
Election Verifiability for Helios under Weaker Trust
Assumptions�

Véronique Cortier1, David Galindo1, Stéphane Glondu2, and Malika Izabachène1,3

1 LORIA - CNRS, France
2 INRIA Nancy Grand Est, France

3 École Polytechnique Féminine, France

Abstract. Most electronic voting schemes aim at providing verifiability: voters
should trust the result without having to rely on some authorities. Actually, even
a prominent voting system like Helios cannot fully achieve verifiability since a
dishonest bulletin board may add ballots. This problem is called ballot stuffing.

In this paper we give a definition of verifiability in the computational model
to account for a malicious bulletin board that may add ballots. Next, we provide a
generic construction that transforms a voting scheme that is verifiable against an
honest bulletin board and an honest registration authority (weak verifiability) into
a verifiable voting scheme under the weaker trust assumption that the registration
authority and the bulletin board are not simultaneously dishonest (strong verifi-
ability). This construction simply adds a registration authority that sends private
credentials to the voters, and publishes the corresponding public credentials.

We further provide simple and natural criteria that imply weak verifiability. As
an application of these criteria, we formally prove the latest variant of Helios by
Bernhard, Pereira and Warinschi weakly verifiable. By applying our generic con-
struction we obtain a Helios-like scheme that has ballot privacy and strong verifi-
ability (and thus prevents ballot stuffing). The resulting voting scheme, Helios-C,
retains the simplicity of Helios and has been implemented and tested.

Keywords: voting protocols, individual verifiability, universal verifiability, bal-
lot stuffing, ballot privacy, Helios.

1 Introduction

Ideally, a voting system should be both private and verifiable. Privacy ensures that no
one knows that a certain voter has voted in a particular way. Verifiability ensures that
voters should be able to check that, even in the presence of dishonest tallying authori-
ties, their ballots contribute to the outcome (individual verifiability) and that the the pub-
lished result corresponds to the intended votes of the voters (universal verifiability). One
leading voting system designed to achieve both privacy and verifiability is Helios [1],
based on a classical voting system proposed by Cramer, Gennaro and Schoenmakers [2]
with variants proposed by Benaloh [3]. Helios is an open-source voting system that has

� The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n◦ 258865.

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 327–344, 2014.
c© Springer International Publishing Switzerland 2014

328 V. Cortier et al.

been used several times to run real-world elections, including the election of the pres-
ident of the University of Louvain-La-Neuve and the election of the 2010, 2011, and
2012 new board directors of the International Association for Cryptographic Research
(IACR) [4]. Helios has been shown to ensure ballot privacy for successively stronger
notions of privacy and more accurate implementations [5–7].

The remaining question is whether the result of an election run through Helios does
correspond to the votes cast by the voters. Put in other words, is Helios verifiable? Ac-
cording to Juels, Catalano and Jakobsson (JCJ) definition [8], Helios is individually
and universally verifiable1, although we are not aware of any proof of verifiability in
a computational model. In fact, Bernhard, Pereira and Warinschi (BPW) [7] showed
recently that existing Helios versions [9] are not verifiable due to the use of a weak ver-
sion of the Fiat-Shamir transformation in the non-interactive zero-knowledge proofs of
ballot well-formedness. They showed that when the standard version of Fiat-Shamir is
used, then Helios has ballot privacy but they do not prove verifiability. The forthcoming
Helios version 4.0 is planned to incorporate these changes [9].

Still, JCJ’s definition assumes the bulletin board to be honest: an attacker may cast
dishonest ballots on the behalf of dishonest voters but no extra ballots may be added
nor deleted. This means for example that the result of the election of the 2012 board of
the IACR can be trusted only under the assumption that the election server was neither
dishonest nor attacked, during the whole duration of the election. This is a rather unsat-
isfactory assumption, since adding a few extra ballots may easily change the outcome
of an election. In the case of Helios, this is mitigated by the fact that voters’ identities
are public. If the bulletin board adds ballots, it has to tell which voters are supposed
to have cast these ballots. Thus hopefully, these voters should notice that the server
wrongly cast ballots on their names and would complain. Such complaints are however
not guaranteed since absentees typically do not care much about the election. Things
may be even worse. In some countries (like France), whether someone voted or not is a
private information (that can be accessed only by voters of the same precinct, through
a rather heavy procedure). It is therefore forbidden to publicly reveal the identities of
the voters who cast a vote. Moreover, publishing voters identities compromises privacy
in the future: once the public key of the election will be broken (say in 20 years), ev-
eryone will learn the vote of each voter. A simple alternative consists in removing the
disclosure of voters’ identities. This variant of Helios remains perfectly practical and
of course still preserves ballot privacy. But it then becomes completely straightforward
for a corrupted bulletin board to add as many ballots as needed to change the legitimate
election result.

Election Verifiability under Weaker Trust Assumptions. We first provide an exten-
sion of the definition of individual and universal verifiability by Juels, Catalano and
Jakobsson [8], that accounts for ballot stuffing. Throughout the paper we will some-
times use verifiability to refer to individual and universal verifiability. Intuitively, a
voting scheme is verifiable if the result corresponds to the votes of

1 JCJ uses the terms correctness and verifiability, which we rename as individual and universal
verifiability and tally uniqueness respectively, as we think the latter terminology matches better
the e-voting literature and it is also more accurate.

Election Verifiability for Helios under Weaker Trust Assumptions 329

– all honest voters that have checked that their vote was cast correctly (in Helios, this
amounts into checking that the encrypted vote appears on the bulletin board);

– at most n valid votes where n is the number of corrupted voters (i.e. the attacker
may only use the corrupted voters to cast valid votes);

– a subset of the votes cast by honest voters that did not check their vote was cast
correctly (in practice, many voters do not perform any check).

As in [8], this definition requires the tally function to admit partial tallying (that is,
it is possible to compute the tally by blocks and then retrieve the final result). This is
satisfied by most election systems, notably those consisting on counting the number of
votes that every candidate from a given list received, and those whose outcome is the
multiset of cast votes.

