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Elastoplasti behavior identi�ation for heterogeneousloadings and materialsF. Latourte, A. Chrysohoos, S. Pagano, B. WattrisseAbstratImage proessing tehniques give aess to full �eld measurements of di�erent thermome-hanial data (strain, strain-rate [1℄, temperature [2℄, . . . ). These tehniques have beomemore and more useful for obtaining a �ne and loal desription of material properties. Asthey allow to measure omplete thermal and mehanial �elds, they an be used to identifyseveral parameters of the onstitutive equations during a single deformation proess usingspei�ally designed heterogeneous tests [3℄.In [4℄, surfae strain �elds obtained by Digital Image Correlation were used to identify thedistribution of elasti parameters and stress �elds by minimizing a given energy funtional.In this paper, the previous method is improved by a relevant hoie for stress approxi-mation, and then extended to a wider lass of elastoplasti materials. Its reliability is thenheked through appliations on simulated data obtained under small perturbations and planestress assumptions. In partiular, the robustness of the method with respet to measurementnoise is studied on the basis on numerial data. An experimental appliation to heterogeneousmaterial identi�ation is, �nally, proposed.1 IntrodutionDuring standard mehanial tests (simple tension, simple shear), the response of the speimengauge part is generally assoiated with the material response. Nevertheless, the unavoidabledefets of experimental set-up, of sample geometry or of the material may result in a heterogeneousresponse of the gauge part. In order to take this matter of fat into aount, mehanial tests arenow often oupled with full �eld measurement tehniques (displaement, strain, temperature,. . . )that better re�et the loal behavior of the material.The work presented hereafter aims at apitalizing on the rihness of data provided by thesetehniques to loally identify the material properties during mehanial tests. The identi�ationof material properties from �eld measurements is a partiularly ative researh area that haslead to the development of various approahes, with some of the most widespread being : theFinite Element Model Updating method [5℄, the Virtual Field method [6℄, or the Equilibrium GapMethod [7℄.A variational method due to Kohn et al. [8℄, initially developed for the identi�ation of eletrialondutivities was extended to the identi�ation of both elasti parameters and stress distributionby writing a funtional expressing the onstitutive equation gap [4℄. In this paper, we generalizethis latter approah to the ase of elasto-plasti materials with linear kinemati hardening in theontext of a small perturbations hypothesis and plane stress assumption for quasi-stati loadings.The displaement �elds are provided by the Digital Image Correlation (D.I.C.) method detailedin [1℄.In a �rst part, we present the theoretial bakgrounds and the numerial implementation ofthe identi�ation proedure. In the seond part, the performanes of the method are tested onthe basis of numerial data orresponding to a tensile test performed on a bi-material sample. Wewill partiularly fous on its ability to ath the material interfaes and hek its robustness withrespet to measurement noise. Finally, we disuss the results of an identi�ation of a kinematielastoplasti model arried out on experimental data obtained in a similar situation.1



2 Identi�ation proedureThe material behavior is loally identi�ed from in plane displaement distributions obtained byD.I.C. In the most general ase, these surfae measurements do not allow to identify materialproperties on a whole volume. For that reason, we restrit our attention to thin �at samples forwhih the plane stress assumption remains realisti. For eah deformation inrement, the loalmeasurements of three in-plane strain omponents allow us to loally determine three materialparameters at the most. Here, we introdue the framework hosen to state and solve the identi�-ation problem assoiated with an elastoplasti behavior with positive hardening under the smallperturbation hypothesis.This model is expressed as follows [9℄:
σ = Ae(ε − εp) (1)

f(σ,X) = (σ − X)II − σ0 ≤ 0 (2)
ε̇p = γ̇

∂f

∂σ

(3)
Ẋ =

2

3
kε̇p (4)where Ae is the elastiity tensor, σ the stress, ε the strain, εp the plasti strain, γ the plastimultiplier, f is the yield funtion, σ0 the yield stress, X the bakstress and k the hardeningmodulus. (·)II stands for the von Mises norm.2.1 Theoretial bakgroundsFor a sequene of suessive loadsteps, the in-plane displaement �eld u

