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Abstract. We propose a new encryption primitive, commitment con-
sistent encryption (CCE), and instances of this primitive that enable
building the first universally verifiable voting schemes with a perfectly
private audit trail (PPAT) and practical complexity. That is:

– the audit trail that is published for verifying elections guarantees
everlasting privacy, and

– the computational load required from the participants is only in-
creased by a small constant factor compared to traditional voting
schemes, and is optimal in the sense of Cramer, Gennaro and Schoen-
makers [16].

These properties make it possible to introduce election verifiability in
large scale elections as a pure benefit, that is, without loss of privacy
compared to a non-verifiable scheme and at a similar level of efficiency.

We propose different approaches for constructing voting schemes with
PPAT from CCE, as well as two efficient CCE constructions: one is tai-
lored for elections with a small number of candidates, while the second
is suitable for elections with complex ballots.

1 Introduction

Elections enable a set of voters to express their opinion regarding one or more
questions, and to build an aggregate outcome from these personal opinions.
While very simple elections mechanisms, like hand raising, can be very conve-
nient to organize, various properties are usually required from voting schemes
nowadays, which are not guaranteed by a hand raising process.

Vote privacy is probably the most important property that has been added
on top of correctness/verifiability (guaranteed by the hand raising process), and
became mandatory for public elections in most countries during the 19th century,
as a way to prevent coercion and bribery [36].

Elections guaranteeing the privacy of the votes while preserving the correct-
ness of the outcome are unfortunately much harder to organize in a trustworthy
way: as usual, correctness and privacy guarantees tend to conflict.

As a result, most voting schemes used today enforce privacy at the expense
of the correctness properties: in traditional paper-based scheme, it is most of
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the time impossible for a voter to convince himself that his vote is included in
the urns that are tallied (he has to trust election officers on that), and the same
happens with the commonly deployed non verifiable electronic voting schemes,
which also make it impossible for the voters to verify what is counted by the
computers, if there is anything counted at all.

As a way to solve this problem, universally verifiable voting systems were pro-
posed in the seminal works of Benaloh et al. [7, 13], works that have been followed
by a considerable body of research during the last 25 years (see [12, 15, 16, 18, 22,
27, 32, 34, 35] for instance). Universally verifiable elections are realized by includ-
ing in the voting process the production of an audit trail (which can be electronic,
made of paper, or both) that makes it possible for voters to check that their vote
was recorded properly and that the election outcome is consistent with all the
votes submitted by legitimate voters (formal definitions appear in [30, 29] for in-
stance.)

The adoption of universally verifiable technologies is however complicated if
the audit trail that is provided in order to guarantee the correctness of an election
in turn weakens the privacy of the votes: this raises questions about the relative
importance of the correctness improvement resulting from the audit trail versus
the potential decrease of privacy that results from that same audit trail, as well
as about the consequences of any (even partial) failure with respect to one of
these properties. These are sensitive problems, and the balance between these
requirements will typically depend on the specifics of each election (stakes, voter
population, culture, . . . ).

This compromise between correctness and privacy needs to be made in the
vast majority of the verifiable voting schemes that have been proposed [7, 16,
18, 22, 27, 34, 35] (we discuss the few exceptions in Section 1.2) including those
that have been used in real-world elections. The public audit trail of all those
voting systems indeed includes information that could reveal individual votes if
a computationally secure cryptosystem is broken, which will eventually happen
in a hard to predict future, either because of the increase of power of computing
devices, or because of a cryptanalytic breakthrough that can happen at any time.

For instance, Helios [3] publishes encrypted votes, which may eventually reveal
those votes if the encryption scheme that is used is broken. This in part motivated
the decision of the IACR to only display aliases instead of voter names on their
election bulletin board: in case of broken encryption, the election bulletin board
would then only reveal the content of encrypted votes but not their author (the
voting server is still aware of the link between aliases and voters, though, and
these aliases circulate in cleartext emails). Such a procedure however impairs
eligibility verifiability, as it becomes infeasible for the voters to verify whether
the ballots present on the bulletin board have been submitted by legitimate
voters or are the result of ballot stuffing by the organizers [29, 4].

In a similar way, Scantegrity II [11] publishes a Q table containing the confir-
mation codes that have been unveiled during the voting phase, and, as soon as
there are few dozen of voters, the content of this table will determine uniquely
the value of the seed used to build the original P table, which in turn reveals
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the votes corresponding to all voter receipts. This may be enough to defeat the
purpose of the introduction of privacy in voting systems, since voters may be
coerced just by fear of a future loss of privacy.

1.1 Contributions

We address this problem by proposing a new primitive, commitment consistent
encryption (CCE), that can be plugged in voting schemes as a replacement for
traditional encryption. The use of this primitive makes it possible to obtain
verifiable elections with a perfectly private audit trail (PPAT), that is, an audit
trail that preserves the privacy of the votes even when facing a computationally
unbounded adversary. As a result, adding a PPAT on top of a traditional voting
scheme provides the benefits of universally verifiable voting technologies without
interfering with the privacy properties of the original system.

