tip on a new seal wears off and leaves a slightly 

flattened region to function as the sealing band (Horve, 1996).  The data in the figure 

support this, since it shows unrealisticly high contact pressure in the tip region, on the 

order of magnitude of the rubber’s yield strength.   
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Figure 3.8   Contact Pressure Distribution before Wear 

 

 A more realistic model was constructed with a 0.2 mm tip radius to better 

simulate the more flattened out area of the lip’s sealing zone.  This is the model that is 

shown in Figures 3.6 and 3.7 and is used in the finite element analysis.  The contact 

pressure distributioin for the selected model is more reasonable, based on previous 

experimental measurements (Müller, 1987), and is shown in Figure 5.18. 
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 In addition to the contact pressure, information regarding the influence of the 

flexibility of the rubber in the sealing zone is required from the analysis.  Equations 3.32 

and 3.34 show that the calculation of the normal and shear deformations require 

coefficient matrices I1 and I2.  The i,k term in the I1 matrix represents the normal 

deformation at node i produced by a unit force applied to node k.  Similarly, the i,k term 

in the I2 matrix represents the shear deformation at node i produced by a unit force 

applied to node k.   Figures 3.9 and 3.10 show the three dimensional plots of data for I1 

and I2, respectively. 

 

 

 

Figure 3.9  Influence Coefficient for Normal Deformations 
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Figure 3.10  Influence Coefficient for Shear Deformations 

 

 

3.5 Asperity Distortion Analysis 

  With the circumferential displacement δ of the lip surface known, the following 

method for modeling asperity distortion is used.  Figure 3.11 shows an exaggerated 

diagram of how δ affects the orientation and aspect ratio of an asperity.  These values are 

found by calculating the rotation of axes at every grid point on the solution domain.  This 

allows for an analysis to be conducted for a surface consisting of any quantity of 

asperities of varying size and aspect ratio. 

 The following steps define the general model (Thomas, 1958) that will compute 

the distortion of either a circular or elliptical asperity on the lip surface as it experiences 

circumferential displacement.  With the asperity autocorrelation length λY equal to the 
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half major axis and λx equal to the half minor axis for the initial shape of an ellipse (λX  = 

λY if starting with a circular shape), the equation for an undeformed asperity is defined 

as,  

 

1
2

2

2

2

=+
YX

YX

λλ
                                                                                                                (3.35)    

                                                                                               

As shown in Figure 3.11, asperity displacement is modeled as a function of Y 

only and can therefore be defined with the equation, 

 

( )[ ] [ ] 222222 ** YXXY YYX λλλδλ =+−                                                                                    (3.36) 

 

where, 

( )YXX δ+=*                                                                                                              (3.37) 

YY =*                                                                                                                           (3.38) 
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Figure 3.11  Asperity Distortion as Simulated with the Rotation of Axes 
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In expanded form, 

[ ] ( ) ( )[ ] 0*2* 222222222 =−++− YXXYYY YYXYX λλλδλδλλ                                                  (3.39) 

 

and letting 

( ) YCCY 21 +=δ                                                                                                            (3.40) 

 

The equation, 

[ ] 0*22)(*2* 2222

1

2

1

2

21

222

2

22

2

22 =−+−+++− YXYYYYXYY CXCYCCYCYXCX λλλλλλλλλ  (3.41) 

 

 takes the form of the general curve equation, 

[ ] 0*** 22 =++++++ GFEYDXCYYBXXA                                                         (3.42) 

 

with 

2

YA λ=  
2

22 YCB λ−=  
22

2

2

YX CC λλ +=  
2

12 YCD λ−=  
2

212 YCCE λ=  
22

1 YCF λ=  
22

YXG λλ−=  

 

 

A rotation of axes through an angle θ is performed in the counterclockwise direction to 

eliminate the cross-product term and results in the equations, 

θθ sin'cos'* YXX −=                                                                                                 (3.43) 

