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Abstract

Nuclear decommissioning is a global challenge with high costs associated with it due to the hazardous environments created

by radioactive materials. Most nuclear decommissioning sites contain significant amounts of pipework, the majority of

which is uncharacterised with regards radioactive contamination. If there is any uncertainty as to the contamination status

of a pipe, it must be treated as contaminated waste, which can lead to very high disposal costs. To overcome this challenge,

an in-pipe autonomous robot for characterisation is being developed. One of the most significant mechatronic challenges

with the development of such a robot is the detection of elbows in the unknown pipe networks to allow the robotic system to

autonomously navigate around them. This paper presents a novel method of predicting the direction and radius of the corner

using whisker-like sensors. Experiments have shown that the proposed system has a mean error of 4.69◦ in the direction

estimation.

Keywords Pipe inspection · Autonomous navigation · Sensing · Feeler sensor · Decommissioning

1 Introduction

There are a large number of nuclear facilities across the UK,

some of which date back to the 1940s [1]. A commonality in

all nuclear facilities is that pipes are used to transfer radioac-

tive substances. All pipework, including scaffolding poles

in nuclear facilities, either legacy, operational or new-build,

will have to be decommissioned. Figure 1 shows a represen-

tative set of pipework in a nuclear facility. The decommis-

sioning process is long and expensive due to the hazardous

environment created by radioactive material. The current

method for characterisation is to send workers into the haz-

ardous zones to disassemble the pipework and manually
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scan it. This is not only a potential health risk but it

is also costly in both time and the secondary waste which is

generated. A low-cost robotic solution, able to both radio-

logically and geometrically characterise the pipework, could

identify uncontaminated sections which could then be dis-

posed of as free-release material, leading to significant cost

savings and reducing the time spent by the workers in haz-

ardous zones. The system will predominantly be detecting

alpha radiation, as beta and gamma could be detected from

outside the pipe and would not required an in-pipe robot.

1.1 Design Considerations

The pipe inspection robot has been designed based on the

following set of requirements:

– Operate within a 150 mm diameter pipe containing no

fluids.

– Operate in both horizontal and vertical pipes.

– Navigate pipe junctions including elbows and T-

junctions autonomously.

– Carry a payload of 0.5 kg.

The final system should also be untethered (battery

powered with wireless communications). As will be
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Fig. 1 Photo of pipework from an exemplar facility

discussed in Section 2 there are no existing pipe inspection

robots which meet these requirements, so a new robot,

‘FURO’ has been developed. While the aim of the system is

to have it untethered, there are large challenges associated

with in-pipe communications. Viable solutions to this exist

as summarised in [2], however the wireless requirements

of the robot will be revisited in further work. This paper

presents the development of the sensor package required

for the detection of corner parameters for autonomous

navigation round pipe elbows.

The paper is organised as follows; Section 2 contains a

review of the current state-of-the-art in in-pipe robots and

sensing; Section 3 introduces the hardware used. First the

pipe inspection prototype FURO, the bespoke feeler sensor

and finally the test rig set up; Section 4 presents the method

and algorithm which determines the corner parameters;

Section 5 shows and discusses the results of the experiment;

final Section 6 contains the conclusions of the report and a

short discussion on the further work in the project.

2 RelatedWorks

This Section contains an overview of current pipe inspection

vehicles, reviews different methods of cornering and

discusses in-pipe sensing robots.

2.1 Applications

Pipe inspection systems are widely used in the sewage,

water, oil and gas industries. Generally, such pipes require

scheduled inspections, as defects in the pipe can lead to

large losses [3]. Manually controlled pipe inspection robots

were successfully developed and deployed, however the

time and cost of deploying these robots meant more new

pipework was being laid quicker than it was being inspected

so a number of autonomous solutions were developed [4].

The pipe diameters inspection robots have been built

for vary, depending on the application; oil pipelines, 200–

500 mm [5]; sewage pipes, 200–300 mm [6]; and urban gas

pipelines 160–240 mm in diameter [7]. Due to the varying

size requirements different methods of locomotion within

the pipe have been used.

Pipe inspection robots are commonly split into several

categories as presented in [3]; these include multiple

locomotion methods.

A widely used method utilises a ‘Pipe Inspect Gauge’

(PIG) type robot. This is a passive system and navigates

using the flow of the fluids within the pipe [5]. Pipework

being decommissioned in nuclear facilities does not contain

any fluid, so a PIG system would be unsuitable. Therefore

an active system is required.

The common active inspection vehicles fall under

different mechanical types:

– Wheeled, propel themselves using powered wheels [8].

– Tracked / Crawler, use a caterpillar track or similar to

contact and drive along the walls [9].

– Spiral / Screw, use a single rotational motor with angled

wheels on the stator to drive the robot along the pipe [10].

