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One-dimensional (1-D) yarn/fiber supercapacitors are more attractive power sources 

than conventional three- or two-dimensional (3-D, 2-D) foam/film-type when they are used 

for miniaturized electronic devices, textile electronics, and implantable medical devices
1
 

because their small volume and high flexibility enable them to be easily integrated into the 

devices with a tiny size and various shapes. Nevertheless, most fiber-based supercapacitors 

(FBSs) simply possess the flexibility with limited tensile strain and stretchability
2–16

 because 

they are mostly based on nonstretchable electrodes such as carbon nanotube (CNT) spun 

yarn,
2–7

 graphene fiber,
8–12

 carbon fiber,
13,14

 and metal wire.
15

 This lack of stretchability of 

these FBSs leads to limitation for more advanced utilization, e.g., as a power source for 

artificial muscles
17

 or wearable devices that are exposed to high strain, especially in the joint 

part.
18 

In recent years, several strategies have been reported to incorporate stretchability into 

FBSs: CNT sheet nanomembranes were wound onto elastic fibers to make highly stretchable 

FBSs
19-21

 or CNT fiber electrodes were attached onto prestrained elastic fibers to form a 

micro-buckling structure for FBSs.
22,23

 Although these FBSs exhibited stable stretchability 

and energy storage performances, they still suffer from low electrochemical energy storage 

performance because the additional core fibers used as elastomeric substrates do not 

participate in electrochemical energy storage reactions but merely provide stretchability, 

resulting in low gravimetric and volumetric energy storage performances of the total 

devices.
24

 To solve these problems, novel spring-like stretchable CNT fibers were proposed as 

supercapacitor electrodes.
24

 It is notable that stretchability could be achieved for the first time 

in FBSs by using the spring CNT fiber without the help of any elastomeric substrate. 

However, the spring-based supercapacitors still showed limited capacitances because their 

active material was based on pristine CNT, totally depending on the electrochemical double 

layer capacitance (EDLC) energy storage mechanism. All things considered, achieving FBSs 
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possessing not only stretchability but also excellent specific capacitances remains 

challenging. 

In this study, we present coil structured, pseudocapacitive yarns as promising 

electrodes for achieving stretchable and highly performing supercapacitors. The bare CNT 

coiled yarns are fabricated by inserting a giant twist (50,000 twists/m) into CNT spun yarns, 

which are drawn from a multiwalled carbon nanotube (MWNT) forest.
25

 Although the bare 

CNT coiled yarns can be used as stretchable electrodes for EDLC-based supercapacitor 

without further processing,
24

 we deposited MnO2, which is a promising pseudocapacitive 

material because of its high theoretical capacitance, low cost, and environmental friendliness
26

 

to enhance dramatically its energy storage capacity. A scanning electron microscope (SEM) 

image of the our novel core(CNT)–shell(MnO2) structured hybrid coiled yarn is shown in 

Figure 1A. The diameter of the single hybrid coiled electrode is ~80 m and about 200 

uniform microloops are contained in a centimeter of coiled electrode. The resulting aspect 

ratio (ratio of coiled electrode’s length to diameter) is high (about 210) and the electrode 

volume is impressively small (~ 6.5  10
–5

 cm
3
) that the volume of presented coiled CNT 

electrode is one-twentieth the size of previously reported coiled CNT/nylon fiber
21

.  

A high-resolution SEM surface image of the bare CNT coiled yarn (Figure 1B) shows 

closely packed and uniaxially aligned CNT bundles, which implies an effective electron 

pathway for longitudinal current collecting. After the MnO2 deposition (Figure 1C), a 

mesoporous film, which is morphologically characteristic of MnO2,
27

 is uniformly formed on 

the surface of the coiled electrode. It is experimentally confirmed that strong adhesion of the 