θθ cos'sin'* YXY +=                                                                                                  (3.44) 
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With new coefficients related to the old as follows:  

θθθθ 22 sinsincoscos' CBAA ++=                                                                 (3.45) 

θθθθ cossin)(2)sin(cos' 22 ACBB −+−=                                                    (3.46) 

θθθθ 22 coscossinsin' CBAC +−=                                                           (3.47) 

θθ sincos' EDD +=                                                                                        (3.48) 

θθ cossin' EDE +−=                                                                                       (3.49) 

FF ='                                                                                                                 (3.50) 

GG ='                                                                                                                  (3.51) 

 

                                                                                                          

Setting B’= 0 and solving for θ, the angle of rotation (deformed asperity orientation) can 

be found that will eliminate the new cross-product term, 
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With new axes and coefficients defined, Equation 3.42 can be written in ellipse equation 

form, 
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dividing both sides by H, 

[ ]
1
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with 
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Therefore, the asperity aspect ratio (γ = a/b) is found in the following manner: 

 

( )
2

1

22

'

'4

'

'4

'
''


















+++−

=
A

C

E

A

D
GF

a                                                                                      (3.55) 
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Expressions for X’and Y’are found using Equations (3.37), (3.38), (3.40), (3.43) and 

(3.44) with the following substitutions, 

 

θθ sin'cos'* YXX −=  

θθ cos'sin'* YXY +=  

YCCXYXX 21)(* ++=+= δ  

YY =*  
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therefore, 

 

YCCXYX 21sin'cos' ++=− θθ                                                                                  (3.57)             

YYX =+ θθ cos'sin'                                                                                                    (3.58) 

 

 

Solving simultaneously for X’and Y’, 

))(sinsin())(cos(cos

))(sin())((cos
' 21

θθθθ
θθ

−−
−−++= YYCCX

X                                                                     (3.59)    

))(sinsin())(cos(cos

))((sin))((cos
' 21

θθθθ
θθ

−−
++−= YCCXY

Y                                                                         (3.60) 

 

Substituting Equations 3.59 and 3.60 into Equations 3.43 and 3.44, transformed 

points X* and Y* and orientation angle θ can be found for a rotated ellipse given an 

original circle or ellipse and the constants 21  and CC .  Figures 3.12a and 3.12b show an 

example of the transformation of an undeformed ellipse to a deformed ellipse using the 

rotation of axes equations.  Figure 3.12c verifies that the same ellipse is created when 

using X* = X + δ and Y* = Y. 
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Figure 3.12  Transformation using rotation of axes (b) and X + δ(Y),Y (c) 
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 2C  is calculated in the FORTRAN program as the slope of the δ(y) curve at every 

nodal point, and  1C  is found with, 

yCC 21 −= δ                                                                                                                 (3.61) 

 

and substituting dimensionless terms, 

xL

δδ =ˆ             
yL

y
y =ˆ  

Equation 3.61 can be written, 

yx LyCLC ˆˆ
21 −= δ                                                                                                           (3.62) 

 

The rotation angle θ and aspect ratio (γ = a/b) of asperities at every nodal point is 

found using Equations 3.52, 3.55, and 3.56 respectively. 
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CHAPTER IV 

NUMERICAL SCHEME 

 

4.1 Discretization of Reynolds Equation 

A closed form solution for the Reynolds equation is not possible; therefore, a 

numerical finite difference method is utilized.  The selected discretizatioin method is a 

control-volume formulation described in detail by Patankar (1980).  It implies integral 

conservation of mass and momentum between neighboring grid points throughout the 

solution space. 

The solution space is divided into individual control volumes as shown in Figure 

4.1.  The pressure grid points are located at the center of the control volumes. 

Control volume
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Figure 4.1  Diagram of the Control Volume for the Discretization Process 
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Equation 3.5 is discretized by considering the layout of Figure 4.1.  Surrounding 

nodes are labeled according to their directional location from the center point of interest.  