– Inch-worm, mimics the inch-worm locomotion pattern

to move [11].

With a few notable additions and hybrids not mentioned

above.

Shao et al. [12] provides a comparison of in-pipe robots.

It discusses that tracked vehicles offer high mobility similar

to wheeled robots but they also have high traction which will

be advantages in an unknown environment with unknown

surfaces. Wall pressing is also a requirement for climbing

within vertical pipes [13]. The addition of wall pressing also

allows minor variation in the pipe diameter [12].

To autonomously navigate around bends appropriate con-

trol is required which varies depending on the locomotion

method of the robot. A summary of recent relevant robots is

shown in Table 1.

2.2 In-Pipe Cornering

The ability of each method to corner will be discussed in

more detail in this section. Classic spiral drive robots are

flawed in their fundamental design as their rotor is a rigid

body. A large amount of research has been done in this

area to overcome this. Methods such as using universal

joints and allowing wheel slip [10], varying attack angle

[21], and steerable drive units [20] have all been developed.

Despite these being shown to be successful their designs

are complex, making them difficult to miniaturise. The

pipework in question has an entrance size of 150 mm and a

minimum diameter of 50 mm meaning miniaturisation is an

important factor.

Inch-worm systems can provide very small packaged

sized robots, and are able to corner, if designed with a

flexible joint [11]. Inch-worm systems are generally much
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Table 1 In-pipe robots

Name Year Locomotion Type Control Junction Dection Used Sensors

Lu et al. [14] 2015 Walking – None –

Kakogawa et al. [15] 2015 NA – Pipe junction and corner direction Camera and LSA

Tomita et al. [11] 2015 Inch-worm Manual None –

Nagase and Fukunaga [16] 2016 Tracked Manual None –

Zhang and Wang [9] 2016 Tracked Manual None –

AIRo-II [17] 2016 Wheeled/Snake Manual None –

Tamura et al. [18] 2016 Wheeled Manual Pipe Junctions Laser

Honeybee [19] 2017 Magnetic Manual None –

Li et al. [20] 2017 Spiral – None –

Li et al. [21] 2017 Sprial Manual None –

Savin et al. [22] 2017 Walking – None –

Wahed and Arshad [13] 2017 Wheeled Manual None –

MRINSPECT VI [8] 2017 Wheeled – Pipe junction and corner direction Camera, PSD

MRINSPECT VII [23] 2017 Wheeled Manual None –

IPR-D300 [24] 2017 Tracked Autonomous Inside of corner US

NIRVANA [25] 2018 Wheeled Manual None –

Kim et al. [26] 2018 Wheeled – Pipe junctions and corner direction 2D Lidar

slower and less energy efficient that an equivalent tracked

or wheeled robot [12].

Some wheeled and tracked systems use their design to

allow them to corner. Both NIRVANA [25] and MRIN-

SPECT VII [23] use multi axis gear mechanisms that allow

for the wheels to spin at different speeds, providing differen-

tial drive without the need of controlling individual motors.

This solution contains very complex gear mechanisms that

would be very difficult to miniaturise for a 50 mm pipe

making it unsuitable for this application.

A hybrid wheeled/snake type vehicle such as the AiRo-

II [17] is able to pass around the corner without the need

for differential drive. Despite having the advantage of easier

cornering it is a less stable platform for a sensitive sensor

package as the body is not in a fixed position within the pipe

and can be difficult to select a direction at a junction.

A simplistic tracked robot from Nagase and Fukunaga

[16] requires only one motor for navigating junctions,

vertical sections and variable pipe diameters but it is unable

to actively chose direction so is unsuitable.

Walking robots such as Lu et al.’s [14] proposed design,

offer high mobility and are able to navigate complex

pipe layouts. These systems require complex control and

path planning [22]. They also provide slower movement

compared to wheeled and tracked robots.

Wheeled and tracked type robots with wall pressing

require differential drive to allow them to corner [12].

Determining the control action required to corner can be

complex and multiple approaches have been taken [9, 27–

29]. These all assume that the parameters of the corner are

known, for this application the pipework is unknown. To

allow the system to be autonomous there is a clear need for

sensing the parameters of the junctions of the pipework.

2.3 In-Pipe Sensing

In-pipe sensing is used for two different purposes; envi-

ronmental observations or robot navigation. This section

discusses the methods used to detect and characterise the

pipework geometry for navigation.

Tamura et al. [18] utilise a ‘Charge-Coupled Device’

(CCD) camera with ring type laser to detect junctions

and defects within the pipe, however they are not used

to determine the parameters of the junctions. Kakogawa

et al. [15] use a ‘Laser Spot Array’ (LSA) and camera.

They assume the radius of the pipe is known and state the

accuracy of the system is inadequate, but they are able to

identify junction types.