As an important example of application, we investigate the use of CCE for
building single-pass [8] voting schemes with PPAT. Single-pass voting schemes
support a voting process that executes asynchronously and in a single step, which
makes them well-suited for large scale elections: voters just produce their ballot
and send it to the authorities. The reception of the ballots and the tally are then
orchestrated by a set of authorities, who are also in charge of publishing the elec-
tion audit trail. The correctness of this audit trail ensures the correctness of the
election outcome even if all authorities are corrupted. Still, the privacy of the votes
relies on the number of corrupted authorities to be lower than a certain threshold.

With this application in mind, we design two efficient CCE encryption sche-
mes. The first of our schemes is additively homomorphic and is particularly
suitable for elections based on homomorphic tallying. It is however limited to
elections that have a small election outcome space (e.g., elections in which the
outcome is simply the sum of votes received by the candidates). Our second
scheme is suitable for elections with mixnet-based tallying, in which all ballots
are decrypted after shuffling, which allows supporting arbitrary ballot formats.
We eventually propose a third scheme that is flexible enough to be used in both
contexts but is much less efficient and complicated to use.

Our first two schemes admit simple distributed and threshold key generation
procedures: all computations happen in prime order groups and the standard
threshold key generation techniques available in such groups apply [24]. This is
particularly important, especially in terms of round complexity, as the trustees
of an election will often not be able to setup specific software for running key
generation: for instance, the Helios voting system used by IACR relies on n-out-
of-n distributed key generation just to keep the key generation ceremony simple
(traditional threshold key generation would require more than one single round).

These two CCE schemes are also very efficient, making them usable in Java-
Script applications like Helios for instance: based on the performance on the
JSBN cryptographic library, the preparation of any vote that can be encoded on
256 bits requires less than a second.

Based on these schemes, we obtain the first universally verifiable voting pro-
tocols with PPAT and optimal efficiency (in the sense of [16]):
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– the ballot size and the voter computational load do not depend on the num-
ber of voters nor on the number of authorities and

– the workload of the tallying authorities grows linearly with the number of
voters and candidates.

Furthermore, our schemes do not rely on expensive cut-and-choose techniques:
the number of exponentiations to be performed is independent of the security
parameter.

1.2 Related Works

Very few voting protocols offer a perfectly private audit trail, and they all require
either an amount of work by the voters that grows linearly with the number of
trustees, or the use of specific communication channels, or are inefficient.

A first class of voting schemes that can offer a PPAT is based on blind sig-
natures [22]. Here, ballots are blindly signed by an authority, then unblinded
by the voters who eventually publish their authority signed ballot through an
anonymous channel. The vote privacy issue is here taken care of by the anony-
mous channel and the audit trail only contains anonymous information. Setting
up a perfectly anonymous channel can however be very challenging in a large
scale election.

A second approach was proposed by Cramer, Franklin, Schoenmakers and
Yung [15]. Here, a verifiable secret sharing scheme is used by the voters to dis-
tribute the information needed to tally their vote. The shares are then distributed
to the authorities either through private channels or protected by encryption.
The computational load of the voters then grows linearly with the number of
authorities, which motivated the consecutive proposal by Cramer, Gennaro and
Schoenmakers of a scheme that offers a computationally private audit trail but
a work load for the voters that is independent of the number of authorities [16].

In the same spirit as the work of Cramer et al. [15], Moran and Naor proposed
a voting scheme with everlasting privacy [33]. Here again, the privacy of the votes
is protected through secret sharing and the complexity of the ballot preparation
task grows linearly with the number of authorities.

As far as we know, our solutions are the first to offer a PPAT while being
based on the third approach of e-voting, that is, the tallying of threshold en-
crypted ballots [7, 13, 16, 27]. In a contemporary work, Demirel, van de Graaf
and Araújo [20, 19] explore a similar problem and propose a solution based on
the combination of Pedersen commitments and Paillier encryption proposed of
Moran and Naor [33]. As acknowledged by these authors, this solution is not
practical: it relies on cut-and-choose zero-knowledge (ZK) proofs, which makes
it slower than ours by approximately 4 orders of magnitude for comparable
security levels, and requires the execution of sophisticated MPC protocols for
distributed key generation by the trustees.

In terms of modeling, symbolic techniques also have been recently proposed
to model everlasting privacy [4].
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Two Flavors of Verifiability. Just like privacy, verifiability is a property that
comes in computational and perfect flavors. The huge majority of schemes offer
the computational variant, typically by relying on zero-knowledge proofs that
only are computationally sound. The solutions we propose share this feature.

We believe that the balance between computational and perfect verifiability is
however very different of the one we have for privacy. First, to have any impact,
an attack on the verifiability must be mounted on-the-fly during the election: a
falsified proof of verifiability proposed after 20 years will not convince anyone,
while a loss of privacy after 20 years might be a practical concern. Second,
the adoption of verifiable protocols is often conditioned by improvements on
traditional non-verifiable systems. So, having the possibility to bring verifiability
without weakening privacy (by publishing ciphertexts) might be a core decision
factor. Similar considerations motivated the design of Scantegrity: its practical
adoption is expected to have been facilitated by the absence of need to decrease
the usability of the paper ballots [11].