The boundaries of the control volume are labeled in the same manner, but with lower 

case letters. 

 

Integrating Equation 3.5 over a control volume in the flow field from ew xx ˆ  toˆ  and 

ns yy ˆ  toˆ  produces,                       
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The first term in the left hand side of the equation becomes, 
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The second term in the left hand side of the equation becomes, 
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The third term in the left hand side of the equation becomes, 
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The fourth term in the left hand side of the equation becomes, 
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The first term in the right hand side of the equation becomes, 
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The second term in the right hand side of the equation becomes, 
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The third term in the right hand side of the equation becomes, 
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Substituting Equations 4.2 through 4.8 into Equation 4.1 gives, 
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Equation 4.9 can then be written as, 
 

=PPPA +EE PA +WW PA +NN PA +SS PA +
ENNE PA +SESE PA +NWNW PA PSWSW SPA −   (4.10)                         

 

 

 

with 

 

1111 SNWEP AAAAA +++=   221 SNEE AAAA −+=   221 NSWW AAAA −+=  

221 WENN AAAA −+=               221 EWSS AAAA −+=        22 NENE AAA +=  

22 SESE AAA −−=    22 NWNW AAA −−=   22 SWSW AAA +=  

 

 

 

 

In this manner, it is possible to construct the required number of equations needed 

to solve the Reynolds equation.  The solution for the equations is found using the 

alternating-direction implicit (ADI) method, with the tridiagonal matrix algorithm 

(TDMA) solving for the columns of the matrix, and the cyclic tridiagonal matrix 

algorithm (CTDMA) solving for the rows.   
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The linear equations are solved in the y-direction for the columns using, 

 

 

=)()( IPIA ++ )1()( IPIB +− )1()( IPIC )(ID                                                          (4.11) 

 

 

 

with: 

 

=)(IA 1111 SNWEP AAAAA +++=  

=)(IB 221 WENN AAAA −+=  

=)(IC 221 EWSS AAAA −+=  

PSWSWNWNWSESENENEWWEE SPAPAPAPAPAPAID −+++++=)(  

 

 

 

Temporary pressure values are then calculated after each run through with the 

TDMA subroutine and values for the φ’s are updated.  Under-relaxation is applied as new 

and old pressure values are continuously compared, until the desired tolerance is met.     

 

 

 

The linear equations are solved in the x-direction for the rows using, 

 

 

=)()( JPJA ++ )1()( JPJB +− )1()( JPJC )(JD                                                      (4.12) 

 

 

with: 

 

=)(JA 1111 SNWEP AAAAA +++=  

=)(JB 221 SNEE AAAA −+=  

=)(JC 221 NSWW AAAA −+=  

PSWSWNWNWSESENENESSNN SPAPAPAPAPAPAJD −+++++=)(  

 

As with the columns, temporary values for pressure in the rows are then 

calculated after each run through with the CTDMA subroutine and the φ’s are updated.  
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Under-relaxation is applied as new and old pressure values are continuously compared 

until the desired tolerance is met and convergence occurs. 

 

4.2 Computational Procedure 

 The computational procedure for the full elastohydrodynamic analysis is shown in 

Figure 4.2 and consists of two nested iteration loops.  This is an expanded version of the 

scheme used in the preliminary hydrodynamic study.  In the hydrodynamic analysis the 

deformation properties are entered as constant values, therefore only one iteration loop 

was needed to solve for the pressure distribution in the fluid.  The procedure in the figure 

is the expanded and final scheme used for the elastohydrodynamic analysis and requires 

two iteration loops.  In the inner loop, the finite difference equations are employed and a 

solution for the pressure in the lubricating film is found using initial guesses for δ, H, γ, 

Ψ and θ.  In the outer loop Equations 3.18, 3.32 and 3.34 are introduced and the acquired 

pressure distribution is used to define Ψ, H and δ, and the procedure for calculating γ and 