The IPR-D300 [24], has a more scalable solution which

does not involve detecting the corner parameters. Their

robot is a tracked, wall pressing robot with three drive units.

On each drive unit there is an ‘Ultrasonic’ (US) sensor

placed pointing at the wall. Their control for the corner

involves halving the speed of the motor which detects a

distance over a certain threshold, i.e. slows down the track

on the inside of the corner. This solution would aid in the

turning process but has a poor resolution of direction.

Kim et al.’s [26] robot uses a 2D LIDAR to scan the

elbows and T-junctions, it is able to determine corner

direction with a mean error of 0.64◦; this test was done on
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two different corner angles. Despite the result being

accurate the sensor its self has a package size of 75 × 60 ×

60 mm which is too large for the 50 mm pipe.

The most advanced in-pipe autonomous robots for an

unknown pipe are the MRINSPECT series [8], they utilise

‘Position Sensitve Devices’ (PSDs), lasers and a CCD

camera to provide corner directional information. Early

versions used a CCD camera to detect the patterns of shad-

ows for identifying landmarks within the pipe [30]. Using

the PSDs they are able to detect corner direction and distin-

guish between a T-junction and mitre [31]. The camera and

laser system is also able to determine features ahead in the

pipe, including corner direction [32].

Both the PSDs and camera work in fixed radius pipe

networks, although a method determining radius has been

proposed [8]. This system has a mean error of 2.84◦ for pre-

dicting the angle of the corner direction. This and Kim et al.

[26] will be used as benchmark for the sensor suit being

developed.

Despite MRINSPECT’s [8] method being computation-

ally light, the requirement of a camera and imaging process-

ing would add an additional unwanted load to the system.

They also utilised 6 - 8 ‘Infrared’ (IR) sensors for the PSD

system this would adding further load in sampling and pow-

ering the sensors themselves. Their IR sensors also have a

minimum range of 20 mm meaning they would be unsuit-

able for the 50 mm diameter pipe as for large segments

of the junctions, they would be out of range. This method

is proven to be successful and suitable for their applica-

tion, however this paper will review an alternative method

for detection which will be better suited for the intended

application of 50 mm pipework.

2.4 Contribution

There are very few sensor packages that are able to detect

the required corner parameters, none of which are suitable

for the proposed application. The main required parameters

to be detected are the corners major radius and the direction

the corner turns. This paper presents a bespoke sensor that

can be used to detect both the corner direction and radius to

allow autonomous navigation in an unknown pipe network.

The main focus being corner direction as we will assume

Fig. 2 Global and local axes

the pipe elbows fit to a standard short elbow [33] and thus

the radius is fixed as the diameter of the pipe. Testing with a

varying radius and full autonomous cornering will be visited

in further work.

The contribution of this paper is the development of a

competitive sensor for the detection of the parameters of an

elbow for the autonomous navigation system.

2.5 Nomenclature

Due to the various required parameters the following defines

the main variables used for the rest of the paper.

The axes shown in Fig. 2 are the local and global

coordinate frames for the robot and corner. The local

coordinate frame, x, y and z are referenced to the centre

of the inspection robot itself. In this case the x axis points

in the direction the robot is travelling and the z axis points

in the direction of the first ‘Drive Unit’ (DU) on the robot,

usually coloured red. The global coordinate frame is defined

as X̂, Ŷ and Ẑ, referenced to the elbow. Ẑ points in the

direction the corner curves in, and X̂ points into the back of

the corner.

Figure 3 shows a pipe elbow with the variables defined.

R is the major radius of the elbow also called the corner

radius; r is the elbow minor radius or pipe radius; φ is the

corner angle; the difference between the local robot axis, z,

and the corner axes, Ẑ is the corner direction, denoted as θ .

A corner direction of θ = 0 would mean the z and Ẑ axes

are aligned. As R is assumed to be known, θ is the crucial

parameter required to be detected for estimating accurate

velocities for the DUs.

Other variables include, δ which is the offset of the DUs

in relation to each other (this is fixed on the prototype as

±120◦ and is referenced from z); αi is the angle of feelers;

Fig. 3 Corner parameter definitions
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ll is the height of the feeler mounting point from the center

of the robot and lf is the length of the feeler.

3 Hardware Overview

This section servers as an introduction to the prototype

inspection robot FURO, which is the use case for the detec-

tion system; the bespoke sensor developed for detection

elbows; and the custom designed test rig for reliable testing

of the sensor package.

3.1 FURO Prototype

The prototype has been designed to meet the requirements

presented in Section 1.1. Once the designs have been tested

and verified, the prototype will be miniaturised to meet the

full range of pipe sizes 50–150 mm.