MnO2 thin shell to the porous CNT surface is achieved so that high electrochemical stability 

could be demonstrated against repeated mechanical deformation by loop opening or 

electrochemical reaction, which will be discussed later. In this study, the mass of MnO2 was 
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measured using an electrochemical quartz-crystal microbalance (EQCM). From the slope of 

the charge–mass graph measured by EQCM, the mass of MnO2 per unit charge transferred 

during deposition is determined to be 5.4  10
–4

 g C
–1

, as shown in Figure S1. To measure the 

thickness of the MnO2 shell layer, cross-sectional analysis was performed by cutting the 

hybrid coiled electrode along its diameter using a Ga ion beam, as shown in Figure 1D. Figure 

1E shows a magnified SEM image of the denoted rectangle at the edge part of the hybrid 

coiled yarn cross-section shown in Figure 1D. The nanoscopic MnO2 shell with thickness ~1 

m is distinguished from the CNT core part. Because only nanoscopic surfaces of MnO2 can 

participate in the electrochemical energy storage reaction, the loading amount of MnO2 is 

controlled by adjusting its deposition time to have a thin shell with reasonable thickness (~1 

m) to obtain high capacitances and high-rate capability, simultaneously. As a consequence, 

volume and weight fractions of presented MnO2 shell to total hybrid coiled electrode are 

calculated to be 4.9% and 17.2%, respectively. This pseudocapacitive micro-shell plays 

crucial role in enhancing energy storage performances of yarn supercapacitors.  

Energy dispersive spectroscopy (EDS) analysis was performed to characterize clearly 

the hybrid core–shell structure of the electrode. Elemental mapping analysis for C, O, and Mn 

atoms was performed on the Figure 1D image to detect the location of specific atoms, as 

shown in Figure 2A–C. The core part of the hybrid coiled electrode has highly densified CNT 

without any observable pores. This pure CNT core is well distinguished by dominant C 

atoms’ detection (denoted by red dots, Figure 2A) while the shell part is mainly detected by O 

atoms (green dots, Figure 2B) and Mn atoms (blue dots, Figure 2C). Clearer identification of 

atomic core–shell structure can be confirmed through the overlapped C, O, Mn mapping 

images (Figure S2). Figure 2D indicates X-ray photoelectron spectroscopy (XPS) analysis of 

the deposited MnO2 film. The binding energy difference between Mn 2p3/2 and Mn 2p1/2 
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peaks is about 11.8 eV, which exactly matches the value for MnO2.
28

 Therefore, it can be 

concluded that this nonvacuum-based, scalable, and cost-effective electrochemical deposition 

technique achieves successful core–shell structure formation for stretchable, pseudocapacitive 

yarn electrodes. 

Figure 3A schematically illustrates the configuration of a complete solid-state, 

stretchable, and highly performing coiled supercapacitor. Two symmetric pseudocapacitive 

coiled electrodes were assembled in a parallel direction with constant gap and coated with 

aqueous poly(vinyl alcohol) (PVA)-based gel containing lithium chloride (LiCl) with 

thickness around 20 m. Figure 3B shows cyclic voltammogram (CV) curves of bare coiled 

CNT and MnO2/CNT core–shell coiled electrodes. Although the MnO2 content is relatively 

small compared with the total electrode (4.9% volume fraction or 17.2% weight fraction), it 

achieves about 512% capacitance enhancement by the pseudocapacitive effect. Figure 3C 

shows CV curves of the solid-state coiled yarn supercapacitor measured with scan rates from 

10 to 100 mV s
–1

. The box-like rectangular-shaped CV curves without any redox peak well 

represent the pseudocapacitive characteristics of our coiled supercapacitor. The rectangular-

shaped CV curves could be retained for high scan rates up to 500 mV s
–1

 (Figure S3), 

showing high-rate capability. Figure 3D shows the Nyquist curve of the coiled supercapacitor. 

A vertical curve indicates an excellent capacitive characteristic of the coiled supercapacitor. 

Moreover, low equivalent series resistance (ESR) as small as 0.07  cm
3
 is achieved (inset of 

Figure 3D). To inspect the charge/discharge characteristic of the coiled supercapacitor, 

galvanostatic curves at current densities of 0.2, 0.6, and 2 A cm
–3

 were measured (Figure S4). 

