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Elastoplastic Contact between Randomly Rough Surfaces
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I have developed a theory of contact mechanics between randomly rough surfaces. The solids are
assumed to deform elastically when the stress s is below the yield stress sY , and plastically when s

reaches sY . I study the dependence of the (apparent) area of contact on the magnification. I show that in
most cases the area of real contact A is proportional to the load. If the rough surface is self-affine fractal
(Hurst exponent H) the whole way up to the lateral size L of the nominal contact area, then (assuming
no plastic deformation) A � LH .
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Even a highly polished surface has surface roughness
on many different length scales. When two bodies with
nominally flat surfaces are brought into contact, the area
of real contact will usually only be a small fraction of
the nominal contact area. We can visualize the contact
regions as small areas where asperities from one solid are
squeezed against asperities of the other solid; depending
on the conditions the asperities may deform elastically or
plastically.

How large is the area of real contact between a solid
block and the substrate? This fundamental question has
extremely important practical implications. For example,
it determines the contact resistivity and the heat transfer
between the solids. It is also of direct importance for
sliding friction [1], e.g., the rubber friction between a tire
and a road surface, and it has a major influence on the
adhesive force between two solid blocks in direct contact.

In this Letter I develop a theory of contact mechanics,
valid for randomly rough (e.g., self-affine fractal) surfaces
[2]. In the context of rubber friction, which motivated this
theory, mainly elastic deformation occurs. However, the
theory can also be applied when both elastic and plastic
deformations occur in the contact areas. This case is, of
course, relevant to almost all materials other than rubber.

The contact theory can be applied to surfaces with
roughness on many different length scales. The classical
contact theory of Greenwood [3,4] (see also [2,5,6]) was
developed for surfaces with roughness on a single length
scale. Thus, in this theory the surface asperities are
“approximated” by spherical caps of identical radius of
curvature (but with a Gaussian height distribution). The
Greenwood theory has been applied to real surfaces with
roughness on many different length scales, by defining an
average radius of curvature R. However, it turns out that
R depends strongly on the resolution of the roughness-
measuring instrument, or any other form of filtering, and
hence is not unique [7,8]. The contact theory I have
developed is based on a completely different physical
approach, and gives well-defined results for surfaces with
arbitrary surface roughness.
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The basic idea behind the new contact theory is that it
is very important not to a priori exclude any roughness
length scale from the analysis. Consider a surface with
surface roughness on two different length scales as indi-
cated in Fig. 1. Assume that a rubber block is squeezed
against the substrate and that the applied pressure is large
enough to squeeze the rubber into the large “cavities” as
indicated in the figure. It is clear that even if the rubber is
able to make direct contact with the substrate in the large
cavities, the pressure acting on the rubber at the bottom
of a large cavity will be much smaller than the pressure
at the top of a large asperity. Thus while, because of the
high local pressure, the rubber may be squeezed into the
“small” cavities at the top of a large asperity, the pres-
sure at the bottom of a large cavity may be too small to
squeeze the rubber into the small-sized cavities at the bot-
tom of a large cavity. If A�l� is the (apparent) area of
contact on the length scale l [more accurately, I define
A�l� to be the area of real contact if the surface would
be smooth on all length scales shorter than l, see Fig. 2],
then I have studied the function P�z� � A�l��A�L� which
is the relative fraction of the rubber surface area where con-
tact occurs on the length scale l � L�z (where z $ 1),
with P�1� � 1. Here A�L� � A0 denotes the macroscopic

FIG. 1. A rubber block squeezed against a substrate with
roughness on two different length scales. The rubber is able to
fill out the long-wavelength roughness profile, but it is not able
to get squeezed into the small-sized “cavities” at the bottom of
a big cavity (schematic).
© 2001 The American Physical Society 116101-1



VOLUME 87, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 10 SEPTEMBER 2001
FIG. 2. A rubber ball squeezed against a hard, rough, sub-
strate. Left: the system at two different magnifications. Right:
the area of contact A�l� on the length scale l is defined as
the area of real contact when the surface roughness on shorter
length scales than l has been removed (i.e., the surface has been
“smoothed” on length scales shorter than l).

contact area (L is the diameter of the macroscopic contact
area so that A0 � L2).