Our first main contribution is a generic construction that transforms any verifiable
voting scheme that assumes both the registration authority and the bulletin board hon-
est, into a verifiable voting scheme under the weaker trust assumption that the regis-
tration authority and the bulletin board are not simultaneously dishonest. We show that
our transformation also turns ballot privacy and tally uniqueness (as defined in Section
3.3) w.r.t. honest bulletin board and registration authority, into ballot privacy and tally
uniqueness w.r.t. non simultaneously dishonest bulletin board and registration authority.
Throughout the paper we will sometimes use strong verifiability to refer to individual
and universal verifiability against non simultaneously dishonest bulletin board and reg-
istration authority.

We stress that verifiability cannot come without trust assumptions: the key issue re-
lies on the fact that some mechanism is necessary to authenticate voters, that is, to
make sure that Bob is not voting in the name of Alice. In Helios-like protocols, the bul-
letin board is the only authority that controls the right to vote. It may therefore easily
stuff itself, that is, it may easily add ballots. To control the bulletin board, it is neces-
sary to consider an additional authority. In our solution, a so-called registrar authority,
provides each voter with a private credential (actually a signing key) that has a public
part (the verification key). The set of all public credentials is public and, in particular,
known to the bulletin board. Then each voter simply signs his ballot with his private
credential. Note that the association between a public credential and the correspond-
ing voter’s identity does not need to be known and actually, should not be disclosed
to satisfy e.g. the French requirements regarding voting systems. It is also possible to
have the registration authority to generate the credentials off-line and to distribute them
using a non-digital channel, e.g. snail mail. This minimizes the risk of Internet-based
attacks against the registration authority. We have designed our solution having in mind
the guidelines set for the e-voting setup used for the expatriates at the 2012 French
legislative elections [10].

The advantage of our approach relies on its simplicity: the additional authority is
only responsible for generating and distributing the credentials of the voters. Once it
is done, it can erase these records. It consists on one offline layer added on top of the
existing voting protocol; therefore it needs not to be changed and its infrastructure is
kept. In particular, our solution does not require any additional server.

We have also considered the possibility of using anonymous credentials [11]. Our
preliminary conclusion discards a direct application in our transformation. This is due

330 V. Cortier et al.

to the fact that anonymous credentials allow its owners to unlinkably “show” the same
credential multiple times. In our case this property potentially allows a voter to vote
several times without being detected, and then verifiability cannot be achieved.

Criteria for Universal Verifiability. Since proving verifiability against cheating tally-
ing authorities, even assuming honest bulletin board and registration authority, may not
be easy, we provide a simple and natural criteria that implies verifiability. We show that
any correct and accurate voting protocol with tally uniqueness is universally verifiable
(w.r.t. an honest bulletin board). Correctness accounts for the natural property that the
tally of just honestly cast ballots should always yield the expected result (typically the
sum of the votes). Accuracy ensures that any ballot (possibly dishonest) that passes the
verification check (e.g. valid proof, well-formedness of the ballots) corresponds to a
valid vote. Tally uniqueness ensures that two different results cannot be announced for
a single election. Our criteria are satisfied in particular by Helios and we expect it to
be satisfied by many existing voting protocols. As a result we provide the first proof of
verifiability for the Helios-BPW voting scheme [7] in a computational model.

A Verifiable Helios-Like Scheme That Prevents Ballot Stuffing. By applying our
generic construction to Helios-BPW we obtain a voting scheme, that we name as Helios
with Credentials (Helios-C), which is verifiable against cheating tallying authorities
under the weak assumption that the bulletin board and the registration authority are not
simultaneously dishonest. Helios-C is ballot private if the tallying authority behaves
honestly. We have implemented Helios-C and used it in a mock election.

Related Work. To the best of our knowledge, the only proofs of verifiability for Helios
have been conducted in abstract models. Delaune, Kremer and Ryan [12] define indi-
vidual and universal verifiability in a symbolic model and prove that Helios satisfy both.
Like for all symbolic models, the cryptographic primitives are abstracted by terms and
are not analyzed. Küsters et al. have put forward quantitative measurements of verifia-
bility and accountability in [13–15] that take into account ballot stuffing. In particular,
[15] gives accountability measures on several abstractions of Helios. In contrast to [15],
our verifiability framework is less expressive, but on the contrary we prove verifiabil-
ity in the computational model. Verifiability proofs like those of [12] and [13–15] can
typically not detect flaws that on the cryptographic primitives, like those found by Bern-
hard, Pereira and Warinschi [7]. Groth [16] studies a generalized version of Helios in
the Universal Composability framework, but it does not address universal verifiability.

2 Syntax of a Voting System

Election systems typically involve several entities. For the sake of simplicity we con-
sider each entity to consist of only one individual but all of them could be thresholdized.

1. Election Administrator: Denoted by E , is responsible for setting up the election.
It publishes the identities id of eligible voters, the list of candidates and the result
function ρ of the election (typically counting the number of votes every candidate
received).

2. Registrar: Denoted byR, is responsible for distributing secret credentials to voters
and registering the corresponding public credentials.

Election Verifiability for Helios under Weaker Trust Assumptions 331

3. Trustee: Denoted by T , is in charge of tallying and publishing a final result.
4. Voters: The eligible voters id1, . . . , idτ are participating in the election.
5. Bulletin board manager: Denoted by B, is responsible for processing ballots and

storing valid ballots in the bulletin board BB.

2.1 Voting Algorithms

We continue by describing the syntax for an electronic voting protocol that we will
be using thorough the paper. The syntax below considers single-pass schemes, namely
systems where voters only have to post a single message in the board. A voting proto-
col is always relative to a family of result functions R = {ρτ}τ≥1 for τ ∈ N, where
ρτ : Vτ → R , R is the result space and V is the set of admissible votes. A voting proto-
col V = (Setup,Credential,Vote,Validate,Box,VerifyVote,Tally,Verify) consists of
eight algorithms whose syntax is as follows:

Setup(1λ) on input a security parameter 1λ, outputs an election public/secret pair
(pk, sk), where pk typically contains the public key of the election and/or a list of
credentials L. We assume pk to be an implicit input of the remaining algorithms.

Credential(1λ, id) on inputs a security parameter 1λ and an identifier id, outputs the
secret part of the credential uskid and its public credential upkid, where upkid is
added to the list L = {upkid}.

Vote(id, upk, usk, v) is used by voter id to cast his choice v ∈ V. It outputs a ballot
b, which may/may not include the identifier id or the public credential upk. The
ballot b is sent to the bulletin board through an authenticated channel. At some
point, the voter may reach a state where he/she considers his/her vote has been
counted, typically after having run the algorithm VerifyVote defined below. The
voter then set CheckedVoter(id, v, b) to true.