θ is introduced (Section 3.5).  The change in H is modified with an under-relaxation 

factor and a test criterion for convergence is set.  The current information enters the inner 

loop and a new solution for the pressure in the lubricating film is found.  The outer loop 

is re-entered for the updating of H, δ, γ, Ψ and θ, and the relaxation and testing of H.  The 

iterative process continues going back and forth between the inner and outer loops as a 

final solution for the Reynolds equation and the deformation equations is reached for 

both the pressure and the average film thickness. 
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Figure 4.2  Computational Scheme 
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Once the pressure distribution is computed, the load support is obtained by 

integrating the pressure over the solution space, 

ydxdPW ˆˆ   ˆ
1

0

1

0

∫ ∫=                                                                                                           (4.13) 

The pumping rate is obtained from, 

xdqQ yy
ˆ   ˆˆ

1

0

∫=                                                                                                                (4.14) 

 

with, 
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The power consumption is found with, 

 ˆ  ˆ ˆˆ
1

0

ζτ Rydavg 



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
=Π ∫                                                                                                      (4.16) 

 

with, 

yL

R
R  ˆ =                                                                                                                          (4.17) 

 

 An 81 x 81 mesh is used (selected following a mesh sensitivity study), and the 

program is written in FORTRAN.  A relaxation factor of 0.1 and an allowable 

convergence error of 10
-5

 are used.  
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CHAPTER V 

RESULTS 

 

5.1 Preliminary Hydrodynamic Analysis 

For this phase of the study (Salant and Rocke, 2004), film thickness and asperity 

aspect ratio and orientation angle are assigned constant values and just the flow field of 

the lubricating film is analyzed.  Computations are performed for a representative seal 

with dimensional base parameters of : h  = 2 µm, Lx  = Ly = 0.1 mm, σ = 1 µm, λy = 5 µm, 

λx = 1.667µm and 0.556 µm, yb = 0.07 mm, ps = pa = 10
5

 Pa, pc = 0 Pa, µ = 0.025 Pa-s, U 

= 8 m/s, and dimensionless base parameters of: H = 2, K=1, γ = 3 and 9, bŷ  = 0.7, ps = 1, 

α = 0.001, ζ = 200. Using a 2 GHz PC, the base case requires a computation time of 

approximately 15 minutes. The computation time for a comparable deterministic solution 

is estimated at approximately 90 minutes. 

 The pressure distribution in the lubricating film for the base case is shown in 

Figure 5.1.  It is apparent that the distorted asperity distribution together with the motion 

of the shaft produces elevated pressures sufficient to keep the lip lifted off the shaft.  The 

maximum pressure occurs at bŷ  = 0.7, the location of the maximum circumferential 

displacement.  This is an example of a successful seal in which the maximum 

circumferential displacement is located at a point closer to the liquid-side of the seal than 

to the air-side. 

 Figure 5.2 shows an example of the pressure distribution when the maximum 

circumferential displacement is closer to the air-side of the seal ( bŷ  = 0.3).  It is shown in 
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Figure 5.10 that although this configuration produces load support, it results in pumping 

the fluid toward the air-side of the seal, thus promoting leakage.    

These figures also show that the asperities with the larger aspect ratio of γ = 9 

produce higher elevated pressures and more load support than the asperities with the 

smaller aspect ratio of γ = 3. 
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Figure 5.1  Pressure Distribution, Base Case, bŷ  = 0.7 
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Figure 5.2  Pressure Distribution, bŷ  = 0.3  
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Figures 5.3 and 5.4 show the effect that shaft speed has on the load support and 

pumping rate.  As expected, more load support is produced with increasing shaft speed.  