Symmetrical triangle-shaped galvanostatic curves show good agreement with Nyquist 

analysis, indicating the excellent pseudocapacitive characteristics of the coiled supercapacitor. 

The specific capacitances based on single electrode were calculated from the CV curves as 
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shown in Figure 3E. High volumetric capacitance (CV, 34.6 F cm
–3

), areal capacitance (CA, 

61.25 mF cm
–2

), and linear capacitance (CL, 2.72 mF cm
–1

) could be achieved at 10 mV s
–1

 

scan rate. The gravimetric capacitance (CM) can be calculated about 26.5 F g
-1 

for the coiled 

supercapacitor. Dimensions of the total electrodes (both MnO2/CNT coiled yarns) were used 

for normalization of specific capacitance. Moreover, high volumetric and areal energy 

densities (2.4 mWh/cm
3
 and 8.5 µWh/cm

2
) were achieved in our stretchable fiber 

supercapacitor. The maximum capacitance values at 10 mV s
–1

 are retained to about 71.6% at 

100 mV s
–1

 and 39% at 500 mV s
–1

, showing high-rate capability (Figure S3).  

Specific capacitances of the coiled supercapacitors are compared with other FBSs in 

Table 1. Notably, the coiled supercapacitor exhibited much higher linear and areal 

capacitances (2.72 mF cm
–1

, 61.25 mF cm
–2

) than reported stretchable FBSs based on buckled 

CNT fiber (0.26 mF cm
–1

, 27.98 mF cm
–2

)
23

 and CNT spring fiber (0.51 mF cm
–1

, 27.07 mF 

cm
–2

)
24

 as shown in Table 1. It should be noted that the volumetric capacitance of the 

presented coiled supercapacitor (34.6 F cm
–3

) was also excellent that about 10 times higher 

than our previous research on nylon fiber based stretchable supercapacitor (3.8 F cm
–3

)
21

 

without sacrificing linear and areal capacitances. These high specific capacitances were 

originated from effectively minimized volume of pristine CNT based coiled fibers (only 5.2% 

volume of previous stretchable fiber)
21

 by not using any elastomeric substrates. Moreover, the 

observed specific capacitances are remarkably higher than other reported hybrid FBSs, which 

do not offer the benefits of reversible elastomeric deformability. For example, the volumetric 

capacitance of our coiled supercapacitor (34.6 F cm
–3

) is about 14 times higher than 

MnO2/carbon FBS (2.5 F cm
–3

)
13

 and 7 times higher than MoS2-reduced graphene oxide/CNT 

FBS (4.8 F cm
–3

)
7
.
 
Moreover, its linear capacitance (2.72 mF cm

–1
) is two orders higher than 

MnO2/CNT FBS (0.019 mF cm
–1

)
2
, MnO2/ZnO nanowire-coated FBS (0.02 mF cm

–1
)
13

 and 
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also significantly higher than CNT/reduced graphene oxide fiber (0.35 mF cm
–1

)
11

. Such high 

specific capacitances of our coiled supercapacitor compared with other FBSs can be attributed 

to the following two aspects. The first is that nanoscopic, mesoporous, and pseudocapacitive 

metal oxide coating effectively enables high energy storage performance, without sacrificing 

the high-rate capability or mechanical stretchability. Second, neither additional elastomeric 

substrate nor separator is used in our coiled supercapacitor system, dramatically minimizing 

the total dimension of the electrodes. 