Validate(b) on input a ballot b returns 1 for well-formed ballots and 0 otherwise.
Box(BB, b) takes as inputs the bulletin board BB and a ballot b and outputs an up-

dated BB. Typically, this algorithm performs some checks on b with respect to the
contents of BB and, possibly, a local state st. Depending on these checks, BB and
st are updated; in any case BB remains unchanged if Validate(b) rejects (that is
returns 0). We say that BB is well-formed if Validate(b) = 1 for every b ∈ BB.

VerifyVote(BB, id, upk, usk, b) is a typically light algorithm intended to the voters, for
checking that their ballots will be included in the tally. On inputs the board BB, a
ballot b, and the voter’s identity and credentials id, usk, upk, returns 1 or 0.

Tally(BB, sk) takes as input the bulletin board BB and the secret key sk. After some
checks, it outputs the tally ρ, together with a proof of correct tabulationΠ . Possibly,
ρ =⊥, meaning the election has been declared invalid.

Verify(BB, ρ,Π) on inputs the bulletin board BB, and a pair (ρ,Π), checks whether
Π is a valid proof of correct tallying for ρ. It returns 1 if so; otherwise it returns 0.

The exact implementation of the algorithms of course depends on the voting protocol
under consideration. In Helios, the authenticated channel is instantiated by a login and
a password and we have upkid ∈ {∅, id, pid} depending on the variants. upkid = id
corresponds to the standard case where the identity of the voter is appended to the

332 V. Cortier et al.

ballot and displayed on the bulletin board. upkid = pid, where pid is a pseudonym on
identity id, corresponds to the case where only pseudonyms are displayed, to provide
more privacy to the voters. Finally, upkid = ∅ corresponds to the case where only
the raw ballot is displayed on the bulletin board. We provide in Section 5 a complete
description of the Helios protocol and our variant of it.

2.2 Correctness

Next we define the minimal requirement, called correctness, that any voting protocol
must satisfy. It simply requires that honest executions yield the expected outcome, that
is, honestly cast ballots are accepted to theBB (and pass the verification checks) and that,
in an honest setting, the tally procedure always yields the expected outcome (that is, the
result function). Let BB := {∅}. A voting scheme is correct if: (1) For i ∈ {1, . . . , τ},
it holds that Validate(bi) = 1, VerifyVote

(
Box(BB, bi), idi, upki, uski, bi

)
= 1, and

Box(BB, bi) = BB ∪ {bi}, where bi ← Vote(idi, upki, uski, vi) for some vi ∈
V; (2) Tally({b1, . . . , bτ}, sk) outputs (ρ(v1, . . . , vτ), Π); and (3) Verify({b1, . . . , bτ},
ρ(v1, . . . , vτ), Π) = 1. The above properties can be relaxed to hold only with over-
whelming probability.

3 Verifiability Definitions

In this section we give individual and universal verifiability definitions in which the
election administrator is honest, but trustee and voters are assumed to be dishonest.
As emphasized in Introduction, verifiability partly relies on the authentication of the
voters. There are various ways to authenticate voters, but in each case, it requires some
trust assumptions. Our minimal trust assumption is that the registrar and the bulletin
board are not simultaneously dishonest. We further define a property, that we call tally
uniqueness, where no party is assumed be honest (except for the election administrator).

Partial Tallying. We focus on voting protocols that admit partial tallying. This
property is specified by two natural requirements usually satisfied in most election
scenarios. Firstly, the result function ρ : V

τ → R for V must admit partial count-
ing, namely ρ(S1 ∪ S2) = ρ(S1) �R ρ(S2) for any two lists S1, S2 containing
sequences of elements v ∈ V and where �R : R × R → R is a commutative
operation. For example, the standard result function that counts the number of votes
per candidate admits partial counting. Secondly, the algorithm Tally must admit par-
tial tallying, i.e. let (ρ1, Π1) ← Tally(BB1, sk) and (ρ2, Π2) ← Tally(BB2, sk). Let
(ρ,Π) ← Tally(BB1 ∪ BB2, sk) with ρ different from invalid and BB1 and BB2 dis-
joint. Then, ρ = ρ1 �R ρ2, with overwhelming probability.

3.1 Strong Verifiability

We say that a voting scheme achieves strong verifiability if it has individual and univer-
sal verifiability under the sole trust assumption that the registrar and the bulletin board
are not simultaneously dishonest. More formally, a voting scheme has strong verifia-
bility if it has verifiability against a dishonest bulletin board and verifiability against a
dishonest registrar. These are defined below.

Election Verifiability for Helios under Weaker Trust Assumptions 333

Election Verifiability against a Dishonest Bulletin Board. This is an extension of
security property already addressed in [8, 17]. Our novelty is that we assume the bulletin
board to be possibly dishonest, and in particular it may stuff ballots in the name of voters
who did never cast a vote. Of course, a verifiable protocol should forbid or at least detect
such a malicious behavior.

We consider an adversary against individual and universal verifiability that is allowed
to corrupt trustee, users and bulletin board. Only the registration authority is honest.
More precisely, for the bulletin board, we let the adversary replace or delete any ballot.
The adversary only looses control on the bulletin board once the voting phase ends and
before the tallying starts. Indeed, at this point it is assumed that everyone has the same
view of the public BB.

Let L denote the set of public credentials, U the set of public/secret credentials pairs,
and CU the set of corrupted users. The adversary can query oraclesOreg,Ocorrupt and
Ovote. Let HVote contain triples (id, v, b) that have been output by Ovote (if voter id
voted multiple times, only the last ballot is retained); while the list Checked consists
of all pairs (id, v, b) ∈ HVote such that CheckedVoter(id, v, b) = 1, that is, Checked
corresponds to voters that have checked that their ballots will be counted (typically
running VerifyVote).

– Oreg(id): invokes algorithm Credential(λ, id), it returns upkid and keeps uskid
secret. It also updates the lists L = L∪ {upkid} and U = U ∪ {(id, upkid, uskid)}.

– Ocorrupt(id): firstly, checks if an entry (id, ∗, ∗) appears in U ; if not, stops. Else,
outputs (upkid, uskid) and updates CU = CU ∪ {(id, upkid)}.