∗ is measured on a givenregion of interest Ω of a speimen. The overall fores Ri are given on some parts Γi of the boundaryof Ω and the stress-free parts Γj are suh that Γi ∪ Γj = ∂Ω and Γi ∩ Γj = ⊘. The density of thevolume fore f is here onsidered to be equal to zero.Starting from an experimental set of images, it seems partiularly promising to use two di�erentdesriptions of the mehanial problem, one based on the total displaement �eld u
∗, whih is re-ferred to here as "standard formulation" and another one referred to as "inremental formulation",based on an inremental displaement �eld ∆u

∗ between two images:Standard formulation
div σ = 0 in Ω (5)
σ = A

s
ε(u∗) in Ω (6)

{

Ri =
∫

Γi
σ · n ds

σ · n = 0 on Γj

(7) Inremental formulation
div ∆σ = 0 in Ω (8)
∆σ = A

t
ε(∆u

∗) in Ω (9)
{

∆Ri =
∫

Γi
∆σ · n ds

∆σ · n = 0 on Γj

(10)where A
s and A

t stand for the seant and tangent sti�ness tensor respetively, σ and ∆σ rep-resent the stress �eld and the inremental stress �eld respetively, and ε(u∗) and ε(∆u
∗) are thestrain related to the measured displaement and to the inremental one, respetively. An additivedeomposition of the strain tensor into an elasti and a plasti part is assumed in the following.For a linear kinemati model, the tensors A

s and A
t an be expressed diretly as a funtion of thematerial parameters and of the loading history (f. setion 2.2.3). A ouple (As, σ) is a solutionto the standard identi�ation problem if it satis�es the equilibrium equation (5), the onstitutiveequation (6) and the global equilibrium (7). Respetively, a ouple (At, ∆σ) is a solution to theinremental identi�ation problem if it satis�es equations (8, 9, 10), where ∆Ri represents thereation inrement on the boundary Γi.
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2.1.1 De�ning a onstitutive equation gap funtionalOur elastoplasti identi�ation problem is to haraterize the mehanial behavior within the Ωdomain. Inside the elasti domain, the behavior an be desribed by an elasti sti�ness matrix Be,obtained either by the "standard" or the "inremental formulation". Indeed, from a theoretialpoint of view Be = B
s
e = B

t
e, where B

s
e is the elasti seant tensor and B

t
e the elasti tangenttensor.One plastiity ours, the history-dependent behavior an be desribed either by a plastitangent matrix B

t
p or by a plasti seant matrix B

s
p both depending on the plasti parametersassoiated with the model hosen. As will be shown later, the "standard formulation" is used toobtain B

s
e or B

s
p while the "inremental formulation" allows to identify either B

t
e or B

t
p, or tohek the presene of elasti unloadings.We assoiate the onstitutive equation gap funtional F to the "standard formulation" andthe funtional G to the "inremental formulation":

F(τ ,Bs) =
1

2

∫

Ω

(τ − B
s : ε(u∗))T : Bs−1 : (τ − B

s : ε(u∗)) dΩ (11)
G(∆τ ,Bt) =

1

2

∫

Ω

(

∆τ − B
t : ε(∆u

∗)
)T

: Bt−1
:
(

∆τ − B
t : ε(∆u

∗)
)

dΩ (12)The two stress �elds τ and ∆τ belong respetively to spaes Σadm and ∆Σadm:
Σadm = {τ regular and symmetri satisfying the eqs. (5) and (7)} (13)

∆Σadm = {∆τ regular and symmetri satisfying the eqs. (8) and (10)} (14)Under the plane-stress assumption and using engineering notations, let ξe be the admissibleelasti sti�ness tensor spae and, in the ase of positive hardening, ξp the admissible plasti sti�nesstensor spae:
ξe =

{

Be ∈ (L∞(Ω))3×3
sym ; Bij pieewise linear,Be non negative de�nite} (15)