Coercion resistance. The historical motivation for introducing secret ballots was
the prevention of bribery or coercion. The schemes we propose address the con-
cern of a voter who fears that the audit data of an election could reveal their
vote. This concern is certainly the most ubiquitous and hard to prevent through
law enforcement or by voter education: it does not require any visible step by
a coercer who just needs to look at available data. We do not focus on specific
coercion resistance procedures in our simple application examples, as coercion
prevention is a much broader problem than what can be addressed at a proto-
col level, especially when vote-by-mail is authorized or when nothing prevents
bringing camera phones in a voting booth. Our schemes are however compatible
with most existing approaches, e.g., revoting as first used in Estonia or coercion
detection [25].

Roadmap. The rest of this paper is organized as follows. Section 2 introduces
our new encryption primitives, CC and CCVA encryption. Section 3 discusses
security properties that these encryption primitives need to satisfy for use in
voting applications. Section 4 defines two efficient CCVA schemes and explains
how they can be plugged in classical voting schemes. We finally analyse the
efficiency of our solutions in Section 5.

2 Commitment Consistent Encryption

We introduce a new encryption primitive, commitment consistent encryption
(CCE). A CCE primitive is a traditional public key encryption scheme that
offers an extra feature: from any CCE ciphertext, it is possible to derive a com-
mitment on the encrypted message, and the private key can also be used to
obtain an opening on that commitment. In the context of elections, we expect
voters to CC encrypt their vote, which will allow authorities to compute the tally
in a traditional way (e.g., by decrypting the homomorphic sum of the cipher-
texts). Furthermore, when receiving a CC ciphertext, the authorities can use a
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DeriveCom algorithm to derive commitments from CC ciphertexts and post that
commitment on the bulletin board. This provides a PPAT if the commitments
are perfectly hiding. In order to offer universal verifiability, the authorities can
also make use of an Open algorithm that makes it possible to derive openings of
commitments on the election tally.

For simplicity, we make our whole treatment in the single-key setting. The
extension to the full threshold setting is orthogonal to our concerns and can be
made using traditional techniques. In the following, an efficient algorithm runs
in PPT, and a negligible function decreases faster than any inverse polynomial.
An overwhelming function is close to 1 up to a negligible function.

Definition 1 (CC Encryption). A commitment consistent encryption scheme
Π is a tuple of efficient algorithms (Gen,Enc,Dec,DeriveCom,Open,Verify) de-
fined as follow :
Gen(1n): Given a security parameter n, output a triple (pp, pk, sk), respectively

the public parameters, the public key and the secret key.
Enc(pk,m): Output a ciphertext c which is an encryption using the public key

pk of a message m chosen in the plaintext space M defined by pp.
Dec(sk, c): From a ciphertext c, output a message m using the secret key sk.
DeriveCom(pk, c): Output a commitment d from a ciphertext c using pk.
Open(sk, c): Output an auxiliary value a using the secret key sk. This auxiliary

value can be considered as part of an opening for a commitment.
Verify(pk, d,m, a): From a message m, a commitment d with respect to key pk

and an auxiliary value a, output a bit. This algorithm checks the validity of
the opening (m, a) with respect to d and pk.

It is implicit that pp is given to each algorithm apart from Gen.

Correctness.We expect CCE schemes to satisfy the following correctness prop-
erties. For any (pp, pk, sk)← Gen(1n), any message m ∈ M and any ciphertext
c← Enc(pk,m), it holds with overwhelming probability in n that Dec(sk, c) = m
and Verify(pk,DeriveCom(pk, c),Dec(sk, c),Open(sk, c)) = 1. For the sake of sim-
plicity we will often shorten the expression above as Verify(pk, c).

The security properties that we can expect from a CCE scheme and for the
derived commitments are the traditional ones and we will discuss later those
that are appropriate for our applications.

The CCE definition does not guarantee that it is unfeasible to produce ci-
phertexts that look just like honestly computed CCE ciphertexts but are not
consistent, which might be an issue for verifiable decryption. For instance, an
attacker might be able to produce a ciphertext such that the DeriveCom function
will provide a commitment that cannot be opened, which might be a problem if
some parties are required to provide a decryption. In order to solve this problem,
we introduce the concept of validity augmentation (VA) for CCE schemes.

From an operational point of view, a validity augmentation of a CCE scheme
adds three algorithms: Expand, Strip and Valid. Expand augments the public key
for the needs of the other algorithms. Valid takes an augmented CCE cipher-
text cva that contains a CCE ciphertext along with some proofs of validity, and
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runs a verification procedure on those proofs to make sure that it is possible
to extract from the ciphertext a commitment and an encryption of an opening
for that commitment. Eventually, Strip removes those proofs to provide some
homomorphic properties such as additivity on the encrypted messages.

Definition 2 (Validity augmentation). A scheme ΠVA := (VA.Gen,VA.Enc,
VA.Dec,VA.DeriveCom,VA.Open,VA.Verify,Expand, Strip,Valid) is a validity aug-
mentation of the CCE scheme Π := (Gen,Enc,Dec,DeriveCom,Open,Verify) if
ΠVA is a CCE scheme equipped with three additional efficient algorithms Expand,
Strip and Valid that satisfy the following conditions.

Augmentation. VA.Gen runs Gen to get (pp, pk, sk) and outputs an updated
triple (ppva, pkva, skva) := (pp,Expand(pk), sk).