From contact mechanics (see, e.g., Ref. [6]) it is known
that in the frictionless contact of elastic solids with rough
surfaces, the contact stresses depend only upon the shape
of the gap between them before loading. Thus, without
loss of generality, the actual system may then be replaced
by a flat elastic surface [elastic modulus E and Poisson
ratio n, related to the original quantities via �1 2 n2��E �
�1 2 n

2
1 ��E1 1 �1 2 n

2
2 ��E2] in contact with a rigid body

having a surface roughness profile which result in the same
undeformed gap between the surfaces.

The detailed derivation of P�z � will be presented else-
where, and here I give only the major equations. If A0
denotes the nominal contact area, the load FN � s0A0.
This load must remain unchanged as we study the contact
at shorter length scales. Consider the system at the length
scale l � L�z , where L is of the order of the diameter
of the nominal contact area. We define qL � 2p�L and
write q � qLz . Let P�s, z � denote the stress distribution
in the contact areas under the magnification z . Let us first
assume complete contact between the rubber and the sub-
strate on all length scales. We have

P�s, z � � �d�s 2 s1�x��	 ,

where s1�x� is the stress which occurs in the contact area
when the surface roughness with a wavelength shorter
than L�z has been smoothed out. Here �· · ·	 stands for
ensemble averaging, i.e., averaging over different realiza-
tion of the surface roughness profile. By expanding the
equation P�z 1 Dz , s� � �d�s 2 s1 2 Ds1�	 to linear
order in Dz , and assuming that averaging over different
regions in z are independent processes, one obtains

≠P
≠z

� G0�z �s2
0

≠2P
≠s2

, (1)
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where G0�z � denotes the z derivative of the function

G�z � �
p

4

∑
E

�1 2 n2�s0

∏2 Z zqL

qL

dq q3C�q� . (2)

The surface roughness power spectra

C�q� �
1

�2p�2

Z
d2x �h�x�h�0�	e2iq?x,

where z � h�x� is the height of the surface above a flat
reference plane (chosen so that �h	 � 0).

Note that

P�s, 1� � P0�s� ,

where we assume that P0�s� � d�s 2 s0�, correspond-
ing to a constant pressure in the nominal contact area.

Equation (1) is a diffusion type of equation, where time
is replaced by the magnification z , and the spatial coordi-
nate with the stress s (and where the “diffusion constant”
depends on z ). Hence, when we study P�s, z � on shorter
and shorter length scales (corresponding to increasing z ),
the P�s, z � function will become broader and broader in s

space. We can take into account the fact that detachment
actually will occur when the local stress reaches s � 0
(we assume no adhesion) via the boundary condition

P�0, z � � 0 .

We assume first that only elastic deformation occurs
(i.e., sY ! `). In this case

P�z� �
Z `

0
ds P�s, z � .

It is straightforward to solve (1) with the boundary condi-
tions P�0, z � � 0 and P�`, z � � 0 to get

P�z � �
2
p

Z `

0
dx

sinx
x

exp�2x2G�z �� . (3)

We consider now the limit s0 ø E, which is satisfied
in most applications. In this case, for most z values of
interest, G�z � ¿ 1, so that only x ø 1 will contribute to
the integral in (3), and we can approximate sinx � x and

P�z � �
2
p

Z `

0
dx exp�2x2G�z �� � �pG�z ��21�2. (4)

Thus, within this approximation, using (2) and (4) we get
P�z � ~ s0 so that the area of real contact is proportional
to the load. This is the reason why the friction coefficient
in most cases is independent of the load.