Figure 4A shows optical images of the complete coiled supercapacitor before and 

after 37.5% strain was applied. Although the theoretical maximum strain is much higher for 

coiled CNT yarn (about more than 300% strain, which originates from the relation L(coiled 

yarn length)  l(initial yarn length)/),
29

 we present 37.5% as the maximum strain for a coiled 

supercapacitor. Because the applied strain rate for static tests in this study is much faster (180 

mm min
–1

 or 2% s
–1

) than the literature
 29

 (0.5 mm min
–1

 strain rate, 15 minute intermediate 

stress relaxation every strain increment) that not enough relaxation time is provided to 

uniformly relax the generated internal stresses during stretching and this results in early 

fracture for the coiled yarn (~40% in tensile strain). In spite of such an early fracture, we 

adopted high strain rates (2–6% s
–1

 or 180–540 mm min
–1

 for dynamic tests) based stretching 

tests to reflect the real circumstances of wearable applications. The size of the tested 

supercapacitor was so small that it looks like a thin single thread to the naked eye, as shown 

in Figure 4A. Mechanical strain loading/unloading cycles were performed by applying tensile 

strains from 20% to 40% with sequentially 5% increments to the hybrid coiled electrode 

(Figure 4B). It is notable that the coiled electrode can be stretched up to 40% and reversibly 

recovered without significant residual deformation (less than 2.5%). This stretchable 

electrode’s mechanical reversibility has not been reported among other stretchable FBSs.
19–24
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In addition, the constant slopes of the loading curves exhibit high modulus from 290 ( = 

20%) to 325 MPa ( = 40%), while hysteretic energy dissipations by the recovery friction 

force were observed during unloading.
29

 The capacitance retention of the coiled 

supercapacitor under mechanically static strain (2% s
–1

) is characterized by comparing its CV 

curves before and after 37.5% strain was applied, as shown in Figure 4C. Figure 4D shows 

static capacitance retention with a strain range from 20% to 40% before the coiled yarn 

breaks. The coiled supercapacitor exhibits about 84% capacitance retention at the maximum 

strain of 37.5%. This capacitance drop can be attributed to a linear resistance increase of the 

coiled electrode when it gets stretched.
29

 The inset shows SEM images of microloops before 

and after 37.5% stretching, showing reversible intercoil distance change. 

Based on target applications of power source for wearable electronics, it is necessary 

to characterize the dynamic electrochemical performance
30

 of stretchable supercapacitor by 

measuring real-time capacitance retention under dynamically applied strain. To guarantee 

reliable elasticity with negligible residual deformation, the following dynamic 

characterizations were performed with a moderate strain of 20%.
29

 Figure 5A–C show 

dynamically measured CV curves of the coiled supercapacitor with various strain rates. 

Applied strain rates of 2, 4, and 6% s
–1

 can be converted into frequencies of 0.1, 0.2, and 0.3 

Hz for a stretching, respectively, which are close to that of human motion-based movements 

(0.67–4 Hz).
31

 In the static mode, the coiled supercapacitor can retain 90% capacitance at 

20% strain and reversibly recovered its initial capacitance when released (Figure S5). 

Therefore, dynamic capacitance variation (capacitance decrease during yarn stretching and 

recovery during releasing) results in dynamic CV curves with an uneven contour during the 

tests (Figure 5A–C). Because it takes 10 s for the coiled supercapacitor to reach 20% strain at 

2% s
–1

 strain rate (Figure 5A), a single stretching/releasing cycle is included per CV cycle 
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measured at 100 mV s
–1

 scan rate. Similarly, two and three stretching/releasing cycles are 

included per CV cycle at 4 and 6% s
–1

 strain rates, respectively (Figure 5B and Figure C). The 

resulting dynamic capacitance retentions at various strain rates are summarized in Figure 5D. 

Owing to highly adhesive MnO2 shell formation on the yarn electrode, structural stability, and 

stable ion supply by the gel electrolyte of the coiled supercapacitor, it exhibits 95.5, 96.2, and 

96.3% dynamic capacitance retention at 2, 4, and 6% s
–1

 strain rates without any electrical 

short-circuit or significant performance degradation. 