ξp =
{

Bp ∈ (L∞(Ω))3×3 ; Bij pieewise linear,Bp non negative de�nite} (16)2.1.2 Stating a minimization problemThe following properties of the funtional F , demonstrated in [4℄ are the key of the extendedidenti�ation proedure:(i) F(τ ,Bs
e) ≥ 0, ∀(τ ,Bs

e) ∈ Σadm × ξe(ii) F(τ ,Bs
e) = 0 ⇔(6) is true with σ = τ and A

s
e = B

s
e(iii) The funtional F is onvex on Σadm × ξeThese properties also hold true for the funtional G(∆σ,Bt
e) with (∆σ,Bt

e) ∈ (∆Σadm, ξe). Theyalso apply to the plasti seant funtional (F(σ,Bs
p) with (σ,Bs

p) ∈ (Σadm, ξp)) and to the plastitangent funtional (G(∆σ,Bt
p) with (∆σ,Bt

p) ∈ (∆Σadm, ξp)). For eah seant or tangent behav-ior, the identi�ation problem is thus equivalent to a minimization of the orresponding funtional.Based on these properties, an adapted numerial strategy is developed in the next paragraph.2.2 Numerial implementationThe �rst step of the numerial minimization of the funtionals F and G is to build a �nite elementmethod allowing an appropriate desription of displaement, stress, and material properties inthe Ω domain. Using a �nite element formulation, it beomes easy to ompute the integralsde�ning the funtionals F and G. Equations (13) and (14) show that τ and ∆τ do not dependon displaement and, onsequently, three spei� �nite element formulations an be adopted forstress, displaement, and material properties �elds. Using independent stress and displaementelements onstitutes a partiularity of this approah ompared with the lassial �nite elementmethods applied to diret problems. 3



2.2.1 Finite Element DesriptionStress interpolationThe stress �eld solution has to satisfy the loal equilibrium (eq. 5 or eq. 8). To enfore thisonstraint, a �rst method onsists in using Lagrange multipliers. The two major drawbaks ofthis method both are : the size of the system largely inreases while its onditioning deteriorates.To derease the number of Lagrange multipliers and to render the stress omputation morestraightforward, we hoose a stress formulation based on naturally equilibrated Airy funtions[10℄. On eah stress element, the Airy potential takes the polynomial form :
ϕ(x, y) =

3
∑

i=0

3
∑

j=0

aijx
iyj (17)In aordane with this hoie, the 3 stress omponents are :

τ xx(x, y) = ϕ
,yy

=
3
∑

i=0

3
∑

j=2

j(j − 1)aijx
iyj−2 (18)

τ yy(x, y) = ϕ
,xx

=

3
∑

i=2

3
∑

j=0

i(i − 1)aijx
i−2yj (19)

τ xy(x, y) = −ϕ
,xy

= −

3
∑

i=1

3
∑

j=1

ijaijx
i−1yj−1 (20)(21)Displaement interpolationOne stress interpolation is hosen, interpolation of the displaements must be de�ned. We havehosen the Q29 element, onstituted of 9 displaement nodes, and assoiated with a quadratistrain generating, via the onstitutive equation, a quadrati stress Bε(u∗) lose to the stress τgiven by the Airy potentials. This element onstitutes a good ompromise between omplexity offormulation and rihness of strain desription.Material oe�ients interpolationFinally, the material properties are onsidered to be onstant within eah element. Nevertheless,we have the possibility to de�ne sets of elements with equal material properties. This possibilityis partiularly interesting when several extended homogeneous material zones oexists in Ω.Naturally, the stress, the displaement, and the material elements have the same geometrialsupport. For the moment, our meshing proedure is dealing with simple geometries, where elementsare retangular, but an extension to more general meshes is envisaged.The funtionals F and G an then be omputed and minimized using these �nite elementdesriptions. The onvexity of these funtionals makes the use of a relaxation method partiularlyrelevant. This method onsists in minimizing suessively the funtionals over their �rst andseond variables respetively. It requires measured displaement �elds, measured reations, and ana priori information relative to the stress-free boundaries available. Naturally, stress minimizationand material minimization are performed alternatively until onvergene ours. Convergene isheked by omparing both the material parameters and the stress between the two last iterations.The onvex properties of the funtionals ensure the existene of a solution for eah of the twominimization problems.
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2.2.2 First minimization : omputation of the stress �eldFor both elasti and plasti loadings, the same method is used to ompute stress or stress inre-ment, in order to simplify the stress omputation proedure (f. "stress minimization" in Figure1). In all situations, minimizing F or G over the stress is equivalent to solving the KU = F system,where U is the nodal Airy potential vetor ontaining the values (ϕ, ∂ϕ
∂x