Validity. Valid(pkva, cva) = 1 for every honestly generated ciphertext and keys
and, for any PPT adversary A, the following probability is negligible in n:

Pr [Valid(pkva, cva) = 1 ∧ ¬Verify(pk, Strip(pkva, cva)) = 1

| cva ← A(ppva, pkva); (ppva, pkva, skva)← VA.Gen(1n)]

This condition guarantees that decryption and opening succeed.
Consistency. The distributions of Strip(pkva,VA.Enc(pkva,m)) and Enc(pk,m)

are the same for all m, that is, we can strip a VA ciphertext into a nor-
mal one. Furthermore, the decryption, opening and verification of ΠVA are
consistent with those of Π: for every ciphertext and generated keys, it must
hold that VA.Dec(skva, cva) = Dec(sk, Strip(pkva, cva)), VA.Open(skva, cva) =
Open(sk, Strip(pkva, cva)) and VA.Verify(pkva, cva)=Verify(pk, Strip(pkva, cva)).

We refer to the result of the augmentation of a CCE scheme as a CCVA
encryption scheme or simply a CCVAE scheme.

3 Voting with a Perfectly Private Audit Trail

In the spirit of [8], we now propose a “minivoting” scheme, that we use to
describe how a validity augmented CCE scheme can be used to submit ballots
in an election. We then describe the security guarantees that CCE schemes need
to provide for their application in voting with PPAT.

The minivoting scheme we consider follows a classic workflow. First, a setup
phase takes place, during which two clean bulletin boards PB and SB are
created and elections keys are generated and appropriately published. The board
PB contains the public audit trail, while SB is kept secret by the authorities
and used to compute the tally. Voters then produce their ballots by encrypting
their votes and send these ballots to the election authorities. The ballots are
processed by these authorities, and the bulletin boards are updated accordingly.
At the end of the voting phase, a tallying protocol is executed and the election
outcome is published.
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Definition 3 (Minivoting scheme)
Let Π be a CCVA encryption scheme, and let ρ be a result function that takes a
set of valid votes and produces the corresponding election outcome. From these,
we build a minivoting scheme Enc2Vote(Π, ρ) as follows.
Setup(1n) runs the key generation algorithm Gen of Π on the same input, ob-

taining a triple (pp, pk, sk). It also initializes a public and a secret bulletin
board, PB and SB, to ⊥.

Vote(pk, v) is executed by voters to prepare their ballot: it encrypts a vote v with
pk using Π, obtaining a ballot b.

ProcessBallot(pk, b,PB,SB) is executed by the authorities every time a ballot
is received. It rejects b if it is already present in SB. Otherwise, it runs
Valid(pk, b) and rejects b if it fails. If all these steps succeed, it appends b on
SB and DeriveCom(pk, b) on PB.

Tally(sk,PB,SB) decrypts all ballots on SB, obtaining a vector of votes v,
and publishes ρ(v) on PB.

A minivoting scheme does not require any proof of the validity of the ballots
(e.g., that they would encrypt 0 or 1 in an approval voting system), nor publishes
any specific information regarding a proof of correctness of the tally, which will
be needed for universal verifiability. For modularity, we address these concerns
separately: the structure of these proofs of correctness will indeed be dependent
of the result function ρ.

We now focus on the privacy of the votes that is offered in such a minivoting
scheme, which we capture through the following experiment, slightly adapted
from [8] to allow a distinction between the private and public bulletin boards.

The Vote Privacy experiment VotePrivBA,Π,ρ (n)
1. The challenger picks a bit β ← {0, 1} uniformly at random. He also runs the

Setup algorithm of the voting scheme on input 1n and obtains the resulting
triple (pp, pk, sk) and empty bulletin boards PBβ and SBβ . He then sends
pp, pk to A and creates two other empty bulletin boards PB1−β and SB1−β .
A is allowed to see the board Bβ , where B is a parameter of the experiment.

2. A can then perform two types of queries:
Vote(v0, v1) On such a query, the challenger executes Vote(pk, vi), obtaining

a ballot bi, and then runs ProcessBallot(pk, bi,SBi), for i ∈ {0, 1}.
Ballot(b) On such a query, the challenger executes ProcessBallot(pk, b,SBβ)

and, if it succeeds, also runs ProcessBallot(pk, b,SB1−β).
3. The challenger computes the tally t0 := Tally(sk,SB0) and appends t0 on

PBβ and SBβ .
4. A outputs a bit β′. If β = β′ then the output of the experiment is 1 and we

say that A wins.

Definition 4 (Perfectly Private Audit Trail). A minivoting scheme
Enc2Vote(Π, ρ) has a perfectly private audit trail (PPAT) if, for every adversary
A, Pr[VotePrivPB

A,Π,ρ(n) = 1] = 1
2 .
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Since this definition does not place any bound on the computational power of
the adversary, the everlasting privacy of the votes is guaranteed against people
who only see the PB board.

In some contexts (e.g., when using groups of unknown order), it is useful to
relax the above definition by accepting statistical indistinguishability and toler-
ating a negligible advantage over 1

2 . Independently of this, the private bulletin
board, only seen by the authorities, should provide computational ballot privacy.

Definition 5 (Ballot Privacy [8]). A minivoting scheme Enc2Vote(Π, ρ) has
ballot privacy if, for every PPT adversary A, there is a negligible function ε
such that, Pr[VotePrivSB

A,Π,ρ(n) = 1] = 1
2 + ε(n).