To characterize the reliability of electrochemical performances of the coiled 

supercapacitor, repeated stress loading/unloading and charge/discharge cycles were 

independently conducted. With a moderate strain of 20%, the coiled supercapacitor showed 

capacitance retentions of 95% after 1000 stretching/releasing cycles and 98.8% after 1000 

charge/discharge cycles (Figure S6A). Good adhesion between the MnO2 shell and CNT core 

can be also confirmed through SEM images (Figure S6B). After the cycle tests, the MnO2 

shell still remains in a well-attached state over the whole electrode without any observable 

detachment or cracks. On the other hand, the MnO2 shell deposited onto the smooth surface 

carbon fiber shows significant detachment after the cycle tests, implying poor adhesion to the 

electrode (Figure S7). This is because the unique surface and internal porosities of twist 

spun-based CNT yarn
32

 have advantages to have good adhesion with active material. 

Therefore, this simple way for nanoscopic MnO2 deposition effectively provides strong 

adhesion to the surface of the bare coiled electrode as well as enhancing the energy storage 

performance without impairing mechanical stretchability or electrochemical cyclability. 

In summary, we have reported stretchable and highly performing yarn-based 

supercapacitors that use unique core–shell-structured coiled electrodes. Pseudocapacitive 

core(CNT)–shell(MnO2) structured yarns were prepared using an electrochemical method and 
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the resulting solid-state coiled supercapacitor exhibits high elasticity, specific capacitances, 

and mechanical, electrochemical cyclabilities. The linear and volumetric capacitances of the 

coiled supercapacitor were 2.72 mF cm
–1

 and 34.6 F cm
–3

, respectively. About 84% static 

capacitance was retained when it was reversibly stretched by 37.5% in strain while 96.3% 

dynamic capacitance was retained during 20% strain deformation despite the extremely high 

strain rate of 6% s
–1

. Owing to the active material’s strong adhesion and structural stability of 

the coiled electrode, the coiled supercapacitor exhibited 95% and 98.8% capacitance 

retentions after stretching/releasing and charge/discharge cycles, respectively. Because we 

have deployed the twist–insertion-based coiling method to obtain a highly elastomeric 

electrode, the presently described supercapacitor fabrication method can be extended to other 

diverse high-strength monofilament and multifilament polymer fibers (such as polyethylene, 

Kevlar, silver-plated nylon, polyester, polypropylene, and poly(vinylidene difluoride)) to 

make supercapacitors that operate at high temperatures and use either hydrophilic or 

hydrophobic electrolytes. 
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Experimental Section 

CNT forests (~400 m high and consisting of ~12 nm diameter nanotubes containing 

~9 walls) were synthesized using the chemical vapor deposition (CVD) method according to a 

previous report.
25

 Ten layers of 120 mm (length)  10 mm (width) sized CNT sheets were 

drawn from the forest and stacked on the glass substrate by ethanol evaporation-based 

densification. One end of the stacked sheet was connected to the electrical motor for coil 

twisting. The bare CNT coiled yarn electrodes were fabricated by inserting a giant twist 

(~50,000 twisting per meter) into CNT sheets. The prepared coiled yarn was electrically 

connected to 180 m diameter Cu wire using silver paste for MnO2 deposition and 

electrochemical performance characterization. The electrochemical MnO2 deposition on the 

pristine CNT coiled yarn was performed using a potentiostatic method of applying 1.3 V (vs 

Ag/AgCl as reference electrode and Pt mesh as counter electrode) in the three electrode of 

CHI 627b system (CH Instruments, Austin, TX) in an electrolyte containing 0.02 M 

MnSO4•5H2O and 0.2 M Na2SO4 (all chemical products were purchased from Sigma 

Aldrich). Deposition time for one deposition segment was 3 s and the number of segments 

was controlled to adjust the deposition amount. The mass of the MnO2 was measured using 

EQCM and calculated using the Sauerbrey equation.
33

 The PVA–LiCl gel electrolyte was 

prepared using 3 g PVA (Mw 146,000–186,000) and 6 g LiCl in 30 ml deionized water. The 

mixture was heated at 90 °C until it became transparent. Two symmetric MnO2/CNT core–

shell structured coiled electrodes were placed in a parallel direction with a small gap (~20 

m) and finally coated with the PVA–LiCl gel electrolyte to complete the fabrication of the 

coiled supercapacitor. All chemical reagents for solid-electrolyte synthesis were purchased 

from Sigma Aldrich and used without further processing. To characterize the hybrid core–

shell structure of the coiled electrode, cross-sections of the coil were prepared by cutting them 
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along their diameters using a Ga ion beam (7 nA beam current) in a Focused Ion Beam (FIB, 