, ∂ϕ
∂y

, ∂2ϕ
∂x∂y

) at eah node,
K is the Hessian of F or G over U and F is the gradient of F or G over U omputed at thepoint U = 0. The onstraints orresponding to observations at the boundary (eq. 7 or 10) aresuperimposed to this system using Lagrange multipliers.For �ne meshes, the KU = F linear system is large and often badly onditioned (due to theLagrange multipliers used to impose a global equilibrium), whih justi�es the use of a onjugategradient algorithm.2.2.3 Seond minimization : omputation of the material properties distributionsIn our strategy, the elasti properties are determined one and for all during the �rst loading steps,then the plasti parameters are omputed onsidering the subsequent loading steps. The next twoparagraphs fous on the omputation of the elasti and plasti material oe�ients.Elasti material properties omputationAt the most, three loal material oe�ients an be determined. We hoose to identify ubior isotropi elasti models here. The elasti tensor Be an be omputed indisriminately by thestandard or the inremental formulation. The minimization of F or G over Be is expliit andleads diretly to the two or three elasti oe�ients of the hosen model (f. Figure 1). Thefollowing desription only deals with the "standard formulation", but an be diretly adapted tothe inremental one.The minimization algorithm is presented in Figure 1. It requires an initial value B0 of theelasti matrix. As there is no in�uene of the initial guess on the obtained solution, due to theonvex properties of F , B0 is hosen arbitrarily. Naturally, bad initial guesses may extend theomputational time.The step alled "elasti material haraterization" orresponds to the loal estimation of theelasti matrix Be. Note that two situations may our in this latter step, depending on the meanequivalent strain ‖ε‖ on the onsidered element :

• if ‖ε‖ is too small ompared with the maximal equivalent strain εmax on the whole Ωdomain (i.e. ‖ε‖
εmax

< δǫ where δǫ is a threshold riterion on the strain), we onsider that thedeformation energy is too small to allow a robust identi�ation of the material properties.Then, a substitution proedure is applied where the elasti matrix of the onsidered elementis replaed by the homogenized Be on a hosen subdomain of Ω. It is important to notethat even if the elasti properties of the substituted zones do not perfetly math the realones, the orresponding error does not a�et the stress omputation beause these zones arealmost unstrained, and their weight in the overall deformation energy is therefore very small.
• If the loal deformation is su�ient ( ‖ε‖

εmax
≥ δǫ) then the elasti matrix Be is omputed byminimizing F(τ ,Be) with respet to Be.
5



Be=B0

initial guess B0

max

Be= Argmin(F( , • ))Substitution procedure

elastic material characterization

convergence?

YES
NO

, E, ,G

Be

stress minimization : = Argmin(F( • , Be))

measurements

u*, Ri

max

Figure 1: Algorithm used to ompute the elasti propertiesPlasti material properties omputationConerning anelasti behavior, we restrit our attention to an elastoplasti model with isotropikinemati hardening assoiated with a von Mises riterion. Two plasti parameters are identi�edloally: the kinemati hardening modulus k and the yield stress σ0.
0

n-1

n n+1

Be

[Bp]n

[Bp]n+1

t

s

r

Figure 2: Simple diagram (σ, ε) orresponding to the elastoplasti model.Denoting ∆γ the plasti multiplier inrement, we express the elastoplasti seant tensor A
s
pand the tangent tensor A

t
p at the step n aording to [11℄:
[

A
s
p

]

n
=

[

A
−1
e −

∆γn(σ0)

1 + 2

3
k∆γn(σ0)