Security. The following two theorems define security properties of a CCVAE
scheme that guarantee the PPAT and ballot privacy of the corresponding miniv-
oting scheme.

Theorem 1. Let Π be a CCVA encryption scheme, and let ρ be a result func-
tion. If the output of DeriveCom is perfectly hiding, then the minivoting scheme
Enc2Vote(Π, ρ) has a perfectly private audit trail.

Proof. The view of the adversary is the VotePrivPB
A,Π,ρ experiment and this view

is independent of β: PB only contains perfectly hiding commitments and then
a tally that is always computed from SB0, which is independent of β. ��
Theorem 2 ([9]). Let Π be an NM-CPA CCVAE scheme, and let ρ be a result
function. Then the minivoting scheme Enc2Vote(Π, ρ) has ballot privacy.

The NM-CPA security property [21] is easy to reach from an IND-CPA en-
cryption scheme, as shown in [9]: it is enough to augment each ciphertext with
a sigma proof of knowledge of the message and randomness used to build this
ciphertext. We observe that this sigma proof not only guarantees the knowledge
of the plaintext and randomness, but also that the ciphertext is well-formed. We
can then define a validity augmentation in a straightforward way: Expand adds
the oracle H to the public key, Strip removes the sigma proof from the cipher-
text, and Valid returns “1” only if the proof is valid. The validity condition holds
thanks to the completeness and the soundness of the proof. The consistency of
the augmentation is straightforward by inspection of Definition 2.

A first example of CCVAE scheme, called PPATP, based on Paillier encryption
and Pedersen commitments following a suggestion by Moran and Naor [33] is
available in the full version of this paper [17]. The full version also contains a
generalized version of this construction with security proofs.

4 Efficient CCVAE Schemes

This section describes two efficient and usable constructions of CCVAE schemes.
The first scheme, PPATS, allows using traditional ballot validity proof techniques
and completing the tally through the homomorphic addition of encrypted votes.
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The decryption process however involves a stage of exhaustive search of the
plaintext (just as the exponential ElGamal scheme used in many applications),
which restricts the use of this scheme to elections in which this kind of exhaus-
tive search can be done, e.g., when the outcome is simply a count of the number
of votes that each candidate received. The second scheme, PPATC, is tailored for
mixnet based tallying procedures: the ciphertexts are not additively homomor-
phic but the decryption procedure is efficient regardless of the message. In both
tally procedures we show explicitly how the process does not affect the PPAT as
well as the ballot privacy of voting schemes provided by our CCVAE schemes.

Computational Setting. Our two efficient CCVAE schemes rely on the exis-
tence of a bilinear group generator that, on input 1n, produces a description of
bilinear groups Λsxdh = (q,G1,G2,GT , e, g, h) where G1, G2 and GT are groups
of prime order q, with |q| = n, e is an efficient and non-degenerating bilinear map
e : G1 × G2 → GT and g, h are generators of G1 and G2 respectively (we refer
the reader unfamiliar with those objects to [23]). We expect that these groups
are chosen in such a way that there is no known efficient mapping between G1

and G2 in either direction. This is necessary, as the security of our schemes relies
on the hardness on the DDH problem in both of these groups. This setting, often
called the SXDH setting, is usually considered as the choice that offers the high-
est level of flexibility and performance for high security parameters. Common
concrete choices include the use of BLS and BN curves [5, 6].

Note that all our schemes could be adapted easily to the symmetric pairing
settings, typically by relying on the hardness of the DLIN problem instead of
DDH [10]. The choice we made provides more efficient protocols and also makes
it possible to compute in smaller fields for equivalent security levels.

4.1 CCVA Encryption for Elections with Simple Ballots

The PPATS scheme makes use of two compatible homomorphic ingredients: El-
Gamal encryption and the TC2 perfectly hiding commitment scheme proposed
by Abe et al. [1], which is binding in the Λsxdh setting. The resulting CCE scheme
is compatible with sigma protocols, and the definition of a validity augmentation
is then simple.

The PPATS CCVAE scheme:
VA.GenS(1

n): Generate Λsxdh = (q,G1,G2,GT , e, g, h) for |q| = n together with
the following additional public random generators g1 = gx1 in G1 and
h1 ∈ G2. The triple (ppS, pkS, skS) is defined as ((Λsxdh, h1), g1, x1). The
augmented key pkvaS = Expand(pkS) is computed by adding the descrip-
tion of an efficient hash function H with range Zq, resulting in the triple
(ppvaS = ppS, pk

va
S , skvaS = skS).

VA.EncS(pk
va
S ,m ; r, s): Compute the CCE ciphertext c = EncS(pkS,m; r, s) as

(d, c1, c2) = (hrhm
1 , gs, grgs1) for random r, s ∈R Zq and m ∈ Zq. Then com-

pute the validity proof as follows. Compute c′ = (huht
1, g

v, gugv1) for random
t, u, v in Zq. Then compute σcc = (νcc, z) where νcc = H(ppvaS , pkvaS , c, c′)
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and z = (zm, zr, zs) = (t + νccm,u + νccr, v + νccs). Output the ciphertext
cva = (c, σcc).

VA.DecS(sk
va
S , cva): Parse cva as (d, c1, c2, σcc) and return m, the discrete loga-

rithm of e(cx1
1 /c2, h)·e(g, d) in basis e(g, h1).