Nova 200) operated at 30 kV. Then, the cut areas were cleaned via Ga ion polishing by 

etching several micrometers of yarn length with consecutively decreasing ion beam-currents 

ranging from 5.0 to 0.3 nA. The cleaned-cut yarns were next transferred to a Zeiss Supra 40 

SEM to perform the microscopy (at 15 kV) and elemental EDAX mapping analysis (at 20 

kV). Clear views of the yarn’s cross-sections were attained by orienting the yarn’s cut plane 

parallel to the electron-beam final aperture/detector in the SEM. Other SEM images were 

obtained by FE-SEM (S4700, Hitachi). The oxidation state of the MnO2 deposit was 

characterized by XPS analysis (VG Multilab ESCA 2000 system). All static electrochemical 

measurements on the coiled supercapacitor utilized a two-electrode configuration with 

electrochemical analyzer (CHI 627b, CH Instruments). Dynamic CV curves were measured 

(100 mV s
–1

) while the coiled supercapacitor was stretched and released at strain rates of 2, 4, 

and 6% s
–1

 (which can be converted into 180 to 540 mm min
–1

). A specially constructed 

machine for applying tensile deformations was used. The length of the supercapacitor was 

measured using a digital Vernier caliper (500 series, Mitutoyo), which was incorporated into 

the stretching machine. Stress loading–unloading curves were obtained using a mechanical 

analyzer (TMA, SS7100). The volumetric capacitance of the coiled supercapacitor was 

calculated from the CV curves. From C = I/(dV/dt), where I is the discharge current, the 

single-electrode specific capacitance (Csp) was calculated from the following equation.
1
 

Csp(F/cm
3
) = 4C/Volelectrode, 

where Volelectrode is the total volume of the electrochemical active materials of the two 

electrodes (MnO2/CNT coiled electrodes for the present work). In a similar way, total length 

and surface area of the active materials were used for linear and areal capacitance calculations, 
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respectively. The factor of 4 comes from the capacitance of the two-electrode system and the 

combined volume of the two electrodes.
1
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Figure Captions 

Figure 1. Overview SEM image of (A) MnO2/CNT core–shell structured coiled electrode 

(scale bar = 50 m). Its magnified surface images of (B) before (scale bar = 1 m) and (C) 

after MnO2 deposition onto the bare coiled yarn (scale bar = 400 nm). Uniaxially aligned bare 

CNT electrode’s surface is covered by mesoporous and nanoscopic MnO2 film after 

deposition, constructing a core(CNT)–shell(MnO2) structured yarn electrode. Cross-sectional 

SEM images of (D) MnO2/CNT coiled yarn electrode (scale bar = 20 m) and (E) 

magnification of the edge part indicated by a square in D (scale bar = 3 m). The MnO2 shell 

is denoted by arrows. Volume and weight ratio of MnO2 shell to total coiled electrode are 

calculated to be 4.9% and 17.2%, respectively. 

 

Figure 2. Elemental mapping analysis performed on the coil cross-section area and the 

location of (A) C (carbon, red dots), (B) O (oxygen, green dots), and (C) Mn (manganese, 

blue dots) atoms are spotted. (D) XPS analysis on MnO2 shell. The binding energy difference 

between the Mn 2p doublet peaks is 11.8 eV, which corresponds to that expected for MnO2.
21

 

 

Figure 3. (A) Schematic illustration for the complete solid-state coiled supercapacitor, which 

comprises two symmetric MnO2/CNT core–shell coiled electrodes and gel electrolyte. (B) CV 

curve comparison before and after MnO2 deposition onto the bare coiled yarn. As a 

consequence of the pseudocapacitive contribution of the nanoscopic MnO2 shell, the CV area 

increased by about 512% after MnO2 deposition. (C) CV curves of solid-state coiled 

supercapacitor measured from 10 to 100 mV s
–1

 scan rates. (D) Nyquist curve shows a low 

ESR value of 0.07  cm
–3

 around a high frequency of 100 kHz (inset) and vertical line. (E) 