The theory above is valid for surfaces with arbitrary
random roughness, but I now apply it to self-affine fractal
surfaces. It has been found that many “natural” surfaces,
e.g., surfaces of many materials generated by fracture, can
be approximately described as self-affine surfaces over a
rather wide roughness size region. A self-affine fractal
surface has the property that if we make a scale change
that is different for each direction, then the surface does
not change its morphology [9]. Recent studies have shown
that even asphalt road tracks (of interest for rubber friction)
116101-2
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are (approximately) self-affine fractal, with an upper cutoff
length l0 � 2p�q0 of the order of a few mm [10]. For a
self-affine fractal surface C�q� � C0 for q , q0, while for
q . q0

C�q� � C0

µ
q
q0

∂22�H11�
, (5)

where H � 3 2 Df (where the fractal dimension 2 ,

Df , 3), and where q0 is the lower cutoff wave vec-
tor, and C0 is determined by the rms roughness ampli-
tude, �h2	 
 h2

0�2 via C0 � a�h0�q0�2H�2p where a �
1��1 1 H 2 �qL�q0�2H�. Note that for qL�q0 ø 1, a �
1��1 1 H� is independent of L.

Substituting (5) in (2), defining q � qLz and assuming
q ¿ q0 gives

G�z � �
µ

q0h0

4�1 2 n2

∂2 aH
�1 2 H�

µ
E
s0

∂2µ
q
q0

∂2�12H�
,

so that

P�z � �
4�1 2 n2�

q0h0

µ
1 2 H

paH

∂1�2 s0

E

µ
q

q0

∂H21

.

But s0 � FN�A0 so that the (apparent) area of contact on
the length scale l � 2p�q becomes

A�l� � A0P�z �

�
4�1 2 n2�

q0h0

µ
1 2 H
paH

∂1�2 FN

E

µ
l

l0

∂12H

. (6a)

If l0 � L we get q0 � 2p�L and

A�l� �
2L�1 2 n2�

ph0

µ
1 2 H

paH

∂1�2 FN

E

µ
l

L

∂12H

. (6b)

If l1 denotes the low-distance cutoff in the self-affine
fractal distribution (which cannot be smaller than an atomic
dimension), then (6) shows that the area of real contact
A�l1� is proportional to the load. If the upper cutoff length
l0 is independent of the size L of the system, then A�l1� is
also independent of L. However, if l0 � L then the area
of real contact A�l1� depends on the size L of the system,
increasing as �LH with increasing L.

Let us note that in some problems, e.g., in the contact re-
sistivity between two metallic bodies, the only thing which
matters is the area of real contact A0P�z1� for z1 � L�l1.
However, in other problems the whole function P�z� mat-
ters. This is the case in rubber friction, where viscoelastic
deformation of the rubber block on all length scales con-
tributes in an equally important manner, and where the ki-
netic friction coefficient can be written as an integral over
all z , with the factor P�z � occurring in the integrand. In
other cases, what matters is not P�z � on the shortest (cut-
off) length l1 � L�z1, but P�z � for some z , z1. This is
the case, for example, in sealing processes where a signifi-
cant proportion of the surfaces needs to be in contact [11].
In the absence of adhesion (and plastic yielding), perfect
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contact requires infinitely high pressure and can therefore
not be obtained. However, for gas leakage, the gas mean
free path length l might be an appropriate order of magni-
tude for the shortest length scale of any relevance, in which
case P�z� for z � L�l would be the important quantity to
focus on. This agrees with the general trend of experi-
mental results that leakage rates diminish with increasing
nominal contact pressure s0, but that leak tightness is a
matter of degree or sensitivity of measurement, rather than
an absolute state [11].