VA.DeriveComS(pk
va
S , cva): Parse cva as (d, c1, c2, σcc) and return d.

VA.OpenS(sk
va
S , cva): Parse cva as (d, c1, c2, σcc), then compute and output the

ElGamal decryption a = c2/c
x1
1 , i.e., gr (consisting of the TC2 auxiliary

value with respect to d).
VA.VerifyS(pk

va
S , d,m, a): Return 1 only if e(a, h) = e(g, d/hm

1 ).
ValidS(pk

va, cva): Parse cva as (c, σcc) = (d, c1, c2, νcc, z) and output 1 only if the
proof σcc checks, that is, if νcc = H(ppvaS , pkvaS , c, c′) where c′ = EncS(pkS , z) ·
c−νcc (with componentwise operation).

The algorithm StripS returns c from cva in the obvious way. Applying StripS to
PPATS ciphertexts leads to a homomorphic CCE scheme.

Theorem 3. The PPATS scheme is an NM-CPA secure CCVAE scheme in the
random oracle model in the Λsxdh setting.

Proof (Sketch – See full version for details [17]). We first observe that the sound-
ness of the ValidS algorithm results from the one of the σcc proof, which shows
that PPATS is a CCVAE scheme. The NM-CPA security of PPATS results from
the observation that a PPATS ciphertext is made of a CCE ciphertext c that is
IND-CPA secure, augmented with the sigma proof of knowledge of the corre-
sponding plaintext and randomness. ��

Proving vote validity. Some voting schemes require the voters to prove the va-
lidity of the votes published on PB. Such proofs, which must be perfectly ZK to
preserve PPAT, can be easily computed here for the Pedersen-like commitments
posted on PB using standard techniques [14].

Elections with Homomorphic Tallying from PPATS. We can now use this
scheme to build a voting scheme PPATSVote based on Enc2Vote(PPATS, ρS) but
from which we modify the Tally algorithm as follows.
1. Stripping : Once the polls are closed, the authorities run ValidS and StripS

on the CCVAE ciphertexts stored on SB, obtaining CCE homomorphic
ciphertexts.

2. Aggregation: The authorities multiply those ciphertexts, obtaining one re-
sulting CCE ciphertext c.

3. Decryption: The authorities compute v = DecS(skS, c) the result of the elec-
tion. To prove the correctness of the decryption, they also run OpenS on c,
obtaining an auxiliary value a. Finally the authorities append (v, a) on PB.

Theorem 4. The PPATSVote scheme offers a PPAT and ballot privacy in the
Λsxdh setting in the random oracle model.

Proof. The PPATSVote scheme is equivalent to the Enc2Vote(PPATS, ρS) scheme
except that it also discloses the auxiliary value a on PB. This value is fully de-
termined by the commitment on the outcome and by the outcome itself, which
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implies that it does not provide any extra information to an unbounded adver-
sary, and the PPAT property offered by Enc2Vote(PPATS, ρS) is then preserved.
The trustees having access to SB also see the decryption factors produced by
Dec. They are however indistinguishable of random group elements under DDH,
as for standard ElGamal decryption, and therefore do not help breaking ballot
privacy. ��

Audit Procedure. The audit procedure consists in the following steps:
1. Run all the verification procedures on the commitments displayed on PB.

If the verification procedure fails for any commitment, abort.
2. Multiply all the commitments, obtaining a commitment on the election out-

come.
3. Verify that the announced outcome v and auxiliary value a are indeed an

opening of the election outcome commitment. Abort if it is not the case.

The first step guarantees the validity of the votes posted, while the second and
last step guarantee that the tally matches the posted votes. The binding property
of the commitment scheme guarantees that the only opening that the authorities
will ever be able to provide comes from a honest tallying process. We emphasize
that this last verification is very efficient: it only requires the verification of an
opening of one constant-size commitment—no ZK proof is needed here, contrary
to traditional approaches.

As far as eligibility may be concerned, the bulletin board can also associate a
name with each commitment recorded on PB without affecting the PPAT. This
offers to any observers the possibility to verify that the posted votes have been
submitted by valid voters (e.g., by interrogating those voters in case of doubt).

Verifiability/Accountability. Verifiability makes it possible to check whether votes
have been recorded and tallied properly. In order to decide what action must be
taken if a verification fails, it is sometimes useful to have a stronger property:
accountability. This property was highlighted by Küsters et al. [30] and applied
to the Bingo voting scheme and then to several variants of the Helios voting
system [31].

While plugging the PPATS scheme into Helios would not have any noticeable
impact on the verifiability analysis of Helios proposed by Kremer et al. [29], the
distinction between the private and public board and between perfect and com-
putational privacy has more impact on the accountability analyses of Küsters
et al. [31]. In particular, while the ballot validity test is fully public in Helios,
replacing ElGamal encryption with the PPATS scheme adds a step during which
authorities could decide to reject a ciphertext because de σcc proof would be
invalid, which could not be verified from the content of PB since neither σcc

nor the corresponding statement appear on that board. As a result, it will not be
possible to determine whether the authorities or the voter are cheating without
disclosing to a judge information that only offer conditional privacy. Different
strategies for improving the accountability in the case of Helios have been ex-
plored in [3, 31]. A rigorous cryptographic analysis of verifiability/accountability
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of a fully-fledged voting system is an open problem (note that all current works
on Helios [29, 31] abstracted the cryptographic aspects and, as result, overlooked
the recently found attacks on the verifiability of Helios [9]), and is out of our
scope.