P

]−1 (22)
[

A
t
p

]

n
=

[

A
s
p

]

n
−

Nn ⊗ Nn

1 + βn

(23)where Nn is a vetor linked to the normal to the load surfae, βn is a salar haraterizing thehardening, and P is a mapping matrix. Their de�nition is given in the following equations:
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βn =
2

3
k

(

1 +
2

3
∆γk

)

ξT
n Pξn

ξT
n P

[

As
p

]

n
Pξn

(24)
Nn =

[

A
s
p

]

n
Pξn

√

ξT
n P

[

As
p

]

n
Pξn

(25)
∆γ =

3

2k

(

√

3

2

α

σ0

− 1

) (26)where
ξn =

1

1 + 2

3
∆γk

(σn − Xn−1)

Xn =
1

1 + 2

3
∆γk

(

Xn−1 +
2

3
∆γkσn

)

α2 = (σn − Xn−1)
T

P (σn − Xn−1)

P =
1

3





2 −1 0
−1 2 0
0 0 6



For the �rst plasti step (i.e. step n in Figure 2 ) it is ommon to write a seant formulationof the plasti problem.Remark 1 The three equations obtained by omputing the gradient of F over A
s
p are dependentand do not allow to identify both k and σ0 on a single loading step.Consequently, an iterative algorithm involving two suessive plasti loading steps denoted nand n + 1 have been arried out. Sine all the minimization steps are now detailed, the nextparagraph will fous on the desription of the spei� elastoplasti algorithm.2.2.4 Resolution algorithmAs mentioned previously, the referene elasti tensor, noted B

r
e, is obtained on the �rst loadingstep. Then, on eah following loading step, noted n, a proedure named "omparison proedure",presented in Figure 3, aims at omparing a loal tangent elasti tensor [Bt

e]n with the refereneelasti tensor B
r
e. [Bt

e]n is obtained by minimizing G(τn, [Bt
e]n) on the load inrement n usingthe following input data : the reation inrement [∆Ri]n and the inremental displaement �eld

[∆u
∗]n. This proedure is only applied to the most strained elements for whih ‖∆ε‖

∆εmax
≥ δǫ. Forthe less strained elements, it is assumed that no loal plastiity ours and [Bt

e]n is equal to thereferene elasti tensor B
r
e.

measurements

[ Ri]n , [ u*]n

max

min(G ( n, [Be
t]n)

?

YES

NO

?

t r

e e
n

Br

e

B B

B

YESNO

elastic

loading or 

unloading

elastoplastic

algorithm

test

on each elementFigure 3: Initialization of the plasti omputation7



The elements where the omparison proedure detets any hanges in the loal sti�ness tensor(i.e. ‖[Bt
e]n−B

r
e‖

‖Br
e‖

≥ δB) are assumed to be plasti, and an elastoplasti algorithm (f. Figure 4)allows to identify separately the two plasti parameters k and σ0. Moreover, this proedure allowsto disriminate the elastially unloaded zones of the speimen from the plastially loaded onesthat an be observed under ertain onditions (Lüders bands, neking, . . . ).
plastic initialization

0 1n II

k 0)

convergence?

YES
NO

n= n

n+1 , k

n , 0

n , k
min(G ( n,[Bp

t]n))

determination of k

determination of 0

min(G ( n+1, [Bp
t]n+1)

min(F( n, [Bp
s]n))

measurements

[ Ri]n+1 , [ u*]n+1

measurements

[Ri]n , [u*]n

measurements

[ Ri]n , [ u*]nFigure 4: elastoplasti algorithmIn the �rst step of the elastoplasti algorithm presented in Figure 4, named "plasti initializa-tion", we assume that σ0 = (τn−1)II where (·)II stands for the von Mises norm. Thus, we omputean approximative hardening modulus k by minimizing G(∆τn,
[

B
t
p

]

n
), where [Bt

p

]

n
stands for theplasti tangent modulus at the step n, depending on k. This minimization requires measures of thereation inrement [∆Ri]n and the inremental displaement �eld [∆u

∗]n. The goal of this initial-ization proedure is to obtain an approximation of the bakstress Xn at step n needed in the �rststep of the iterative algorithm named "determination of k", the seond step being "determinationof σ0".
• "determination of k" : we minimize G(∆τn+1,

[

B
t
p

]

n+1
), where [Bt

p

]

n+1
stands for theplasti tangent modulus at the step n+1, depending on k. This minimization requires somemeasurements inputs (the reation inrement [∆Ri]n+1

, the inremental displaement �eld
[∆u

∗]n+1
), and the bakstress Xn previously omputed.