In the study above we assumed that only elastic defor-
mation occurs. However, the theory can be generalized
to the case where also plastic deformation occurs sim-
ply by replacing the boundary condition P�`,z � � 0 with
P�sY , z � � 0, which describes that plastic deformation
occurs in the contact area when the local stress has reached
sY . Let us introduce the functions Pnon�z� and Ppl�z �
which describe the fraction of the original (for z � 1)
macrocontact area where, under the magnification z , non-
contact, and contact with plastic yield has occurred, re-
spectively. Thus we have

Pel�z � 1 Pnon�z � 1 Ppl�z � � 1 , (7)

where Pel�z � � P�z � describes the fraction of the macro-
contact area where elastic contact occurs on the length
scale L�z . At this point we note that the present the-
ory is strictly valid only as long as j=h�x� jø1, which
is satisfied in most engineering applications. If this condi-
tion is not satisfied, the tangent area can be larger than the
projected [on the �x, y� plane] area, and the “conservation
law” (7) is broken.

It is straightforward to solve (1) with the boundary con-
ditions P�0, z � � 0 and P�sY , z � � 0 to get

Pnon �
2
p

X̀
n�1

sinan

n
�1 2 exp�2a2

nG�z ��� ,

Ppl � 2
2
p

X̀
n�1

�21�n sinan

n
�1 2 exp�2a2

nG�z ��� ,

where an � nps0�sY , and where G�z� is given by (2).
In the elastic limit, sY ! `, Ppl � 0, and Pel � 1 2

Pnon reduces to Eq. (3).
When C�q� is given by (5), the functions Pel and Ppl de-

pend only on H (or, equivalently, on the fractal dimension
Df � 3 2 H), on s0�sY , and on the plasticity index c �
�E�sY �q0h0. In Fig. 3, I show the dependence of Pel and
Ppl on the magnification z . I have used parameters which
correspond (roughly) to a cubic steel block �L � 10 cm�,
on a steel substrate. I assume s0 � 104 Pa, sY � 109 Pa,
and E � 1011 Pa. The surface roughness of the substrate
is assumed to be self-affine fractal with q0h0 � 0.001
(solid lines) and 0.01 (dashed lines). The theory does not
depend on q0 directly (but only on the product q0h0), but
if we choose the cutoff wave vector q0 � 104 m21 (corre-
sponding to the typical cutoff length l0 � 2p�q0 of order
�1 mm), then q0h0 � 0.001 and 0.01 correspond to the
116101-3
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FIG. 3. The functions (a) Pel and (b) Ppl describe the frac-
tion of the macroscopic contact area where elastic and plastic
contacts occur, when the system is studied at different mag-
nifications z . For H � 0.8, q0 � 104 m21 and q0h0 � 0.001
(solid lines), and q0h0 � 0.01 (dashed lines). Results are shown
for E � 1011 Pa, sY � 109 Pa, and s0 � 104 Pa. Note that in
the present case z � 1 corresponds to the length scale l0 �
2p�q0 � 1 mm so that the logz , 0 corresponds to length
scales l . l0, and on these length scales the solid block makes
(apparent) contact with the substrate over the whole block-
substrate interface.

rms roughness h0 � 0.1 and 1 mm, respectively. In the
calculations we used the fractal exponent H � 0.8. Note
that for the case q0h0 � 0.01 plastic deformation starts al-
ready at the cutoff length l0 � 1 mm, and on the length
scale l0�10 � 0.1 mm all junctions have yielded plasti-
cally. However, when q0h0 � 0.001 plastic yield starts
when z is of the order of a few 1000, corresponding to dis-
tances of order l0�z � 0.1 mm. On the length l � 20 Å
(corresponding to z � 3 3 105) all asperities have yielded
plastically. However, on this short length scale steel may
116101-4
be much harder than the macroscopically observed yield
stress; thus, for “real” steel mainly elastic deformation is
likely to prevail when q0h0 � 0.001.

We are at present generalizing the theory presented
above to take into account adhesion. It has already been
shown experimentally by Fuller and Tabor [12] that surface
roughness can completely remove the effect of the attrac-
tive block-substrate interaction. As described in Ref. [13],
this result can be understood if one compares the (rough-
ness induced) elastic energy Uel stored in the elastic de-
formation field at the interface, with the adhesion energy
Uad due to the attractive block-substrate interaction: when
Uel 1 Uad � 0 no “external” energy is needed to break
the block-substrate bond.
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