The prototype developed is shown in Fig. 4 with the key

features labelled. FURO utilises three DUs each capable of

producing 4 Nm of torque to drive the system along the

pipe with the additional payload requirement of 0.5 kg. It

nominally operates with a 150 mm diameter pipe however a

lead screw mechanism along the centre of the robot provides

the ability to expand to varying sizes of pipework (126 -

175 mm). This mechanism is also used for active wall

pressing and can be used to find the pipe’s minor radius,

r . As discussed in Section 2.1, wall pressing allows FURO

to be able to overcome vertical sections of pipework. On

FURO the feeler mount height, ll = 0.053 mm and has

DU offsets of δ = 120◦. FURO is controlled using ROS

[34], with the controller being hosted on a PC. For the final

deployable system the controller will be on-board however

Fig. 4 Labelled photo of FURO prototype with early feeler sensors

it has currently been kept separate for ease of prototyping.

The current working system architecture is shown in Fig. 21.

3.2 Feeler Sensor

To enable autonomous navigation and characterisation of

pipework bends, a set of mechanical feelers are mounted on

the front of the robot. They utilises a rotary ‘Potentiometer’

(POT) to measure the angle, α, of the feeler as it travels

along the pipe ahead of the robot. Figure 5 shows a

simplified diagram of the design.

In addition to the feeler, an on board encoder mounted

on the passive wheel of the DU is used to give the distance

travelled within the pipe. The contact point of the feeler is a

passive roller ball to remove any effect of the lateral forces

damaging the feelers. A spring is used to pull the feeler onto

the wall such that it has a constant contact and tracks the

contours of the walls.

Three feelers are mounted ahead of the DUs of the

robot, displaced at 120◦ (Fig. 4) to detect all possibilities

of junctions. Due to the low tolerances of components,

there is error between the output of the three feelers for the

same angle of the POTs. To overcome this issue, the feelers

have been individually characterised and a look up table of

voltage output from the potential divider and input angle is

used for each feeler to give a more accurate angle output.

The length of the feelers (lf ) was calculated by modelling

the detection angle range for differing lengths as shown in

Fig. 6.

The largest change in α for a short elbow, shown in

Fig. 6, was estimated to be 66.14 mm. The manufactured

length is rounded to the nearest mm giving a feeler length of

lf = 66 mm. The effects of manufacturing tolerances have

been review later in the paper.

3.3 Experimental Set up

The experiment presented in this paper is designed to

give feeler data for an accurate prediction of the corner

parameters. The test pipe consists of a 150 mm diameter

section of straight pipe with a coupler to an elbow with

R = 150 mm.

Fig. 5 Simplified diagram of feeler
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Fig. 6 Plot of angle vs feeler

length

The test rig is designed to fit within the test pipe and is

locked in place with a retaining pin. This holds the rig with

the feelers in line with the entrance to the pipe. A linear

translation motor drives a plate with the feelers attached to

it into the corner pipe in 0.01 mm increments controlling the

variable x. The step distance of the test rig is smaller than

the actual application, however this is used to characterise

the feelers and the method will still be applicable to the

deployable robot. The translating plate is mounted inside

a large bearing which is able to rotate the whole assembly

within the pipe. The rotation controls the direction of the

corner in relation to the robot, θ . A motor drives this rotation

with an accuracy of 0.54◦. A simplified diagram of the

experiment is shown in Fig. 7.

Experimental Procedure The rotation motor holds the

rotating section at the specified angle (θ ). For each position

θ the feeler sensors are stepped into the corner using the

linear translation stepper motor. On each step, the feeler

angles (αi) are sampled and logged. This process is called a

pass and is repeated a minimum of fives times.

Once it is complete, θ is then incremented and the passes

are repeated. θ was varied in increments of 10◦ between

±180◦ to give full 360◦ coverage of the feelers within the

pipe.

Fig. 7 Simplified diagram of test rig

The raw data was then run through the corner prediction

algorithm in Section 4. The prediction was compared

with the actual corner direction and radius to evaluate the

performance. The velocities could then be calculated for the

three DUs, which is the final output of the system to allow

for autonomous navigation around a corner.

4 Corner Parameter Prediction

This section presents the proposed method for predicting

the corner direction, θ , which is the primary contribution

of this paper. It also presents an extension to the method to

determine the corner radius, R, for the case that the robot is

not travelling in a standard short elbow.

It can be seen in Fig. 5 that the feelers are mounted in

front of the DUs. Due to this the feelers enter the corner

ahead of the drive units. During that time, the mounting

point of the feeler (on the DU) is in the straight pipe and the

feeler arms are passing through the corner. The velocities for

the DUs need to be calculated before they enter the corner.

This gives a region in the elbow in which the prediction

needs to be made. This region is called the corner entrance.