• "determination of σ0" : this onsists in minimizing F(τn,
[

B
s
p

]

n
), where [Bs

p

]

n
stands for theplasti seant modulus at the step n, depending on σ0. This minimization also requires somemeasurements inputs (the reation [Ri]n, the displaement �eld [u∗]n), and the previouslyestimated value of k.3 AppliationsIn this part, both numerial and experimental results are presented. In a �rst instane, the methodis tested on the basis on simulated data given by the resolution of a diret problem. Note that themeshes used for diret omputation and identi�ation are always di�erent, the �nest being alwaysthe one used for the diret �nite element omputation, in order to minimize errors on the diretproblem over errors due to the identi�ation method.In order to haraterize the spatial resolution of the method, we deided to work on a ompositespeimen made of two di�erent materials. As the solution to inverse problems are known to bevery sensitive to small perturbations on the input data [12℄, we illustrate the robustness of thismethod by studying its sensitivity study to a superimposed noise on this omposite speimen.Finally, results obtained experimentally on a similar on�guration are presented.
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3.1 Numerial identi�ation on a bi-material omposed sample
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(b) ‖ǫp‖ on Ω2Figure 5: Desription of the test (a) and equivalent plasti strain plotted with the mesh of theidenti�ation method (b).A tensile test on a bi-material sample is simulated for the loading onditions shown in Figure5a. This simulation by a 2D F.E.M. uses 90 × 60 Q1 elements. The loaded barrel is made oftwo material zones. The Ω1 zone is purely elasti and the Ω2 zone, less sti�, is elastoplasti withlinear kinemati hardening. This test is highly penalizing due to strong strain gradients in theviinity of the interfae. The objetive here is to test the performane of our method in presene ofmaterial heterogeneities. Identi�ation has been performed for an ideal on�guration, where theboundary between material domains Ω1 and Ω2 is oinident with the meshing of the identi�ationproedure.3.1.1 Noise sensitivity in elastiityThe robustness of the method is, in a �rst step, tested for the elasti identi�ation. The mesh ofthe identi�ation method uses 20×20 material zones orresponding to 41×41 displaement nodes.A Gaussian white noise is added to the assumed-to-be-exat displaements obtained by the diretF.E.M. omputation. Denoting (ε1, ε2, ε3) = (εxx, εyy, εxy), we de�ne a noise ratio rnoise on thestrain:
rnoise = max
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) (27)where εi stands for the ith omponent of the strain. The strain omponent may be derived eitherfrom the displaement u
∗
ref issued by diret F.E.M. omputation, or by noisy displaement u