The pumping rate is affected similarly as the seal behavior is like that of a viscous pump, 

with the more vane-like asperity aspect ratio of γ = 9 producing the greater effect.  In 

both cases, the slope of the curve decreases at higher speeds for γ = 3.  This also occurs 

for γ = 9 at speeds beyond the range of these graphs due to the increasing influence of 

cavitation.  
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Figure 5.3  Load Support vs. Speed 
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Figure 5.4  Pumping Rate vs. Speed 

 

 

 

 

The effect of increasing film thickness on load support is shown in Figure 5.5.  As 

the film thickness rises, the load support decreases.  This makes sense because the 

asperity heights decrease relative to the film thickness. 

The pumping rate responds differently as the film thickness is increased, as shown 

in Figure 5.6.  Initially, the flow area is increased causing the pumping rate to increase.  

However, at some point the film reaches a thickness that lessens the asperities effect on 

the pumping rate, which in turn begins to decrease. 
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Figure 5.5  Load Support vs. Average Film Thickness 
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Figure 5.6  Pumping Rate vs. Average Film Thickness 

 

 

The lip’s ability to deform is represented by the elasticity parameter α.  A larger 

value of α represents a more elastic lip that results in a larger lip deformation.  Figures 

5.7 and 5.8 show how an increasing circumferential deformation affects the load support 
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and pumping rate.  In both cases there is an increase until a certain value is reached and 

then a decrease (for γ = 9 this happens outside of the range of the graph in Figure 5.8).  

This result makes sense because an increase in the elasticity changes the distribution of 

the asperity orientation angle θ.  The maximum values in the figures would indicate the 

point at which an optimum vane angle is reached, resulting in the most effective viscous 

pumping action. 
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Figure 5.7  Load Support vs. Elasticity Parameter 
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Figure 5.8  Pumping Rate vs.  Elasticity Parameter 

 

 

 

The axial location ( bŷ ) of the maximum circumferential displacement of the lip 

surface is critical to sealing ability.  Figure 5.9 shows that a maximum load support is 

produced at bŷ  = 0.5, with symmetry about that point.  Figure 5.10 shows that the 

pumping rate will be zero at this point, and that negative pumping will occur at lower 

values of y and positive pumping will occur at higher values of y.  This explains why the 

maximum circumferential displacement of the lip must be located at a point closer to the 

liquid-side of the seal than to the air-side ( bŷ  > 0.5). 
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Figure 5.9  Load Support vs. bŷ  
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Figure 5.10  Pumping Rate vs. bŷ  

 

 

With the exception of Figures 5.11 and 5.12, results for this analysis have been 

based on the boundary conditions used by manufacturers to measure pumping rate (y0 = 

y1 = ambient pressure).  The sealed pressure is varied in these figures to show the effect 
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on load support and pumping rate.  Figure 5.11 shows a negligible effect on load support 

for the range of sealed pressure tested and Figure 5.12 shows the expected decrease in 

pumping rate due to the increased pressure difference at the liquid-side of the seal. 
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Figure 5.11  Load Support vs. Sealed Pressure 
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Figure 5.12  Pumping Rate vs. Sealed Pressure 
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5.2 Implementing the Normal Deformation Calculation 

 The program was upgraded gradually to facilitate the integration of the various 

parts of the model.  In this second phase, the original assumed displacement pattern for 

the asperities and constant aspect ratio values were left unchanged, while the normal 

deformation and film thickness were computed.  The normal coefficient matrix and 

contact pressure values from the finite element analysis performed by Shen (2002) was 

used for the analysis.  At the same time, the validity of the extrapolation algorithm for 

1.00 ≤  H < 2.00 was tested. 

 Tests were run for a representative seal with dimensional base parameters of:  Lx 

= Ly = 0.1 mm, σ = 1 µm, A1 = 1.4 µm,  λy = 5 µm, λx = 0.556 µm, yb = 0.07 mm, ps = pa 

= 10
5
 Pa, pc = 0 Pa, µ = 0.025 Pa-s, U = 8 m/s, E = 6.2 x 10

6
 Pa, and dimensionless base 

parameters of : 1Â  = 1.4, Κ = 1, γ = 9, yb = 0.7, ps = 1, α = 0.001, ζ = 200.   