– Ovote(id, v): if (id, ∗, ∗) /∈ U or (id, ∗) ∈ CU or v /∈ V, aborts; else returns
b = Vote(id, upkid, uskid, v) and replaces any previous entry (id, ∗, ∗) in HVote
with (id, v, b).

Any voting scheme should guarantee that the result output by Tally(BB, sk) counts
the actual votes cast by honest voters. In particular an adversary controlling a subset of
eligible voters, the trustee and the bulletin board, should not be able to alter the output of

Experiment Expverb
A,V(λ)

(1) (pk, sk)← Setup(λ)

(2) (BB, ρ,Π)← AOreg,Ocorrupt,Ovote

(3) if Verify(BB, ρ,Π) = 0 return 0

(4) if ρ =⊥ return 0

(5) if ∃ (idA1 , vA1 , ∗), . . . , (idAnA
, vAnA

, ∗) ∈ HVote\Checked
∃ vB1 , . . . , vBnB

∈ V s.t. 0 ≤ nB ≤ |CU|
s.t. ρ = ρ

({vEi }nE
i=1

)
�R ρ

({vAi }nA
i=1

)
�R ρ

({vBi }nB
i=1

)

return 0 else return 1

where Checked = {(idE1 , vE1 , bE1), . . . , (id
E
nE

, vEnE
, bEnE

)}

Fig. 1. Verifiability against a malicious bulletin board

334 V. Cortier et al.

the tally so that honest votes are not counted in ρ. More precisely, verifiability against a
dishonest board shall guarantee that ρ as output by the algorithm Tally actually counts:

1. votes cast by honest voters who checked that their ballot appeared in the bulletin
board (corresponds to {vEi }nE

i=1 in Figure 1);
2. a subset of the votes cast by honest voters who did not check this. Indeed it can not

be ensured that ρ counted their votes but it might still be the case that some of their
ballots were not deleted by the adversary (corresponds to {vAi }nA

i=1 in Figure 1).
3. For corrupted voters, it is only guaranteed that the adversary cannot cast more bal-

lots than users were corrupted, and that ballots produced by corrupted voters con-
tribute to ρ only with admissible votes v ∈ V (corresponds to {vBi }nB

i=1).

The verifiability against a malicious board game is formally given by experiment
ExpverbA in Figure 1. We say that a voting protocol V is verifiable against a dishonest
board if there exists a negligible function ν(λ) such that, for any PPT adversary A,

SuccverbV (A) = Pr
[
ExpverbA,V(λ) = 1

]
< ν(λ).

Election Verifiability against a Dishonest Registration Authority. The correspond-
ing experiment ExpvergA,V defining verifiability against a malicious registration authority
and malicious trustee and voters, but honest bulletin board, is very similar to the exper-
iment in Figure 1. The adversary has access to oracles Ovote(id, v) and Ocorrupt(id)
as before, and is additionally given access to an oracle Ocast(id, b), which runs
Box(BB, b). This models the fact that the adversary cannot delete nor add ballots any-
more since the bulletin box is now honest. However, the adversary is not given in this
experiment access to theOreg oracle, since it controls the registrar and thus can register
users arbitrarily, even with malicious credentials. The adversary uses Ocorrupt(id) to
define voter id as a corrupted user, i.e. voter id’s actions are under the control of the
adversary.

In ExpvergA,V , the adversary does not output BB, since the bulletin board is honest. Note
that a dishonest registration authority may prevent some voters from voting by provid-
ing wrong credentials. Depending on the protocol, voters may not notice it, therefore
some honestly cast ballots may be discarded.

We say that V is verifiable against a dishonest registration authority if there exists

a negligible function ν(λ) such that, SuccvergV (A) = Pr
[
ExpvergA,V(λ) = 1

]
< ν(λ), for

any PPT adversaryA.

3.2 Weak Verifiability

We say that a voting scheme has weak verifiability if it has individual and universal ver-
ifiability assuming that the bulletin board and the registration authority are both honest.
That is, an adversary in the weak verifiability game can only corrupt a subset of voters
and the trustee.

The experiment ExpverwA,V defining weak verifiability, is a variation of the exper-
iment ExpvergA,V . In this case, the adversary can only add ballots to the box viaOcast (so it

Election Verifiability for Helios under Weaker Trust Assumptions 335

cannot stuff the ballot box nor delete ballots). The adversary is only allowed to regis-
ter voters through Oreg, and can only access voters’ secret credentials by calling the
Ocorrupt oracle. We say that a voting protocol V is weakly verifiable if there exists a
negligible function ν(λ) such that, SuccverwV (A) = Pr

[
ExpverwA,V(λ) = 1

]
< ν(λ), for

any PPT adversaryA.

3.3 Tally Uniqueness

In addition to verifiability, Juels, Catalano and Jakobsson [8], as well as Delaune, Kre-
mer and Ryan [12], put forward the notion of tally uniqueness. Tally uniqueness of a
voting protocol ensures that the tally of an election is unique. In other words, two dif-
ferent tallies ρ 	= ρ′ can not be accepted by the verification algorithm, even if all the
players in the system are malicious.

More formally, the goal of the adversary against tally uniqueness is to output a public
key pk, that contains a list of public credentials, a bulletin board BB, and two tallies
ρ 	= ρ′, and corresponding proofs of valid tabulation Π and Π ′, such that both pass
verification, i.e. Verify(BB, ρ,Π) = Verify(BB, ρ′, Π ′) = 1. A voting protocol V has
tally uniqueness if every PPT adversaryA has a negligible advantage in this game.

Intuitively, verifiability ensures that the tally corresponds to a plausible instantiations
of the players (onto property) while tally uniqueness ensures that, given a tally, there is
at most one plausible instantiation (one-to-one property).

4 Sufficient Conditions for Verifiability

In this section we identify sufficient conditions for (individual and universal) verifiabil-
ity in single-pass voting protocols. In the first place, Section 4.1, we define a property
for voting protocols, that we call accuracy, and we show that it implies weak verifiabil-
ity. As explained in the introduction, weak verifiability is not a completely satisfactory
property, but it is the highest verifiability level that can be achieved in remote voting sys-
tems where the only the bulletin board authenticates voters and therefore it can easily
stuff itself. This is notably the case for Helios [9]. Nevertheless, we give in Section 4.3
a generic construction that transforms a voting protocol that has weak verifiability, into
a voting protocol that has strong verifiability, namely it is verifiable under the weaker
trust assumption that the registrar and the board are not simultaneously dishonest.