Calculated volumetric and linear capacitances of solid-state coiled supercapacitor for various 
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scan rates. The highest volumetric and linear capacitances (based on the dimensions of both 

MnO2/CNT coiled electrodes) are 34.6 F cm
–3

 and 2.72 mF cm
–1

 at 10 mV s
–1

 scan rate, 

respectively. 

 

Figure 4. (A) Optical images of solid-state coiled supercapacitor before and after application 

of 37.5% tensile strain. The initial length of as-used coiled supercapacitor is 16.8 mm for the 

stretching test. Inset shows magnified coiled supercapacitor, which was assembled using two 

parallel coiled electrodes with a constant gap (~20 m gap, scale bar = 100 m). (B) Stress 

loading/unloading curves of the hybrid MnO2/CNT coiled electrode with tensile strains from 

20% to 40%. (C) Static CV curve comparison before (black line) and after 37.5% strain 

applied (red line) to the coiled supercapacitor, showing 84% capacitance retention. (D) 

Capacitance retention versus static strain. The inset shows magnified SEM images of 

microloops before and after 37.5% strain applied (scale bar = 50 m). 

 

Figure 5. Dynamically measured CV curves (at 100 mV s
–1

 scan rate) during 20% strain 

stretching/releasing cycles with various strain rates. Nonstretched ( = 0) coiled 

supercapacitor’s CV curves are denoted for comparison (black line), while the dynamically 

measured CV curves with strain rates of (A) 2% s
–1

 (green line, 10 s for full stretching), (B) 

4% s
–1

 (blue line, 5 s for full stretching), and (C) 6% s
–1

 (red line, 3.3 s for full stretching) are 

presented. (D) Overall dynamic capacitance retentions of a coiled supercapacitor, showing 

95.5%, 96.2%, and 96.3% retentions at 2, 4, and 6% s
–1

 strain rates, respectively, after three 

charge/discharge cycles. 
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     Table 1. Specific capacitance comparison of the coiled supercapacitor with reported FBSs. 

Deformability Electrode Materials (Ref. No.) CL [mF cm
–1

] CA [mF cm
–2

] Condition 

 

Stretchability 

 

MnO2/CNT coiled fiber (Present Work)  

 

2.72 

 

61.25 

 

CV
a)

 at 10 mV s
–1

 

 CNT spring fiber (24) 0.51 27.07 GCD
b)

 GCD at 424 A cm
–2

 

 Buckled MnO2/CNT fiber (23) 0.26 27.98 CV at 10 mV s
–1

 

 All graphene core–sheath fiber (9) 0.02 1.7 CV at 50 mV s
–1

 

 

Flexibility 

 

MnO2/CNT fiber (2) 

 

0.019 

 

3.57 

 

GCD at 0.5 A 

 MnO2/ZnO nanowires/polymer fiber (16) 0.02 2.4 CV at 100 mV s
–1

 

 Graphene fiber (8) 0.01 0.72 GCD at 424 A cm
–2

 

 TiO2/CNT fiber (3) 0.024 0.6 GCD at 0.25 A 

 CNT fiber, CNT film (4) 0.029 8.66 GCD at 1 A 

 PEDOT/CNT fiber (1) 0.47 73 CV at 10 mV s–1 

 Graphene/CNT fiber (5) 0.027 4.97 GCD at 0.04 A g
–1

 

 ZnO nanowire/graphene fiber (10) 0.025 0.4 CV at 100 mV s
–1

 

 Pen ink/carbon, metal fiber (15) 1.008 26.4 CV at 100 mV s
–1

 

a)
 Cyclic voltammograms (CV).

b)
 Galvanostatic charge–discharge test (GCD). 
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