∗
noisy .The sensivity study has been performed for a rnoise ratio varying from 0 to 50%. The maximumratio rnoise is assoiated with a peak-to-peak noise amplitude of 4× 10−4 on strain measurement,whih is two times higher than the experimental resolution on strain measurement [1℄. The evolu-tions of the absolute error on the identi�ation of the parameters E et ν using an isotropi elastimodel are progressive (f. Figure 6). The maximal error is worth 20 GPa for Young's modulus,whih gives a relative error inferior to 20%. For the Poisson ratio, the maximal error is worth 0, 07i.e. a 24% relative error.
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Figure 7: Young modulus identi�ed from noisy data with rnoise = 50%3.1.2 Plasti parameter distributionsFirst, we present some results obtained from displaements diretly given by simulation withoutsuperimposing any noise. The material parameters are, again, identi�ed on 20×20 material zones.The barrel does not plastify uniformly over Ω : the Ω1 domain remains elasti and the plastiityheterogeneously develops over Ω2 (f. Figure 5b). The values of riteria δǫ and δB are 5% for both.Using these riteria, plastiity is only identi�ed on the elements loated within the Ω2 domain.Consequently, and as the interfae between the material zones is oinident with the meshing ofthe identi�ation method, the interfae between Ω1 and Ω2 is perfetly attained.Figure 8 illustrates σxx tensile stress distributions at the end of the �rst plasti step. Thestress presented in Figure 8a is obtained by solving the diret problem, whereas the one given inFigure 8b has been identi�ed by the inverse method. We notie a good similarity between thedistributions, and the orders of magnitude for this stress omponent. In partiular, the stressgradients are orretly transribed in the neighborhood of the interfae.10
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3.1.3 Noise sensitivity in plastiity
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1 2(b) error on σ0 in %Figure 10: Relative errors in determining the plasti parameters identi�ed from noisy data(rnoise = 25%)A noise sensitivity study similar to the one performed in the elasti ase has been performed forthe simulation already presented in Figure 5. On eah loading step, a Gaussian white noise isadded to the simulated displaement inrement. To failitate a omparison with the elasti study,we adopt the following de�nition of the noise ratio rnoise:
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). (28)On eah loading step (elasti step, and plasti n and n+1 steps) we add a displaement �eld relatedto similar rnoise ratio ranging from 0 to 50%. Thus, the plasti identi�ation starts from an elastiset of parameters identi�ed with noisy data. The orresponding error on the elasti parametersused as inputs in the plasti identi�ation is given in Figure 6. In Figure 10, we observe that theerror distribution on the identi�ed parameters shows a similar pattern as the one orresponding to"perfet" data. To isolate the in�uene of superimposed noise from this systemati bias, we havehosen to represent (f. Figure 11) the di�erenes between the values identi�ed using noisy and"perfet" data. The error assoiated with superimposed noise is randomly distributed (its meanvalue remains lose to zero) and the standard deviation inreases linearly with noise amplitude,as observed in the elasti ase.
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3.2 Experimental identi�ation3.2.1 Desription of the speimen and its material propertiesThe experiment presented in this part was hosen to reprodue the previous numerial simulation.The sample is a thin �at dog-bone speimen mahined in a 2.5 mm thik plate of DP60 steel. Thebimaterial behavior is arti�ially rereated by a thikness variation : the thikness of the zonewhere x ∈ [−28 mm, 0] was symmetrially redued to 0.8 mm (f. Figure 12).In the identi�ation proedure, thikness is supposed to be onstant on the whole speimen(i.e. 0.8 mm). Thus we expet to identify the referene properties in the thin zone, and propertiesof a sti�er material in the thiker zone.
x

y

Figure 12: Shape of the speimen (dimensions in mm)The Ω identi�ed zone onsists of a square (20 mm× 20 mm) entered on the speimen meshedby 10 × 10 square elements. We assume the existene of a plane stress state, negleting the out-of-plane e�ets indued by the thikness disontinuity. Any triaxial e�ets in the viinity of thedisontinuity would naturally a�et the identi�ed parameters.A preliminary tensile test on a speimen of the same steel, the same geometry but with aonstant thikness of 2.5 mm has been performed to obtain the referene elastoplasti propertiesof the material. The stress-strain diagram orresponding to this test is presented in Figure 13.The �rst linear part of the diagram allows to identify the elasti parameters (E = 207 GPa,
ν = 0.27). From this diagram, we obtain the following parameters of the elastoplasti model :
k = 5 GPa, σ0 = 370 MPa. On this material, the �rst stages o� the hardening are rather non-linear, and the values of the plasti parameters assoiated with a linear kinemati hardening willbe very dependent with respet to the strain levels for whih the identi�ation is performed. Forthat reason, we have loated, in Figure 13, the three strain levels used to determine the refereneplasti parameters.The loal identi�ation method is arried out on the bimaterial sample for three strain levels.These levels are obtained by mathing the maximal loal strain on the identi�ed domain with theisolated strain level on the diagram of the homogeneous tensile test.
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