4.1 Accuracy

We introduce a property for voting protocols that is called accuracy. We say that a
voting protocol V has accuracy (equivalently it is accurate) if for any ballot b it holds
with overwhelming probability that

1. (Validate(b) = 1 ∧ Verify({b}, ρb, Πb) = 1) =⇒ ρb = ρ(vb) for some vb ∈ V

2. Verify (BB,Tally(BB, sk)) = 1 for any bulletin board BB

336 V. Cortier et al.

Condition 1 reflects the natural requirement that even a dishonest ballot that passes
the validity test corresponds to an admissible vote. In Helios-like protocols, this is typ-
ically ensured by requiring the voter to produce a proof that the encrypted vote belongs
to V. Condition 2 guarantees that the proof produced by a faithful run of the tally pro-
cedure passes the verification test. In practice, this property usually holds by design.

4.2 A Sufficient Condition for Weak Verifiability

We show that correctness (Section 2.2), accuracy (Section 4.1) and tally uniqueness
(Section 3.3) suffice to ensure weak verifiability against a dishonest tallying authority.
Since these properties are simple and easy to check, this result may often ease the proof
of verifiability. We illustrate this fact by using these criteria to give in Section 5 a simple
proof that Helios-BPW is weakly verifiable.

Theorem 1. Let V be a correct, accurate and tally unique voting protocol that admits
partial tallying. Then V satisfies weak verifiability.

The proof is given in the full version [18].

Signature Schemes with Verification Uniqueness. We aim at designing a generic con-
struction that provides strong verifiability. Our construction relies on an existentially-
unforgeable (EUF-CMA) signature scheme as a building block, whose syntax and prop-
erties are given next.

Definition 1 (Signature scheme). A signature scheme consists of three algorithmsS =
(SKey, Sign, SVerify), such that

– SKey(1λ) outputs a pair of verification/signing keys (upk, usk).
– Sign(usk,m) on inputs a signing key usk and a message m outputs a signature σ.
– SVerify(upk,m, σ) on inputs a verification key upk, a message m and a string σ,

outputs 0/1, meaning invalid/valid signature.

A signature scheme must satisfy correctness, namely SVerify(upk,m, Sign(usk,m)) =
1 with overwhelming probability, where (upk, usk)← SKey(1λ).

We further need to control the behaviour of the signature scheme when keys are (dis-
honestly) chosen outside the expected range. More precisely, we need to ensure that the
output of SVerify(upk,m, σ) is deterministic, even for inputs outside the corresponding
domains. We call this verification uniqueness.

4.3 A Sufficient Condition for Strong Verifiability

We provide a generic construction that protects any voting scheme that has weak verifia-
bility, that is assuming that the bulletin board and registrar are both honest, into a voting
scheme that has string verifiability, that is under the weaker assumption that board and
registrar are not simultaneously dishonest.

Election Verifiability for Helios under Weaker Trust Assumptions 337

Let V = (Setup′,Credential′,Vote′,VerifyVote′,Validate′,Box′,Tally′,Verify′) be
a voting protocol, possibly without credentials, like Helios. Our generic construction
transforms V into Vcred as follows. We first require the registration authority to create
a public/secret credential pair (upk, usk) for each voter. Each key pair corresponds to
a credential needed to cast a vote. The association between credentials and voters does
not need to be publicly known and only the unordered list of verification keys (the pub-
lic credentials) is published. In the resulting voting scheme Vcred, every player acts as in
V except that now, each voter further signs his/her ballot with his/her signing key usk.
Moreover, the bulletin board, upon receiving a ballot, performs the usual checks and
further verifies the signature (that should correspond to one of the official verification
keys). The board also needs to maintain an internal state st that links successful voters’
authentications with successful signature verifications, i.e. it keeps links (id, upkid).
This is needed to prevent a dishonest voter id′, who has gained knowledge of several
secret credentials usk1, . . . , uskt, from stuffing/overriding the board with ballots con-
taining the corresponding public credentials upk1, . . . , upkt. We call this a multiple
impersonation attack. Our generic transformation is summarized in Figure 2.

Voter

Election Administrator

Registrar

login/pwd

Sign(usk,ballot)

ballot

upk

list of voters

upk,usk

list of voters

Bulletin Box

V

Vcred

Fig. 2. Generic construction for strong verifiability

Formally, let S = (SKey, Sign, SVerify) be a signature scheme. Let us consider
Vcred = (Setup,Credential,Vote,Validate,Box,VerifyVote,Tally,Verify) the voting
protocol with credentials obtained from V and S as follows:

Setup(1λ) runs (pk′, sk′) ← Setup′(1λ) and sets pk ← (pk′, L), sk ← sk′, where
L is a list initialized to empty that is defined below. Let us recall that pk′ potentially
contains a list L′ of public credentials inherited from V ′. Returns (pk, sk). We say
that L is ill-formed if |L| > τ , (i.e. there are more public credentials than eligible
voters) or if L has repeated elements.

338 V. Cortier et al.

Credential(1λ, id) is run by the registrar and computes (upk, usk) ← SKey(1λ); the
bulletin board computes (upk′, usk′) ← Credential′(1λ, id). The list L is updated
as L← L∪{upk}. Next, upk← (upk, upk′) and usk← (usk, usk′) are returned.

Vote(id,upk,usk, v) runs α ← Vote′(id, upk′, usk′, v), σ ← Sign(usk, α) and re-
turns a ballot b ← (upk, α, σ), which is sent to the bulletin board through an au-
thenticated channel2.

Validate(b) parses b = (upk, α, σ). If SVerify(upk, α, σ) 	= 1 outputs 0. Else, outputs
Validate′(α).

Box(BB, b) parses b = (upk, α, σ) after a successful authentication, by voter id with
credentials (upk′, usk′), to the bulletin board. BB is let unchanged if upk /∈ L, or if
Validate(b) rejects. Next (1) if an entry of the form (id, ∗) or (∗, upk) exists in its
local state st, then: (1.a) if (id, upk) ∈ st and α ∈ Box′(BB′, α) (BB′ is updated
with α), then removes any ballot in BB containing upk, updates BB ← BB ∪ {b},
and returns BB; (1.b) else, returns BB. Otherwise, (2) adds (id, upk) to st, and
(2.a) if α ∈ Box′(BB′, α), adds b to BB, and returns BB; else (2.b) returns BB.
The checks in Steps (1) and (2) are performed to prevent multiple impersonation
attacks.