4.2 CCVA Encryption for Elections with Complex Ballots

The PPATS scheme is appropriate for elections with simple ballots. In some
elections, it is however useful to be able to encode complex votes in a single
ciphertext. This happens for instance in elections with a very large number of
candidates or with complex tallying rules that make the homomorphic aggrega-
tion approach impractical, or in elections where arbitrary write-ins need to be
supported. For those elections, a tallying approach based on verifiable mixnets is
usually adopted, which is the motivation for our definition of the PPATC scheme
below. This scheme has an efficiency comparable to the previous one but of-
fers efficient decryption procedures for arbitrary plaintext. The corresponding
CCE scheme is however not additively homomorphic any more, but this is not
a problem in a mixnet setting since ballots are individually decrypted. ElGamal
encryption is a core ingredient of this scheme, together with the Λsxdh-secure
and perfectly hiding commitment scheme of Abe et al [2].

The PPATC CCVAE scheme:

VA.GenC(1
n): Generate Λsxdh = (q,G1,G2,GT , e, g, h) for |q| = n together with

the following additional public rabdom generators g1 = gx1 , g2 = gx2 in G1

and h1 ∈ G2. The triple (ppC, pkC, skC) is defined as ((Λsxdh, h1), (g1, g2),
(x1, x2)). The augmented key pkvaC = Expand(pkC) is computed by adding to
pkC the description of an efficient hash function H with range Zq, resulting
in the triple (ppvaC = ppC, pk

va
C , skvaC = skC).

VA.EncC(pk
va
C ,m ; r, r1, r2): Compute c = EncC(pkC,m; r, r1, r2), the CCE ci-

phertext (c1, c2, c3, d1, d2) = (gr1 , gr2 , gr1g
r2
2 , hrhr1

1 ,mgr11 ) for m ∈ G1 and
random r, r1, r2 ∈R Zq. Then compute the following validity proof. Se-
lect random s, s1, s2 ∈R Zq and compute the elements c′ = (c′1, c′2, c′3, d′1)
as (gs1 , gs2 , gs1g

s2
2 , hshs1

1 ). Compute νcc = H(ppvaC , pkvaC , c, c′) and then f =
s + νccr, f1 = s1 + νccr1, f2 = s2 + νccr2. Set σcc = (νcc, f, f1, f2). The
ciphertext cva is made of (c, σcc).

VA.DecC(sk
va
C , cva): Parse cva as (c1, c2, c3, d1, d2, σcc) and return d2/c

x1
1 .

VA.DeriveComC(pk
va
C , cva): Parse cva as (c1, c2, c3, d1, d2, σcc) and return (d1, d2).

VA.OpenC(sk
va
C , cva): Parse cva as (c1, c2, c3, d1, d2, σcc), and return a = c3/c

x2
2 .

VA.VerifyC(pk
va
C , d1, d2,m, a): Return 1 if e(g, d1) = e(a, h)e(d2/m, h1) and 0

otherwise.
ValidC(pk

va, cva): Parse cva as (c1, c2, c3, d1, d2, νcc, f, f1, f2) and test whether all
elements of the ciphertext are properly encoded. Compute c′1 = gf1/cνcc1 ,

c′2 = gf2/cνcc2 , c′3 = gf1 g
f2
2 /cνcc3 and d′1 = hfhf1

1 /dνcc1 and return 1 only if
νcc = H(ppvaC , pkvaC , c1, c2, c3, d1, d2, c

′
1, c

′
2, c

′
3, d

′
1, d

′
2).

The algorithm StripC returns c from cva in the obvious way. Applying StripC to
a PPATC ciphertext leads to a CCE ciphertext that is homomorphic with respect
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to the curve group law in G1, which is sufficient for obtaining the randomization
properties needed for mixing. The use of the PPATC scheme also requires the
existence of an efficient mapping between the votes and G1. This can be realized
easily in most cases. For instance, most pairing friendly curves of the form y2 =
x3 + b on Fq have q chosen in such a way that any message y in Zq can be

mapped on a point ((y2 − b)
1
3 , y) [6].

Theorem 5. The PPATC scheme is an NM-CPA secure CCVAE scheme in the
random oracle model in the Λsxdh setting.

The proof is similar to the one of Theorem 3.

A Verifiable Shuffle for Voting Systems with PPAT. We now would
like to shuffle the PPATC ciphertexts and publish openings of the corresponding
anonymized commitments. Since our scheme is randomizable, this does not raise
any specific concern.

We also need to make the shuffle verifiable, that is, to provide a proof of shuffle,
which needs to preserve the information theoretic privacy of PB. Various perfect
(or statistical) ZK proof of shuffles can be used for that purpose [26, 28, 37]: these
guarantee that a simulator can produce a proof of shuffle just from the inputs
and output of that shuffle that is indistinguishable from a real proof, even by an
unbounded adversary.