 Figure 5.13 shows that the converged values for H in the axial direction vary 

slightly, (from 1.732 to 1.744).  This is consistent with previous studies in which it has 

been shown that the average film thickness (averaged circumferentially) is relatively 

constant across the sealing zone. 
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Figure 5.13  Calculated Average Film Thickness Distribution 

 

 

 

 

 Figures 5.14 and 5.15 show comparisons of the pressure distribution in the film 

for solutions to the Reynolds equation using a constant H = 2.00 before the addition of 

the normal deformation analysis, and one in which the film thickness is calculated and 

the extrapolation program for H < 2.00 is utilized.  The magnitude of the pressure in the 

latter is increased, as would be expected since the computed film thickness of the latter is 

lower than that set in the former. Also, the maximum pressure occurs at the axial location 

of maximum displacement (yb = 0.7) in both solutions, as expected.   
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Figure 5.14  Pressure Distribution for H = 2.00 

before Calculation of Normal Deformation 
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Figure 5.15  Pressure distribution for H = 1.74 

using Extrapolation & Normal Deformation Analysis 
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 Figures 5.16 and 5.17 show the variation in pumping rate and load support with 

average film thickness, for cases in which the film thickness is computed (not set). The 

film thickness is varied by varying the value of 1Â , the static undeformed film thickness.  

These graphs show the additional solutions for H when 1Â  = 0.7, 0.9 and 1.4 (H < 2.00).     

 The results show that the behavior of the pumping rate and load as H is decreased 

below values of 2.00 is consistent with previous tests performed using 2.00 ≤  H ≤  6.00. 
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Figure 5.16  Pumping rate vs. Average            Figure 5.17  Load support vs. Average 

Film Thickness                                            Film Thickness 

 

 

 

 The results of the second phase of the analysis indicate that the implementation of 

the extrapolation program which provides for the addition of shear flow factor 

calculations for 1.00 ≤  H < 2.00, and the normal deformation analysis that calculates the 

film thickness are valid.   
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5.3 Full Elastohydrodynamic Analysis 

 With the addition of the finite element analysis conducted for this work, a full 

elastohydrodynamic analysis could be performed.  The following test results are for the 

seal described in Section 3.4 with dimensional base parameters of : Lx = Ly = 0.1 mm, 

σ = 1 µm, λy = 5 µm, λx = 1.667µm and 0.556 µm, ps  = pa = 1.02 x 10
5

 Pa, pc  = 0 Pa, µ = 

0.02 Pa-s, U = 5 m/s, E = 3 x 10
6 
Pa, A1 = 1.4 x 10

-6 
m, and dimensionless base 

parameters of: Κ = 1, as pp ˆˆ =  = 1, ζ = 100, R̂ = 191.9, 1Â  = 1.4, Vr = 1.  Using a 2 GHz 

PC, the base case requires a computation time of approximately 15 minutes. The 

computation time for a comparable deterministic solution is estimated at approximately 7-

8 hours.  The effect of changing the undeformed value of λy (but keeping the undeformed 

value of γ constant) was explored, but proved to have virtually no influence on the results.  

 Figure 5.18 shows a comparison between the contact pressure distribution from 

the finite element analysis and the pressure distribution in the lubricating film for the base 

case.  It is seen that the distributions are very similar upon lift-off.  The axial locations of 

the maximum pressure are almost the same and are closer to the oil-side than to the air-

side of the seal.  This indicates that a distorted asperity pattern was produced with the 

maximum circumferential displacement at a location closer to the liquid-side of the seal.  
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Figure 5.18  Contact Pressure and Fluid Pressure Distributions 

 

 

 

As the shaft speed is increased, holding all other dimensional base parameters 

constant, the pressures increase slightly, producing larger normal deformations in the lip 

surface.  This effect on average film thickness is shown in Figure 5.19.  Upon lift-off the 

film is more uniform, and then becomes thicker and less uniform as the shaft speed 

increases.  Lift-off is defined as the state when the fluid pressure overtakes the contact 

(pre-load) pressure. 