The entrance is shown in grey in Fig. 8. For the current

feeler length the entrance distance is 62 mm.

As the feelers pass into the corner, through the entrance,

all three are sampled. The combination of the three samples

is S. These samples are taken multiple times (S1, S2, ...,

Sn) as the feelers progress into the corner, see Fig. 8. The

number of samples taken vary dependent on the sample rate,

the greater the number of samples the greater the confidence

in the result. The algorithm requires a minimum of two

samples to be taken in the corner. The final sample Sn is the

sample at the end of the entrance (62 mm into the corner),

and the first S1 is the start of the entrance. The algorithm is

triggered by a change in the feelers middle point greater than

a predetermined threshold. This threshold is determined
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Fig. 8 Pipe entrance (grey) for FURO in short elbow with samples S

labelled

by the noise characteristics of the feeler sensors, for the

presented set up the trigger value is 1 mm. Previous to this

all the data will be stored such that the S1 can be found. Sn is

determined by finding the distance travelled since S1 using

the on-board encoder on the FURO prototype.

4.1 Corner Direction

The direction, θ , trying to be estimated is the angle between

the robot and the corner’s z-axes. This direction is crucial to

determine the individual velocities for the motors.

The process of predicting the direction has been split

into three stages, Stage I: Sampling and Kinematics,

Stage II: Sample Combination, Stage III: Calibration and

Final Prediction. Note all common variables are defined in

Section 2.5. The full process is summarised in flow chart,

Fig. 20 in the Appendix.

4.1.1 Stage I: Sampling and Kinematics

In the first stage data is collected from all of the feelers.

The data is taken over multiple samples (S1, S2, ..., Sn) as

the feelers travel through the corner entrance, Fig. 8. Note

the sample distance in Fig. 8 is not in scale to the actual

experiment. The method of dealing with a single sample will

be explained in more detail in the following. The method is

the same for all the samples taken in the corner.

The three feeler sensors are sampled and the raw voltages

from each sensor is converted to an angle, αR, αG and αB ,

these are the feeler angles at a single sample point. These

three angles can be entered into the kinematic model to

give the end coordinates of the three feelers, PR , PG and

PB , these are the contact points of each feeler with the

elbow wall. Each end point has it’s own set of coordinates

in the robots local coordinate frame, PR = (xR, yR, zR),

PG = (xG, yG, zG) and PB = (xB , yB , zB).

A simplified diagram of the kinematic model is shown

in Fig. 9. ll is defined by the mounting height of the feelers

and the radius of the pipe, for the FURO prototype in a pipe

with r = 0.075 m, ll = 0.053 m.

Using the diagram the kinematic model can be deter-

mined as follows

xi = lf sin αi, (1a)

yi = (ll + lf cos αi) sin δi, (1b)

zi = (ll + lf cos αi) cos δi; (1c)

where i = R, G or B depending on if the feeler angle as

been entered from the Red, Green or Blue feeler.

Once the end point of the three feelers have been found

they can be added to give their middle point, Pf m. The

central point can be found by finding the mean of the end

points as shown in the following equations

ȳ =
yR + yG + yB

3
, (2a)

z̄ =
zR + zG + zB

3
, (2b)

Pf m = (ȳ, z̄). (2c)

Figure 10 shows the local (y, z) plane of the robot with

the feeler end locations, feeler centre point and robot centre

labelled.

The next step is to find the change between the feeler

central point, Pf m, and the robot centre, Pc. This will give

Fig. 9 Kinematic model of feelers
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Fig. 10 Feeler end points layout in (y, z) plane

the overall change in y and z for that sample. The changes

dy and dz are given by

dy = Pf my − Pcy , (3a)

dz = Pf mz − Pcz . (3b)

This process is repeated for each new sample of the

feelers to give a change in y and z for each sample. As the

feelers travel further into the corner entrance, it is expected

that dy and dz will increase as Pf m moves further away

from Pc and more towards the direction of the corner. This is

because the deeper they go the more the pipe itself changes

thus giving a greater angle change to the feelers. Figure 8

shows the change in the pipe as the samples progress into the

corner entrance. It should also be noted that as each sample

sees a single slice of the corner, the shape tends from a circle

in the first sample, S1 to an ellipsoid like shape in Sn (shown

in Fig. 13).

4.1.2 Stage II: Sample Combination

The second stage of the corner direction prediction is the

combination of the previous samples (shown in Fig. 11) to

give a single angle output.

Their change, dy and dz is summed giving a total dis-

placement in y and z over all the samples for the direction.