VerifyVote(BB, id,upk,usk, b) verifies that the ballot b appears in BB. Intuitively,
this check should be done by voters when the voting phase is over. If b =
(upk, α, σ) ∈ BB, then outputs VerifyVote′(BB′, id, upk′, usk′, α). Otherwise, out-
puts 0.

Tally(BB, sk) returns ρ :=⊥ and Π := ∅ if L is not well-formed. Else, checks next
whether BB is well-formed. We say BB is well-formed if: every upk in BB appears
only once; every upk in BB appears in L; Validate(b) = 1 for every b ∈ BB.
If any of these checks fails (meaning that the bulletin board cheated) the trustee
outputs ρ :=⊥ and Π := ∅. Else the trustee runs Tally′(BB′, sk), where BB′ =
{α1, . . . , ατ} if BB = {(upk1, α1, σ1), . . . , (upkτ , ατ , στ)}.

Verify(BB, ρ,Π) starts by checking whether L and BB are well-formed. If not, out-
puts 1 if ρ =⊥; else it outputs 0. Else, runs Verify′(BB′, ρ,Π), where BB′ =
{α1, . . . , ατ} if BB = {(upk1, α1, σ1), . . . , (upkτ , ατ , στ)}.

From Weak to Strong Verifiability. Our generic construction converts a weakly veri-
fiable voting scheme into a strongly verifiable voting scheme.

Theorem 2. Let V be a voting protocol that satisfies weak verifiability, admits partial
tallying and satisfies tally uniqueness. Let S be an existentially unforgeable signature
scheme. Then Vcred satisfies strong verifiability.

Proof. It is a consequence of Lemma 1 and Lemma 2 below.

Lemma 1. Let V satisfy weak verifiability and tally uniqueness. Let S be an existen-
tially unforgeable signature scheme. Then Vcred has verifiability against a dishonest
bulletin board.

2 This channel is built around the credential information (id, upk′, usk′).

Election Verifiability for Helios under Weaker Trust Assumptions 339

This lemma is proven by showing that any adversary against the verifiability of Vcred,
controlling the bulletin board, is “as powerful” as any adversary against the weak veri-
fiability of V , unless it can break the existential unforgeability of the signature scheme
S. The proof is given in the full version [18].

Lemma 2. Let V be weakly verifiable and tally unique. Then Vcred has verifiability
against a dishonest registrar.

Note that Lemma 2 relies on the weak verifiability of the voting scheme. Indeed, if
the registrar is dishonest, it has all the credentials. Therefore only the bulletin board
may prevent him from stuffing the box. Typically, weakly verifiable schemes assume an
authenticated channel between the voters and the box, e.g. using some password-based
authentication mechanism. This simple proof is given in the full version [18].

Theorem 3. If V satisfies tally uniqueness and S satisfies verification uniqueness, then
Vcred preserves tally uniqueness.

Our transformation also preserves ballot privacy. Intuitively, this is due to the fact that
our transformation of the original protocol does not significantly change the behaviour
of the underlying voting scheme. In particular, every valid ballot produced by our trans-
formed voting scheme corresponds to a valid ballot in the original voting scheme, and
viceversa. In the full version of this work we give a proof of ballot privacy using the
game-based game definition from [7]. The reduction is straightforward and there are no
technical difficulties involved.

Theorem 4. If V satisfies privacy then Vcred satisfies privacy.

5 Helios-C : Helios with Credentials

In this section we modify the design of Helios 4.0 voting system [9]. Actually, the cur-
rent version does not ensure ballot privacy due to the fact that dishonest voters may
duplicate ballots [5]. We therefore consider a slight modification of Helios 4.0 that
includes weeding of duplicate ballots and that has been proved secure w.r.t. ballot pri-
vacy [7]. We aim at achieving (individual and universal) verifiability under a weaker
trust assumption. Our modification consists in adding (verifiable) credentials to prevent
ballot stuffing. We name it Helios-C, as a shortening for Helios with Credentials. For
readability, we describe Helios for a single choice election (voters may simply vote 0 or
1). It can be easily generalized to elections with several candidates. We assume an au-
thenticated channel between each voter and the bulletin board. This is typically realized
in Helios through password-based authentication.

We use the ElGamal [19] IND-CPA cryptosystem D = (KeyGen,Enc,Dec) in a
given group G where the Decisional Diffie-Hellman assumption holds; the Schnorr
signature scheme S = (SKeyGen, Sign, SVerify) [20] over the group G; the NIZK
proof system [21, 22] DisjProofH(g, pk, R, S) to prove in zero-knowledge that (R,S)
encrypts g0 or g1 (with proof builder DisjProve and proof verifier DisjVerify); and the
NIZK proof system [21] EqDlG(g,R, vk, c) to prove in zero-knowledge that logg vk =

340 V. Cortier et al.

logR c for g,R, vk, c ∈ G (with proof builder PrEq and proof verifier VerifyEq). H and
G are hash functions mapping to Zq .

Formally, Helios-C consists of eight algorithms Vheliosc = (Setup,Credential,Vote,
Validate,VerifyVote,Box,Tally,Verify) defined below:

Setup(1λ) chooses G a cyclic group of order q and g ∈ G a generator. It randomly

chooses sk
R← Zq and sets pk = gsk. Hash functions G,H : {0, 1}� → Zq are

chosen. It outputs pk ← (G, q, pk, L,G,H,V = {0, 1}), the public key of the
election and sk = (pk, sk), with L initialized as the empty set.

Credential(1λ, id, L) generates a signing key pair for each voter. It runs (upk, usk)←
SKeyGen(1λ). It adds upk to L and outputs (upk, usk).

Vote (id, upk, usk, v) it is used by a voter of identity id with credentials (upk, usk) to
create a ballot b corresponding to vote v as follows:

(1) Encrypts v ∈ {0, 1} as C = Enc(pk, gv) = (R,S). Computes a proof π =
DisjProveH(g, pk, R, S, r) showing that the encrypted vote is 0 or 1.