Figure 5.20 shows the variation of shear deformation as it varies axially.  The 

maximum location of deformation occurs closer to the liquid-side of the sealing zone, 

which is necessary for the reverse pumping action to occur.  The shear deformations in 

this figure are of the same order and similar in shape to those measured in previous 

studies (Müller, 1987; Salant and Flaherty, 1994). 
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Figure 5.19  The Effect of Shaft Speed on Avg. Film Thickness 
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Figure 5.20  The Effect of Shaft Speed on Shear Deformation 

 

Figures 5.21 and 5.22 show the effect that shaft speed has on the load support and 

pumping rate.  As in the results from the hydrodynamic analysis, more load support is 

produced with increasing shaft speed.  The pumping rate also rises as the increased shear 



 58

deformation of the lip surface and resulting distorted asperity distribution act like a 

viscous pump.  
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5.21  Pumping Rate vs. Speed 
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5.22  Load Support vs. Speed 
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 Figure 5.23 shows that the amount of power consumed rises continuously as the 

shaft speed increases.  This is expected since the power consumption is directly 

proportional to the velocity. 
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5.23  Power Loss vs. Speed 

 

  

 The results in Figure 5.24 show again the effect of speed on the average film 

thickness.  This plot shows more clearly that the rate of increase is higher initially and 

then it begins to level off.  As mentioned earlier, after lift-off occurs the pressures in the 

film will increase with speed, but only slightly.    
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5.24  Average Film Thickness vs. Speed 

 

  

 Figure 5.25 shows that the maximum shear deformations in the rubber surface 

increase with increasing speed as expected. 
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5.25 Maximum Shear Deformation vs. Speed 
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The effect of viscosity, holding all other dimensional base parameters constant, on 

the pumping rate is shown in Figure 5.26.  An increased pumping rate is expected 

because as the viscosity increases, the shear stresses within the fluid increase which will 

result in a higher pumping rate. 

 Figure 5.27 shows a steady increase in load with increased viscosity after lift-off 

occurs.  This is expected because the increasing pumping rates create higher pressure 

elevations.   
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5.26  Pumping Rate vs. Viscosity 
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5.27  Load Support vs. Viscosity 

 

 

 The effect of higher viscosities is shown again in Figure 5.28 as it pertains to 

power consumption.  A fluid with a higher viscosity contains higher values of shear 

stress, requiring more power to be consumed. 
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5.28  Power Loss vs. Viscosity 
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 Figure 5.29 shows that the average film thickness increases with higher 

viscosities, as expected, due to the increased load support and pumping rates. 
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5.29  Average Film Thickness vs. Viscosity 
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 The maximum shear deformation is a function of viscous shear stress and is 

shown in Figure 5.30 to increase at higher viscosities, as expected. 
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5.30  Maximum Shear Deformation vs. Viscosity 

 

 

 

 The effect of surface roughness, holding all other dimensional base parameters 

constant, is explored in the next set of results.  Figure 5.31 shows a decrease in the 

dimensionless pumping rate as roughness heights increase.  This result is misleading, as 

the pumping rate is non-dimensionalized with the surface roughness parameterσ .  Since 

the dimensionless pumping rate includes a factor of σ3
, the expression for pumping rate 

shows that, in fact, the dimensional pumping rate is steadily rising with increasing 

roughness height (Figure 5.32).  This effect is expected, as an increase in asperity heights 

means an increase in the asperities’ ability to induce pumping. 
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  5.31  Pumping Rate vs. RMS Roughness              5.32  Dimensional Pumping Rate                               

                        vs. RMS Roughness 

 

 

 