For the real system, combining them in this method would

allow for the rejection of small errors in the changes, as the

overall change would be in the corner direction. The sum of

the changes are denoted by Dy and Dz and given by

Dy =
∑

dyS1
+ dyS2

... + dySn
, (4a)

Dz =
∑

dzS1
+ dzS2

... + dzSn
. (4b)

Fig. 11 Sample changes in (y, z) plane

Once the total changes in y and z has been found, they

can be used to find the angle, θf m. Figure 12 shows the

summed samples and identifies θf m. As a result, the angle

θf m is given by

θf m = arctan2(Dy, Dz), (5)

where arctan2 is the four-quadrant inverse tangent.

Simulations were run to test the method and it was

found that there was a clear correlation between the

estimated, θf m, and the actual, θ , direction. This correlation

is independent to each estimate and can thus be corrected

for in the final stage.

4.1.3 Stage III: Calibration and Final Prediction

The final stage is the calibration of the angle, θf m to produce

an accurate estimation of the angle, θ . Figure 13 shows the

final sample Sn for a simulated corner. The feeler layouts,

feeler central point and robot centre are shown. The need

for calibration of the angle, θf m, can also be seen with the

difference between θf m and θ .

Fig. 12 Summing sample changes in (y, z) plane



J Intell Robot Syst (2019) 95:527–541 535

Fig. 13 Diagram of leg layout and robot and feeler centre points

As discussed previously, the value of θf m and the corner

direction, θ , are independent i.e. any one value of θf m

corresponds to a single value of θ . Due to this it can be

calibrated for.

To calibrate for the difference between the measure-

ments, curve fitting was used to best approximate the

function. This was done using a sine function and it was

reviewed for the case with R = 150 mm, Fig. 14. The

following approximation of θ was found

θ = θf m + 13 sin(3.0184θf m). (6)

It can be seen from Eq. 6 that the variable effecting the

phase of the sin function is very close to three. This is related

to the the three drive units in the pipe. The response from

the feelers will repeat every 120◦ and the factor will be

treated as 3 from this point. The discrepancy is due to the

assumption made with this method; the feelers stay in the

same x-plane when travelling through the corner.

Fig. 14 Empirical approximation for calibrating θf m

As a result, the calibrated angle for the corner direction

is given by

θ = θf m + 13 sin(3θf m). (7)

This method offers a light-weight prediction with a

maximum systematic error (ǫSmax) of less than 2◦.

4.2 Corner Radius

A method of extending the corner direction to also

determine the major radius, R, is also proposed. The process

of predicting R utilises the ‘Intersecting Chords Theorem’

(ICT). This theory, with some manipulation, allows the

radius of a circle to be determined from a chord across it.

Following [35], the radius R of a circle with a chord of width

W and height H is defined by

R =
H

2
+

W 2

8H
. (8)

As the feelers take multiple samples through the corner

entrance, Fig. 8, the change in the x-axis is also recorded,

dx . To apply this to the ICT, dx is used as half the cord width

W . To give a heigh from the cord, the final sample taken in

the corner entrance can be used, Sn = (dySn
, dzSn

) to give a

magnitude, dyz, to that point from the robot centre, PC , i.e.

dyz =

√

d2
ySn

+ d2
zSn

. (9)

As the change has already been calculated for the corner

direction this requires no more sensing of the feelers. For

Fig. 15 Using intersecting chords theorem to determine corner radius
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this application, dyz is used as H . Substituting the values

and rearranging (9) gives the following equation to calculate

the radius, R:

R =
D2

x + D2
yz

2Dyz

. (10)

Figure 15 shows the method of applying the feeler data to

the ICT.

The radius prediction was simulated to prove the

method’s feasibility and was found to provide a satisfactory

result.

4.3 Drive Unit Velocities

Once all the information has been measured and calculated,

the drive unit velocities can be determined. To start, the

radii of the feeler paths, RR , RG and RB are calculated. The

first step is finding the path length required for each of the

drive units. It is initially assumed that the bends are all 90◦

elbows, φ = 90◦. Figure 16 shows the geometric layout of

the three DU’s path lengths, lpathR
, lpathG

and lpathB
.

Using Fig. 16 the equations for the path radii, RR , RG

and RB can be found as follows

Ri =
√

(R − r cos(θ + δi))2 + (r sin(θ + δi))2, (11)

where i = R, G or B. Once the radii of the path is know,

the path length, lpathi
, can be calculated,

lpathi
= Riφ. (12)

Fig. 16 Calculating radii

From the path lengths the individual velocities can be

determined, using the average required velocity, Va as a

benchmark. Va = 10 mms−1 and the centre has radius R =

150 mm, giving a path length, lpathc = 0.236 m. This means

the required turning time to is t = lpathc/Va = 23.56 s.