In our context, we need to verifiably shuffle, with a single permutation, both
the CCE ciphertexts and the extracted commitments to keep track of their con-
cordance. The commitment consistent shuffle approach proposed by Terelius and
Wikström [38, 37] seems particularly natural for that purpose. This approach
splits the proof of shuffle in two stages. First a perfectly hiding commitment on
the permutation matrix used in the shuffle is computed and made public. This is
the most computationally intensive part of the protocol and, interestingly, it is
independent of the actual values that we need to shuffle and of the randomization
factors that will be applied on the ciphertexts. Then, a much cheaper proof is
produced that shows that the shuffle performed on the ciphertexts is consistent
with the commitment on that permutation matrix. In our case, that proof can
be computed both for the PPATC ciphertexts on SB and for the corresponding
commitments on PB.

We sketch the resulting tallying protocol below.

1. Stripping : The authorities run ValidC and StripC on the ciphertexts stored on
SB, obtaining a vector v of l ciphertexts and a vector d of commitments.

2. Permutation Commitment : The authorities select a random permutation π
and compute a commitment u on that permutation, together with a validity
proof Pπ.

3. Shuffle: The authorities select random vectors r, r1, r2 from Z
l
q and compute

a vector of ciphertexts v′ where v′i = vπ−1(i) · EncC(pkC, 1, rπ−1(i), r1π−1(i),
r2π−1(i)) (1 represents the neutral element in G1). The last two components
of v′ are posted on PB and denoted d′.
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4. Proof of shuffle: The authorities compute two commitment consistent proofs
of shuffle with respect to the committed permutation π: Pv that shows that
v′ is indeed a shuffle of v and Pd that shows that d′ is a shuffle on d. Pv is
posted on SB and Pd is posted on PB.

5. Decryption of openings : The authorities verify the proofs, then decrypt all
the ciphertexts in v′ and run Open on these ciphertext in order to obtain
the auxiliary values for the corresponding commitment. The plaintexts and
auxiliary values are published on PB.

Of course, the three middle stages of this procedure, corresponding to the
verifiable shuffling, should be repeated by several independent authorities.

The tally audit procedure for an observer consists in the following stages.

1. Verify the proof of permutation commitment Pπ and abort if it fails.
2. Verify the proof of shuffle Pd and abort if it fails.
3. Verify that the authorities published valid openings for the shuffled commit-

ments d′ and abort otherwise.

The fact that this whole procedure preserves the PPAT follows from the fact
that all the commitments are perfectly hiding and that all the proofs can be
made perfect zero-knowledge.

5 Conclusion

We proposed a new cryptographic primitive, CCVA encryption, that enables
the systematic design of voting schemes with a perfectly private audit trail.
We further proposed CCVA schemes that are suitable for the organization of
large-scale elections.

The PPATP scheme mentioned in section 3 and detailed in the full version
of the paper [17] is fully generic and can be used with all classical tallying
techniques. Its key generation algorithm is fairly sophisticated, though, and this
scheme is also quite inefficient compared to our other schemes. We address then
two other CCVAE schemes, PPATS and PPATC, that are much more efficient
and simple to use though less flexible. They still can be used for the two most
widely used vote tallying techniques: homomorphic aggregation and mixnets.

Efficiency measures. Table 1 gives an evaluation of the computational workload
that our three schemes require, at comparable security levels, for computing a
CCVA ciphertext and a validity proof in the case of a 0/1 vote (details appear
in the full version of the paper [17].)

The first four numbers on each line count the number of exponentiations to be
performed in each group – fractional values appear when non-full exponents are
used. The last column, giving total costs, results from the following estimations.
We associate a unit cost to the multiplication of two 256-bit integers and assume
that this cost grows quadratically with the length of the operands. We target a
security level equivalent to 2048-bit RSA modulus N . We select G1 to be taken
on Fp for a 256-bit long prime p and G2 to be taken on Fp2 . The cost of a
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Table 1. Ciphertext computation workload

Scheme Z
∗
P Z

∗
N2 G1 G2 Total Cost

PPATP (0/1 vote) 5.375 4 0 0 4202496
PPATP (256-bit vote) 3.375 4 0 0 3809280
PPATS (0/1 vote) 0 0 6 6 115200
PPATC (256-bit vote) 0 0 9 4 96000

point addition is evaluated to 16 multiplications in the underlying field, and the
cost of a point duplication to 7 multiplications. In order to perform EC point
multiplication and modular exponentiation, we consider the simple square and
multiply algorithm.

As expected, this table shows very important differences between PPATP and
the other two schemes: computing a PPATP ciphertext is roughly 40 times more
expensive than computing a PPATC ciphertext. The cost of the PPATS and
PPATC schemes is low enough to make it possible to use these schemes even on
fairly slow platforms. For instance, considering the computation of a ciphertext
in JavaScript in a browser using the JSBN library, which allows computing a
point multiplication in a 256-bit prime order group in less than 30ms in the
Chrome web browser, the computation of a PPATC ciphertext that can encode
a 256-bit vote would take less than a second.

The costs of computing a PPATS and a PPATC ciphertexts are similar. The as-
sociated tallying techniques are very different though, being much more complex
for PPATC. A mixnet based technique also reveals much more information than
a technique based on the homomorphic aggregation of ballots. As a result, we
would recommend using the PPATS scheme as long as the ballot format allows
it, even if the resulting ballot preparation cost is higher than the one that would
be obtained by using PPATC.
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