(2) Computes σ ← Sign(usk, (C, π)), namely a signature on the ciphertext and its
proof. The ballot is defined as b = (upk, (C, π), σ).

(3) The voter submits the ballot b by authenticating itself to the bulletin board.

Validate(b) checks that the ballot is valid, that is, that all proofs are correct. Formally,
it parses the ballot b as (upk, (C, π), σ). It then checks whether: (1) upk ∈ L;
(2) DisjVerifyH(g, pk, C, π) = 1; (4) SVerify(upk, σ, (C, π)) accepts. If any step
fails, it returns 0; else it returns 1.

VerifyVote(id, upk, usk, b) returns the value of the test b ∈ BB.

Box(BB, b) parses b = (upk, (C, π), σ) after a successful authentication from a voter
id. BB is let unchanged if upk /∈ L, or Validate(b) rejects or C appears previously
in BB. Next, (1) if an entry of the form (id, ∗) or (∗, upk) exists in its local state
st, then: (1.a) if (id, upk) ∈ st, removes any previous ballot in BB containing upk,
updates BB ← BB ∪ {b} and returns BB; (1.b) else, returns BB. Otherwise, (2)
adds (id, upk) to st, updates BB← BB ∪ {b} and returns BB.

Tally(BB, sk) consists of the following steps:
(1) Runs Validate(b) for every b ∈ BB. Outputs ρ =⊥ and Π = ∅ if any such b is

rejected.
(2) Parses each ballot b ∈ BB as (upkb, (Cb, πb), σb).
(3) Checks whether upkb appears in a previous entry in BB or whether upkb /∈ L.

If so, outputs ρ =⊥ and Π = ∅. Else,
(4) Computes the result ciphertext CΣ = (RΣ , SΣ) = (

∏
b∈BB Rb,

∏
b∈BB Sb),

where Cb = (Rb, Sb). This of course relies on the homomorphic property of
the El Gamal encryption scheme.

(5) Computes gρ ← SΣ · (RΣ)
−sk. Then ρ to be published is obtained from gρ in

time
√
τ for ρ lying in the interval [0, τ] and τ equals the number of legitimate

voters.
(6) Finally Π := PrEqG

(
g, pk, RΣ , SΣ · (gρ)−1, sk

)
.

Verify(BB, ρ,Π)

Election Verifiability for Helios under Weaker Trust Assumptions 341

(1) Performs the checks (1-3) done in Tally. If any of the checks fails, then returns
0 unless the result is itself ⊥, in which case outputs 1. Else,

(2) Computes the result ciphertext (RΣ , SΣ) =
(∏

b∈BB Rb,
∏

b∈BB Sb

)
.

(3) Returns the output of VerifyEqG
(
g, pk, RΣ , SΣ · (gρ)−1, Π

)
.

Theorem 5. Helios-C has tally uniqueness, strong verifiability and ballot privacy un-
der the Decisional Diffie-Hellman assumption in the Random Oracle Model.

Since Helios-C = Helios-BPWcred and the Schnorr signature scheme is EUF-CMA
in the Random Oracle Model under the Discrete Logarithm assumption in G, Theo-
rem 2 (Section 4.3) allows to deduce the strong verifiability of Helios-C from the weak
verifiability of Helios-BPW. Finally, since Helios-BPW has ballot privacy under the
DDH assumption in the Random Oracle Model (Theorem 3 in [7]), then Helios-C has
ballot privacy under the same assumptions.

Theorem 6. Helios-BPW is weakly verifiable under the Discrete Logarithm assump-
tion in the Random Oracle Model.

Proof. We need to show that Helios-BPW is correct, accurate and has tally uniqueness
thanks to Theorem 1. We omit the proof of correctness for Helios-BPW since it easily
follows from the correctness of the involved primitives, i.e. the ElGamal cryptosystem,
Schnorr signature and NIZKs.

Let us show that Helios-BPW has tally uniqueness, where Helios-BPW = (Setup′,
Vote′,Validate′,VerifyVote′,Box′,Tally,′ Verify′). The output of Verify′ is determined
by the outputs of the verification tests of the NIZK systems DisjProofH and EqDlG,
which constitute proof of memberships to the corresponding languages with negligible
error probability, and hence the output of Verify′ is unique on his inputs.

With respect to the accuracy of Helios-BPW, we need to show that for any ballot b it
holds that if Validate′(b) = 1 and Verify′({b}, ρb, Πb) = 1, then ρb = ρ(vb) for some
vb ∈ V. Let α = (C, π) be such that DisjVerify(g, pk, C, π) = 1. Since DisjProofH is
a NIZK obtained by applying Fiat-Shamir to a Σ-protocol [23], then DisjProofH is a
proof that (g, pk, Rb, Sb) ∈ LEqDl or (g, pk, Rb, Sb · g−1) ∈ LEqDl with soundness error
1/q. In other words, if Validate′(b) = 1 and Verify′({b}, ρb, Πb) = 1, then vb ∈ {0, 1}
with overwhelming probability. This proves accuracy of Helios-BPW. �

6 Implementation

We have implemented a proof of concept of Helios-C, openly accessible at [24], and
tested it in a mock election in our lab.

In Helios-C credentials are generated by a third-party provider and sent to the vot-
ers by snail mail. Clearly, it would be cumbersome for voters to copy their signature
key by typing it. We used a trick that consists in sending only the random seed used
for generating the key, which can be encoded in about 12-15 alphanumeric characters
depending on the desired entropy. It is expected that this seed is used by the provider to
add the generated public key to L, then sent (as a password) to its rightful recipient and
immediately destroyed.