This can be used to determine the other velocities for their

varying path lengths. Knowing the path lengths vary due

to their radii, the prior steps of determining path length

and time can be negated as they are constant across all

three DUs. This allows the radii to be used to give a ratio

with the centre radius which can be treated as a multiplier

for velocity to give the DU speeds. This also removes the

requirement to know φ if exit conditions are known. The

velocities for the drive units, Vi can be found using

Vi = Va

Ri

R
. (13)

These velocities can then be set for the DUs to allow the

robot to autonomously navigate around the corner.

5 Results and Discussion

This section reviews the results taken from the feeler rig

then follows with a discussion. The experimental method

used to gain the data is explained in Section 3.3.

5.1 Results

First a single pass of data is reviewed, then the full set of

results are presented.

Single Pass The selected set of data for detailed investiga-

tion is taken from the θ = −70◦ set, as the results for this

angle are the closest to the mean error and can be viewed as

representative of the full data set.

Figure 17 shows the simulated progression of the end

points of the three feelers at θ = −70◦. Let PiS1
be the end

point of the Red, Green or Blue Feeler at the start of the

Corner Entrance and PiSn
be the end point of the Red, Green

or Blue Feeler at the end of the Corner Entrance.

It can be seen that the for the Blue Feeler, the end point

(PB ) moves closer to the center of the robot (Pc) increasing

the feeler angle by a large magnitude. For the Red Feeler

(PR), the movement is away from Pc decreasing the feeler

angle but with a small magnitude. The Green Feeler end

point (PG) also moves away from PC decreasing the feeler

angle, but with a larger magnitude than the Red Feeler. It

should be noted that as the selected θ = −70◦ contains 10

passes into the corner.

Figure 18 shows the raw data from one of the passes (pass

5). It can be seen that it is very noisy, however there is a
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Fig. 17 Leg layout of feelers at start (S1) and end of corner (Sn)

entrance for θ = −70◦

trend in direction for each feeler angle as the distance into

the corner increases. The Blue Feeler has a large positive

change in angle (αB ), the Red Feeler has a slight decrease in

the angle (αR) and the Green feeler has a decrease in angle

(αG), which is larger than the Red Feeler. The general trends

from this data match the expected changes shown in Fig. 17.

Passing the full set data at θ = −70◦ through the

presented algorithm from Section 4.1, the final prediction

of corner direction and radius can be found, as shown in

Table 2. The bold row is the prediction from the feeler

angles presented in Fig. 18.

The average estimation across the multiple passes is

−65.06◦ with a range of 4.91◦; this gives an mean prediction

error of 4.94◦. The radius target is 0.1524 m, the average

prediction is 0.1522 m. The predicted corner direction for

Table 2 Predicted angles of the multiple passes for θ = −70◦

Predicted Angle Predicted Radius

Pass Degrees m

1 −66.05 0.1524

2 −65.16 0.1522

3 −62.97 0.1521

4 −65.12 0.1523

5 −65.09 0.1522

6 −63.49 0.1522

7 −66.61 0.1523

8 −63.52 0.1521

9 −67.88 0.1523

10 −64.74 0.1522

Average −65.06 0.1522

Pass 5 is propagated through to the velocities using the

equations presented in Section 4.3; for this an average speed

of Va = 10 mms−1, a fixed radius of R = 0.15 m and

a φ = 90◦ elbow. The comparison of the simulated and

estimated velocities are shown in Table 3.

Expressing the difference between the actual and predicted

path lengths gives, dlpathR
=0.0064 m, dlpathG

=−0.0064 m

and dlpathB
= 0.0006 m. This shows the maximum distance

a single DU needs to compensate for is 6.4 mm.

Full Data Set For each value of θ in increments of 10◦

between −180◦ to 180◦, there are a set of multiple passes

of feeler data. To display this data, the mean prediction for

each θ has been plotted in Fig. 19 with error bars for the

minimum and maximum prediction for each set.

It can be seen that the predicted values follow the target

data; the mean absolute error in the direction prediction

Fig. 18 A single pass (pass 5) of

raw feeler angle data at

θ = −70◦
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Table 3 Comparison of simulated and estimated velocities at θ = −70

Velocities

Simulated Calculated

mms−1 mms−1

VR 9.53 9.1

VG 7.79 8.22

VB 14.95 14.99

is ǭθ = 4.69◦. This metric is used to allow it to be

compared with MRINSPECT VI [8] which is being used as

the benchmark for this system. To see the impact the error

has on the output of the system, the DU velocities will be

calculated.

The radius prediction was found to have a mean absolute

error of ǭR = 0.91 mm over all the samples.

The mean error in direction is propagated through to the

DU velocities. Using the method presented in Section 4.3

ǭθ , the path lengths of the DU can be calculated and the error

between the actual and predicted values can be found. For

ǭθ = 4.69◦ with corner parameters R = 0.15 m, φ = 90◦,

gives the mean error in path length of ¯ǫlpath
= 3.9 mm.