 Figure 5.33 shows a reduction in load support as asperity heights rise.  This is 

because the value for dimensionless speed is reduced as roughness heights increase.     
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5.33  Load Support vs. RMS Roughnes 
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The effect on power consumption shown in Figure 5.34 is not straight-forward, as 

it is also non-dimensionalized with the roughness parameter squared.  In terms of the 

dimensional power loss (Figure 5.35), it is found that an increase in roughness heights 

has a minimal effect on power loss; a 19% decrease in Watts vs. a 53% increase in RMS 

roughness. 
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    5.34  Power Loss vs. RMS Roughness                  5.35  Dimensional Power Loss              

                          vs. RMS Roughness 

 

 

  

 

 Figure 5.36 shows a reduction in average film thickness as asperity heights 

increase.  This is again because the value for dimensionless speed is reduced as 

roughness heights increase.   
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5.36  Average Film Thickness vs. RMS Roughness  

 

 

A decrease in maximum shear deformation as roughness heights grow larger is 

shown in Figure 5.37.  This effect is due to the lower dimensionless speed produced by a 

larger roughness parameter.    
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5.37  Maximum Shear Deformation vs. RMS Roughness  
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 The results in Figures 5.38 and 5.39 show the speeds with which the lip will lift 

off of the shaft at various viscosities and surface roughness heights, respectively.  In 

Figure 5.38, the dimensionless lift-off speed is independent of the dimensionless 

viscosity.  It is therefore clear that the dimensional speed required for lift-off is higher for 

lower viscosities (Figure 5.39), since the load support is proportional to the speed.   
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        5.38  Lift-off Speed vs. Viscosity                     5.39  Dimensional Lift-off Speed  

          vs. Viscosity 

 

  

 The graph of dimensionless lift-off speed for various roughness heights is another 

example in which the roughness parameter is part of the dimensionless term.  Since the 

dimensionless velocity is inversely proportional to the square of σ , the expression for 

speed shows that, in fact, the dimensional speed is steadily rising with increasing 

roughness height (Figure 41).  One explanation for this would be the effect of cavitation 

as roughness heights increase. 
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    5.40  Lift-off Speed vs. RMS Roughness           5.41  Dimensional Lift-off Speed 

                                   vs. RMS Roughness 

 

 

  

 

  

 

 The following figures show the effects of asperity aspect ratio.  In these cases, the 

undeformed asperity height, λy is kept at a constant value and the undeformed asperity 

width, λx is altered.  Figure 5.42 shows an expected drop in pumping rate as γ approaches 

lower values (asperities of a more circular shape), and an increase in pumping as the 

higher γ values produce a more effective vane-like pumping mechanism.  There is no lift-

off for γ < 3.0, and the largest pumping rate occurs when γ is increased from 3.0 to 4.0.   
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Pumping Rate vs. γ
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5.42  Pumping Rate vs. Asperity Aspect Ratio 

 

 

 There is a slight increase in load support and average film thickness (Figures 5.43 

and 5.44) with larger γ values and virtually no effect on power loss and shear deformation 

(Figures 5.45 and 5.46). 
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5.43  Load Support vs. Asperity Aspect Ratio 
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5.44  Power Loss vs. Asperity Aspect Ratio 
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5.45  Avg. Film Thickness vs. Asperity Aspect Ratio 
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Shear Deformation vs. γ
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5.46  Maximum Shear Deformation vs. Asperity Aspect Ratio 
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CHAPTER VI 

CONCLUSIONS 

 

A computational method has been developed to model the behaviors in a rotary 

lip seal application.  The method analyzes the fluid mechanics of the lubricating film and 

the elastic deformation of the lip by solving the Reynolds equation with flow factors.  

Due to its statistical approach, the method is more computationally efficient and includes 

a feature that addresses the varying asperity distortion due to the shear deformation of the 

lip surface.  It was found that the method can predict such seal characteristics as the 

thickness of the lubricating film, reverse pumping rate, power dissipation and load 

carrying capacity and that the results are reasonable and agree qualitatively and 

quantitatively with previous studies. 
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