342 V. Cortier et al.

candidates 2 5 10 20 30 50

enc+proofs 600 1197 2138 4059 6061 9617
sign 196 215 248 301 358 484

sig verif < 10 < 10 < 10 < 10 < 10 < 10

ballot verif 110 210 390 720 1070 1730

Fig. 3. Overhead in miliseconds induced by adding credentials to Helios

Our variant of Helios requires voters to additionally sign their ballots. Table 3 shows
the overhead induced by the signature, for various numbers of candidates (from 2 to 50).
The two first lines are timings on the client side: the first one indicates the time needed
by the voter’s browser to form the ballot (without signature) while the second line in-
dicates the computation time for signing. The third and fourth lines indicate the com-
putation time on the server side for performing the verification tests (well-formedness
of the ballot, validity of the proofs of knowledge and validity of the signature). Since
the ballot includes the public key of the voter, the server simply needs to verify one
signature for each ballot and to verify that the public keys indeed belongs to the set
of authorized keys, which can be done in logarithmic time. We use a 256-bit multi-
plicative subgroup of a 2048-bit prime field for ElGamal and Schnorr operations. The
figures have been obtained on a computer with an Intel(R) Core(TM) i7-2600 CPU @
3.40GHz, running Firefox 18. Unsurprisingly, the overhead of the signature is small
compared to the computation time of the whole ballot.

We have tested our implementation in a mock election in June 2013, among approxi-
mately 30 voters. The result of the election and in particular all its public data (including
ballots) can be found at [24].

In practice, it is also needed to provide a password/credential recovery procedure in
case voters lose their credentials. In case revoting is authorized, we further assume that
the registrar keeps the link between users and public credentials during the election so
that the old (lost) credential can be erased from the authorized list.

7 Conclusion

We have presented a generic construction that enforces strong verifiability. Applied to
Helios, the resulting system Helios-C prevents ballot stuffing, still retaining the sim-
plicity of Helios, as demonstrated by our test election, under the trust assumption that
registrar and bulletin board are not simultaneously dishonest. For simplicity, we have
presented our framework for a single vote (yes/no vote) and for a single trustee. All our
results can be easily extended to multiple candidates elections and multiple trustees,
possibly with threshold decryption as described in [25].

We would like to point out a more appealing variant of our transformation from a
theoretical point of view. In this variant, voters generate their individual credentials (i.e.
a signing key pair) by themselves. Thus a malicious registrar cannot sign on behalf
of honest users, as it would only be responsible of registering credentials for eligible
voters. We think, however, that letting the registrar generate credentials on behalf of
voters, as we do in Helios-C, is a more practical choice: most voters will not have the

Election Verifiability for Helios under Weaker Trust Assumptions 343

required knowledge to perform the critical procedure of generating credentials with a
minimum of security guarantees.

Even if most ballot counting functions admit partial tallying, especially for practi-
cal counting functions, some functions do not admit partial tallying, like the majority
function. As future work, we plan to investigate whether we can devise a definition of
verifiability for schemes that do not admit partial tallying.

Strong verifiability of Helios-C assumes that either the registration authority or the
ballot box is honest. We could further thresholdize the registration authority, by dis-
tributing each credential among several registrars. We plan to explore the possibility
to go further and design a (practical) voting scheme that offers verifiability without any
trust assumption (like vote by hand-rising), and ballot privacy under some trust assump-
tions, like the fact that some of the authorities are honest.

References

1. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university president us-
ing open-audit voting: Analysis of real-world use of Helios. In: Proceedings of the 2009
Conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2009)

2. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. In: Fumy, W. (ed.) Advances in Cryptology - EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

3. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In: Proceedings
of the Second Usenix/ACCURATE Electronic Voting Technology Workshop (2007)

4. International association for cryptologic research, Elections page at
http://www.iacr.org/elections/

5. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy. In: CSF,
pp. 297–311. IEEE Computer Society (2011)

6. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios for provable
ballot secrecy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 335–354.
Springer, Heidelberg (2011)

7. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the Fiat-
Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

8. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Chaum,
D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.)
Towards Trustworthy Elections. LNCS, vol. 6000, pp. 37–63. Springer, Heidelberg (2010)

9. Adida, B., de Marneffe, O., Pereira, O.: Helios voting system,
http://www.heliosvoting.org

10. Pinault, T., Courtade, P.: E-voting at expatriates’ MPs elections in France. In: Kripp, M.J.,
Volkamer, M., Grimm, R. (eds.) Electronic Voting. LNI, vol. 205, pp. 189–195. GI (2012)

11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

12. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication in the
TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 111–
125. Springer, Heidelberg (2011)

13. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship to verifiabil-
ity. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer
and Communications Security, pp. 526–535. ACM (2010)

http://www.iacr.org/elections/
http://www.heliosvoting.org

344 V. Cortier et al.

14. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance: New in-
sights from a case study. In: IEEE Symposium on Security and Privacy, pp. 538–553. IEEE
Computer Society (2011)

15. Küsters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting systems.
In: IEEE Symposium on Security and Privacy, pp. 395–409. IEEE Computer Society (2012)

16. Groth, J.: Evaluating security of voting schemes in the universal composability framework.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 46–60.
Springer, Heidelberg (2004)

17. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Atluri, V.,
di Vimercati, S.D.C., Dingledine, R. (eds.) WPES, pp. 61–70. ACM (2005)

18. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios under
weaker trust assumptions. HAL - INRIA Archive Ouverte/Open Archive, Research Report
RR-8855 (2014), http://hal.inria.fr/hal-01011294

19. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory 31(4), 469–472 (1985)

20. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174
(1991)

21. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) Advances
in Cryptology - CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

22. Cramer, R., Damgård, I.B., Schoenmakers, B.: Proofs of partial knowledge and simplified de-
sign of witness hiding protocols. In: Desmedt, Y.G. (ed.) Advances in Cryptology - CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

23. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions.
Information Security and Cryptography. Springer (2010)

24. Glondu, S.: Helios with Credentials: Proof of concept and mock election results,
http://stephane.glondu.net/helios/

25. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Distributed ElGamal à la Pedersen:
Application to Helios. In: Sadeghi, A.R., Foresti, S. (eds.) WPES, pp. 131–142. ACM (2013)

http://hal.inria.fr/hal-01011294
http://stephane.glondu.net/helios/

	Election Verifiability for Helios under Weaker Trust Assumptions
	1 Introduction
	2 Syntax of a Voting System
	2.1 Voting Algorithms
	2.2 Correctness

	3 Verifiability Definitions
	3.1 Strong Verifiability
	3.2 Weak Verifiability
	3.3 Tally Uniqueness

	4 Sufficient Conditions for Verifiability
	4.1 Accuracy
	4.2 A Sufficient Condition forWeak Verifiability
	4.3 A Sufficient Condition for Strong Verifiability

	5 Helios-C : Helios with Credentials
	6 Implementation
	7 Conclusion
	References