Calculating velocity with an average of Va = 10 mms−1,

the mean absolute velocity error is ¯ǫV = 0.2605 mms−1.

5.2 Discussion

The changes in the raw feeler data from Fig. 18, follows the

expected change for the feeler angles. This shows the basic

principle of the method is valid and the change in direction

can be detected. The full set of data shown in Fig. 19 shows

that the trend of the predictions follows the target angles

but there are errors present in the predictions. The largest

distance a single DU has to overcome from the mean error is

¯ǫlpath
= 3.9 mm. This value is minimal and can be rejected

due to the robustness of the prototype with a slight slippage

of the tracks on the pipe. Comparing this to the simulated

results the expected error is ǫSmax = 1.78◦ which is lower

than the measured data.

The results show the method is viable for estimating

corner direction but could be improved. The error in

the measurements is due to the low cost POTs used for

measuring the angle. These provide noisy data and require

lengthy individual characterisation as the tolerances in the

components cause their resistance to vary across the three

feelers. Even with the characterisation there is still a large

amount of noise in the data from the sensors.

As the three feelers are at a fixed offset to each other of

120◦, if the sensors were ideal and have clean responses,

the output of feelers and thus error in the prediction would

repeat every 120◦. It can be seen in Fig. 19 that the areas

where there are large errors, such as θ = 80◦, the error

is not repeated at ±120◦ from it, −40◦. This shows the

errors are not due to prediction method but due to poor

readings from the sensors themselves. Improvements could

be made by replacing the low-cost sensors with higher end

encoders. This would allow the position of the encoder

to be entered straight into the kinematic model meaning

the detection method itself is still valid but improving the

detection mechanism.

Despite the detection method being developed with the

FURO prototype as the use case, it is applicable for any wall

pressing in-pipe inspection vehicle the requires parameters

for the corner to be determined.

5.3 Effect of Manufacturing Tolerances on Prediction

The effects of manufacturing tolerances on the length of

the feeler was reviewed to see the effect this would have

on the final output of the system. The target length for

manufacturing was taken as 66.14 mm with the feeler’s ideal

length of 66.14 mm. Reviewing the worse case errors in

Fig. 19 Mean predicted angles

vs target angle
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manufacturing the maximum and minimum possible feeler

lengths were found to be lfmax = 66.52 mm and lfmin
=

65.68 mm. Propagating these values through the system and

reviewing the worst case application of two feelers at length

lfmax and one feeler at length lfmin
led to an absolute mean

error in the output of 4.19◦. This includes the maximum

simulated error in the method of ǫSmax = 1.775◦. Due to

this variation and the probability of all this case occurring

being small, the effect of the manufacturing tolerances in

predicting corner direction will be negligible.

5.4 Comparison Other Detection Systems

The MRINSPECT VI robot [8] and Kim et al.’s system [26]

are being used as the benchmark for this prediction, they

have a mean error (ǭθ ) of 2.84◦ and 0.64◦ respectively in

their prediction. Comparing this to the results presented in

Section 5, the mean error of the real system is ǭθ = 4.69◦

which shows that both the sensor suits have a more accurate

corner detection. However the aim of this task was to make

a comparable prediction method which is scalable for use

within a 50 mm pipe, and which is computationally cheap

and has a low system load. In comparison to the CCD

camera and bank of IR sensor required by MRINSPECT

and the 2D lidar required by Kim et al., this aim has been

achieved.

5.5 Scalability

The detection method is simulated and tested at the 150 mm

size. This section applies the same simulations to the 50 mm

pipe to show the method is scalable. The 50 mm pipe has

an optimal feeler length of 23.06 mm for maximum change

in it’s angle (α) in a short elbow with scaled dimensions

for the prototype. Applying the algorithms presented in

Section 4, the mean error in direction and velocity were

found. The miniaturised system has a ǭθ = 1.81◦ and

¯ǫV = 1.10%. This shows the method is applicable to both

the 150 mm and 50 mm diameter pipes and the detection

method is scalable.

6 Conclusions

This paper presents a novel method of predicting the para-

meters of an in-pipe elbow within an unknown pipe net-

work. It achieves this using three bespoke feeler sensors and

algorithm to detect corner direction with a mean error 4.69◦.

Further work on this method includes the addition of closed

loop control once the robot is in the corner to correct for any

error in the set velocities thus allowing better rejection of

any error in the prediction. One final extension is the testing

of the radius prediction on different radius bends.

Acknowledgements This project is supported by the Engineering and

Physical Science Research Council (EPSRC) Project Ref: 1636964

and Sellafield Ltd.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix

Fig. 20 Corner prediction flow chart

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


540 J Intell Robot Syst (2019) 95:527–541

Fig. 21 System architecture diagram
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